Files
blender/intern/cycles/kernel/integrator/intersect_volume_stack.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

231 lines
8.2 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/bvh/bvh.h"
#include "kernel/geom/geom.h"
#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/volume_stack.h"
CCL_NAMESPACE_BEGIN
ccl_device void integrator_volume_stack_update_for_subsurface(KernelGlobals kg,
IntegratorState state,
const float3 from_P,
const float3 to_P)
{
PROFILING_INIT(kg, PROFILING_INTERSECT_VOLUME_STACK);
ShaderDataTinyStorage stack_sd_storage;
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *stack_sd = AS_SHADER_DATA(&stack_sd_storage);
kernel_assert(kernel_data.integrator.use_volumes);
Ray volume_ray ccl_optional_struct_init;
volume_ray.P = from_P;
volume_ray.D = normalize_len(to_P - from_P, &volume_ray.t);
volume_ray.self.object = INTEGRATOR_STATE(state, isect, object);
volume_ray.self.prim = INTEGRATOR_STATE(state, isect, prim);
volume_ray.self.light_object = OBJECT_NONE;
volume_ray.self.light_prim = PRIM_NONE;
/* Store to avoid global fetches on every intersection step. */
const uint volume_stack_size = kernel_data.volume_stack_size;
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
const uint32_t visibility = SHADOW_CATCHER_PATH_VISIBILITY(path_flag, PATH_RAY_ALL_VISIBILITY);
#ifdef __VOLUME_RECORD_ALL__
Intersection hits[2 * MAX_VOLUME_STACK_SIZE + 1];
uint num_hits = scene_intersect_volume_all(
kg, &volume_ray, hits, 2 * volume_stack_size, visibility);
if (num_hits > 0) {
Intersection *isect = hits;
qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
shader_setup_from_ray(kg, stack_sd, &volume_ray, isect);
volume_stack_enter_exit(kg, state, stack_sd);
}
}
#else
Intersection isect;
int step = 0;
while (step < 2 * volume_stack_size &&
scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
shader_setup_from_ray(kg, stack_sd, &volume_ray, &isect);
volume_stack_enter_exit(kg, state, stack_sd);
/* Move ray forward. */
volume_ray.P = stack_sd->P;
volume_ray.self.object = isect.object;
volume_ray.self.prim = isect.prim;
if (volume_ray.t != FLT_MAX) {
volume_ray.D = normalize_len(to_P - volume_ray.P, &volume_ray.t);
}
++step;
}
#endif
}
ccl_device void integrator_volume_stack_init(KernelGlobals kg, IntegratorState state)
{
PROFILING_INIT(kg, PROFILING_INTERSECT_VOLUME_STACK);
ShaderDataTinyStorage stack_sd_storage;
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *stack_sd = AS_SHADER_DATA(&stack_sd_storage);
Ray volume_ray ccl_optional_struct_init;
integrator_state_read_ray(kg, state, &volume_ray);
/* Trace ray in random direction. Any direction works, Z up is a guess to get the
* fewest hits. */
volume_ray.D = make_float3(0.0f, 0.0f, 1.0f);
volume_ray.t = FLT_MAX;
volume_ray.self.object = OBJECT_NONE;
volume_ray.self.prim = PRIM_NONE;
volume_ray.self.light_object = OBJECT_NONE;
volume_ray.self.light_prim = PRIM_NONE;
int stack_index = 0, enclosed_index = 0;
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
const uint32_t visibility = SHADOW_CATCHER_PATH_VISIBILITY(path_flag, PATH_RAY_CAMERA);
/* Initialize volume stack with background volume For shadow catcher the
* background volume is always assumed to be CG. */
if (kernel_data.background.volume_shader != SHADER_NONE) {
if (!(path_flag & PATH_RAY_SHADOW_CATCHER_PASS)) {
INTEGRATOR_STATE_ARRAY_WRITE(state, volume_stack, stack_index, object) = OBJECT_NONE;
INTEGRATOR_STATE_ARRAY_WRITE(
state, volume_stack, stack_index, shader) = kernel_data.background.volume_shader;
stack_index++;
}
}
/* Store to avoid global fetches on every intersection step. */
const uint volume_stack_size = kernel_data.volume_stack_size;
#ifdef __VOLUME_RECORD_ALL__
Intersection hits[2 * MAX_VOLUME_STACK_SIZE + 1];
uint num_hits = scene_intersect_volume_all(
kg, &volume_ray, hits, 2 * volume_stack_size, visibility);
if (num_hits > 0) {
int enclosed_volumes[MAX_VOLUME_STACK_SIZE];
Intersection *isect = hits;
qsort(hits, num_hits, sizeof(Intersection), intersections_compare);
for (uint hit = 0; hit < num_hits; ++hit, ++isect) {
shader_setup_from_ray(kg, stack_sd, &volume_ray, isect);
if (stack_sd->flag & SD_BACKFACING) {
bool need_add = true;
for (int i = 0; i < enclosed_index && need_add; ++i) {
/* If ray exited the volume and never entered to that volume
* it means that camera is inside such a volume.
*/
if (enclosed_volumes[i] == stack_sd->object) {
need_add = false;
}
}
for (int i = 0; i < stack_index && need_add; ++i) {
/* Don't add intersections twice. */
VolumeStack entry = integrator_state_read_volume_stack(state, i);
if (entry.object == stack_sd->object) {
need_add = false;
break;
}
}
if (need_add && stack_index < volume_stack_size - 1) {
const VolumeStack new_entry = {stack_sd->object, stack_sd->shader};
integrator_state_write_volume_stack(state, stack_index, new_entry);
++stack_index;
}
}
else {
/* If ray from camera enters the volume, this volume shouldn't
* be added to the stack on exit.
*/
enclosed_volumes[enclosed_index++] = stack_sd->object;
}
}
}
#else
2021-10-08 13:23:19 +11:00
/* CUDA does not support definition of a variable size arrays, so use the maximum possible. */
int enclosed_volumes[MAX_VOLUME_STACK_SIZE];
int step = 0;
while (stack_index < volume_stack_size - 1 && enclosed_index < MAX_VOLUME_STACK_SIZE - 1 &&
step < 2 * volume_stack_size) {
Intersection isect;
if (!scene_intersect_volume(kg, &volume_ray, &isect, visibility)) {
break;
}
shader_setup_from_ray(kg, stack_sd, &volume_ray, &isect);
if (stack_sd->flag & SD_BACKFACING) {
/* If ray exited the volume and never entered to that volume
* it means that camera is inside such a volume.
*/
bool need_add = true;
for (int i = 0; i < enclosed_index && need_add; ++i) {
/* If ray exited the volume and never entered to that volume
* it means that camera is inside such a volume.
*/
if (enclosed_volumes[i] == stack_sd->object) {
need_add = false;
}
}
for (int i = 0; i < stack_index && need_add; ++i) {
/* Don't add intersections twice. */
VolumeStack entry = integrator_state_read_volume_stack(state, i);
if (entry.object == stack_sd->object) {
need_add = false;
break;
}
}
if (need_add) {
const VolumeStack new_entry = {stack_sd->object, stack_sd->shader};
integrator_state_write_volume_stack(state, stack_index, new_entry);
++stack_index;
}
}
else {
/* If ray from camera enters the volume, this volume shouldn't
* be added to the stack on exit.
*/
enclosed_volumes[enclosed_index++] = stack_sd->object;
}
/* Move ray forward. */
volume_ray.P = stack_sd->P;
volume_ray.self.object = isect.object;
volume_ray.self.prim = isect.prim;
++step;
}
#endif
/* Write terminator. */
const VolumeStack new_entry = {OBJECT_NONE, SHADER_NONE};
integrator_state_write_volume_stack(state, stack_index, new_entry);
}
ccl_device void integrator_intersect_volume_stack(KernelGlobals kg, IntegratorState state)
{
integrator_volume_stack_init(kg, state);
if (INTEGRATOR_STATE(state, path, flag) & PATH_RAY_SHADOW_CATCHER_PASS) {
/* Volume stack re-init for shadow catcher, continue with shading of hit. */
integrator_intersect_next_kernel_after_shadow_catcher_volume<
DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK>(kg, state);
}
else {
/* Volume stack init for camera rays, continue with intersection of camera ray. */
INTEGRATOR_PATH_NEXT(DEVICE_KERNEL_INTEGRATOR_INTERSECT_VOLUME_STACK,
DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
}
}
CCL_NAMESPACE_END