Files
blender/intern/cycles/kernel/kernel_path_surface.h

355 lines
11 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__) || \
defined(__BAKING__)
/* branched path tracing: connect path directly to position on one or more lights and add it to L
*/
ccl_device_noinline_cpu void kernel_branched_path_surface_connect_light(
KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
ccl_addr_space PathState *state,
float3 throughput,
float num_samples_adjust,
PathRadiance *L,
int sample_all_lights)
{
# ifdef __EMISSION__
/* sample illumination from lights to find path contribution */
BsdfEval L_light;
int num_lights = 0;
if (kernel_data.integrator.use_direct_light) {
if (sample_all_lights) {
num_lights = kernel_data.integrator.num_all_lights;
if (kernel_data.integrator.pdf_triangles != 0.0f) {
num_lights += 1;
}
}
else {
num_lights = 1;
}
}
for (int i = 0; i < num_lights; i++) {
/* sample one light at random */
int num_samples = 1;
int num_all_lights = 1;
uint lamp_rng_hash = state->rng_hash;
bool double_pdf = false;
bool is_mesh_light = false;
bool is_lamp = false;
if (sample_all_lights) {
/* lamp sampling */
is_lamp = i < kernel_data.integrator.num_all_lights;
if (is_lamp) {
if (UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce))) {
continue;
}
num_samples = ceil_to_int(num_samples_adjust * light_select_num_samples(kg, i));
num_all_lights = kernel_data.integrator.num_all_lights;
lamp_rng_hash = cmj_hash(state->rng_hash, i);
double_pdf = kernel_data.integrator.pdf_triangles != 0.0f;
}
/* mesh light sampling */
else {
num_samples = ceil_to_int(num_samples_adjust * kernel_data.integrator.mesh_light_samples);
double_pdf = kernel_data.integrator.num_all_lights != 0;
is_mesh_light = true;
}
}
float num_samples_inv = num_samples_adjust / (num_samples * num_all_lights);
for (int j = 0; j < num_samples; j++) {
Ray light_ray;
light_ray.t = 0.0f; /* reset ray */
# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
# endif
bool has_emission = false;
if (kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)) {
float light_u, light_v;
path_branched_rng_2D(
kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
float terminate = path_branched_rng_light_termination(
kg, lamp_rng_hash, state, j, num_samples);
/* only sample triangle lights */
if (is_mesh_light && double_pdf) {
light_u = 0.5f * light_u;
}
LightSample ls;
const int lamp = is_lamp ? i : -1;
if (light_sample(kg, lamp, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
/* The sampling probability returned by lamp_light_sample assumes that all lights were
* sampled. However, this code only samples lamps, so if the scene also had mesh lights,
* the real probability is twice as high. */
if (double_pdf) {
ls.pdf *= 2.0f;
}
has_emission = direct_emission(
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate);
}
}
/* trace shadow ray */
float3 shadow;
const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow);
if (has_emission) {
if (!blocked) {
/* accumulate */
path_radiance_accum_light(
L, state, throughput * num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
}
else {
path_radiance_accum_total_light(L, state, throughput * num_samples_inv, &L_light);
}
}
}
}
# endif
}
/* branched path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg,
ShaderData *sd,
const ShaderClosure *sc,
int sample,
int num_samples,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
PathRadianceState *L_state,
ccl_addr_space Ray *ray,
float sum_sample_weight)
{
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
path_branched_rng_2D(
kg, state->rng_hash, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample_closure(
kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
return false;
/* modify throughput */
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
# ifdef __DENOISING_FEATURES__
state->denoising_feature_weight *= sc->sample_weight / (sum_sample_weight * num_samples);
# endif
/* modify path state */
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng);
ray->D = normalize(bsdf_omega_in);
ray->t = FLT_MAX;
# ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
# endif
# ifdef __OBJECT_MOTION__
ray->time = sd->time;
# endif
# ifdef __VOLUME__
/* enter/exit volume */
if (label & LABEL_TRANSMIT)
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
# endif
/* branch RNG state */
path_state_branch(state, sample, num_samples);
/* set MIS state */
state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX);
state->ray_pdf = bsdf_pdf;
# ifdef __LAMP_MIS__
state->ray_t = 0.0f;
# endif
return true;
}
#endif
/* path tracing: connect path directly to position on a light and add it to L */
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg,
ShaderData *sd,
ShaderData *emission_sd,
float3 throughput,
ccl_addr_space PathState *state,
PathRadiance *L)
{
PROFILING_INIT(kg, PROFILING_CONNECT_LIGHT);
#ifdef __EMISSION__
# ifdef __SHADOW_TRICKS__
int all = (state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg, sd, emission_sd, state, throughput, 1.0f, L, all);
# else
/* sample illumination from lights to find path contribution */
Ray light_ray;
BsdfEval L_light;
bool is_lamp = false;
bool has_emission = false;
light_ray.t = 0.0f;
# ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
# endif
if (kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)) {
float light_u, light_v;
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
if (light_sample(kg, -1, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
float terminate = path_state_rng_light_termination(kg, state);
has_emission = direct_emission(
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate);
}
}
/* trace shadow ray */
float3 shadow;
const bool blocked = shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow);
if (has_emission) {
if (!blocked) {
/* accumulate */
path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
}
else {
path_radiance_accum_total_light(L, state, throughput, &L_light);
}
}
# endif
#endif
}
/* path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
ShaderData *sd,
ccl_addr_space float3 *throughput,
ccl_addr_space PathState *state,
PathRadianceState *L_state,
ccl_addr_space Ray *ray)
{
PROFILING_INIT(kg, PROFILING_SURFACE_BOUNCE);
/* no BSDF? we can stop here */
if (sd->flag & SD_BSDF) {
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
float3 bsdf_omega_in;
differential3 bsdf_domega_in;
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
int label;
label = shader_bsdf_sample(
kg, sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
return false;
/* modify throughput */
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
/* set labels */
if (!(label & LABEL_TRANSPARENT)) {
state->ray_pdf = bsdf_pdf;
#ifdef __LAMP_MIS__
state->ray_t = 0.0f;
#endif
state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf);
}
/* update path state */
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng);
ray->D = normalize(bsdf_omega_in);
if (state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD = bsdf_domega_in;
#endif
#ifdef __VOLUME__
/* enter/exit volume */
if (label & LABEL_TRANSMIT)
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
#endif
return true;
}
#ifdef __VOLUME__
else if (sd->flag & SD_HAS_ONLY_VOLUME) {
if (!path_state_volume_next(kg, state)) {
return false;
}
if (state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
else
ray->t = FLT_MAX;
/* setup ray position, direction stays unchanged */
ray->P = ray_offset(sd->P, -sd->Ng);
# ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
# endif
/* enter/exit volume */
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
return true;
}
#endif
else {
/* no bsdf or volume? */
return false;
}
}
CCL_NAMESPACE_END