Files
blender/intern/cycles/render/mesh.cpp

2445 lines
74 KiB
C++
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "bvh/bvh_build.h"
#include "render/camera.h"
#include "render/curves.h"
#include "device/device.h"
#include "render/graph.h"
#include "render/shader.h"
#include "render/light.h"
#include "render/mesh.h"
#include "render/nodes.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/stats.h"
#include "kernel/osl/osl_globals.h"
#include "subd/subd_split.h"
#include "subd/subd_patch_table.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_progress.h"
#include "util/util_set.h"
#ifdef WITH_EMBREE
# include "bvh/bvh_embree.h"
#endif
CCL_NAMESPACE_BEGIN
/* Triangle */
void Mesh::Triangle::bounds_grow(const float3 *verts, BoundBox &bounds) const
{
bounds.grow(verts[v[0]]);
bounds.grow(verts[v[1]]);
bounds.grow(verts[v[2]]);
}
void Mesh::Triangle::motion_verts(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
float time,
float3 r_verts[3]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time * max_step - step;
/* Fetch vertex coordinates. */
float3 curr_verts[3];
float3 next_verts[3];
verts_for_step(verts, vert_steps, num_verts, num_steps, step, curr_verts);
verts_for_step(verts, vert_steps, num_verts, num_steps, step + 1, next_verts);
/* Interpolate between steps. */
r_verts[0] = (1.0f - t) * curr_verts[0] + t * next_verts[0];
r_verts[1] = (1.0f - t) * curr_verts[1] + t * next_verts[1];
r_verts[2] = (1.0f - t) * curr_verts[2] + t * next_verts[2];
}
void Mesh::Triangle::verts_for_step(const float3 *verts,
const float3 *vert_steps,
size_t num_verts,
size_t num_steps,
size_t step,
float3 r_verts[3]) const
{
const size_t center_step = ((num_steps - 1) / 2);
if (step == center_step) {
/* Center step: regular vertex location. */
r_verts[0] = verts[v[0]];
r_verts[1] = verts[v[1]];
r_verts[2] = verts[v[2]];
}
else {
/* Center step not stored in the attribute array array. */
if (step > center_step) {
step--;
}
size_t offset = step * num_verts;
r_verts[0] = vert_steps[offset + v[0]];
r_verts[1] = vert_steps[offset + v[1]];
r_verts[2] = vert_steps[offset + v[2]];
}
}
float3 Mesh::Triangle::compute_normal(const float3 *verts) const
{
const float3 &v0 = verts[v[0]];
const float3 &v1 = verts[v[1]];
const float3 &v2 = verts[v[2]];
const float3 norm = cross(v1 - v0, v2 - v0);
const float normlen = len(norm);
if (normlen == 0.0f) {
return make_float3(1.0f, 0.0f, 0.0f);
}
return norm / normlen;
}
bool Mesh::Triangle::valid(const float3 *verts) const
{
return isfinite3_safe(verts[v[0]]) && isfinite3_safe(verts[v[1]]) && isfinite3_safe(verts[v[2]]);
}
/* Curve */
void Mesh::Curve::bounds_grow(const int k,
const float3 *curve_keys,
const float *curve_radius,
BoundBox &bounds) const
{
float3 P[4];
P[0] = curve_keys[max(first_key + k - 1, first_key)];
P[1] = curve_keys[first_key + k];
P[2] = curve_keys[first_key + k + 1];
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::bounds_grow(const int k,
const float3 *curve_keys,
const float *curve_radius,
const Transform &aligned_space,
BoundBox &bounds) const
{
float3 P[4];
P[0] = curve_keys[max(first_key + k - 1, first_key)];
P[1] = curve_keys[first_key + k];
P[2] = curve_keys[first_key + k + 1];
P[3] = curve_keys[min(first_key + k + 2, first_key + num_keys - 1)];
P[0] = transform_point(&aligned_space, P[0]);
P[1] = transform_point(&aligned_space, P[1]);
P[2] = transform_point(&aligned_space, P[2]);
P[3] = transform_point(&aligned_space, P[3]);
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(curve_radius[first_key + k], curve_radius[first_key + k + 1]);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::bounds_grow(float4 keys[4], BoundBox &bounds) const
{
float3 P[4] = {
float4_to_float3(keys[0]),
float4_to_float3(keys[1]),
float4_to_float3(keys[2]),
float4_to_float3(keys[3]),
};
float3 lower;
float3 upper;
curvebounds(&lower.x, &upper.x, P, 0);
curvebounds(&lower.y, &upper.y, P, 1);
curvebounds(&lower.z, &upper.z, P, 2);
float mr = max(keys[1].w, keys[2].w);
bounds.grow(lower, mr);
bounds.grow(upper, mr);
}
void Mesh::Curve::motion_keys(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
float time,
size_t k0,
size_t k1,
float4 r_keys[2]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time * max_step - step;
/* Fetch vertex coordinates. */
float4 curr_keys[2];
float4 next_keys[2];
keys_for_step(
curve_keys, curve_radius, key_steps, num_curve_keys, num_steps, step, k0, k1, curr_keys);
keys_for_step(
curve_keys, curve_radius, key_steps, num_curve_keys, num_steps, step + 1, k0, k1, next_keys);
/* Interpolate between steps. */
r_keys[0] = (1.0f - t) * curr_keys[0] + t * next_keys[0];
r_keys[1] = (1.0f - t) * curr_keys[1] + t * next_keys[1];
}
void Mesh::Curve::cardinal_motion_keys(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
float time,
size_t k0,
size_t k1,
size_t k2,
size_t k3,
float4 r_keys[4]) const
{
/* Figure out which steps we need to fetch and their interpolation factor. */
const size_t max_step = num_steps - 1;
const size_t step = min((int)(time * max_step), max_step - 1);
const float t = time * max_step - step;
/* Fetch vertex coordinates. */
float4 curr_keys[4];
float4 next_keys[4];
cardinal_keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step,
k0,
k1,
k2,
k3,
curr_keys);
cardinal_keys_for_step(curve_keys,
curve_radius,
key_steps,
num_curve_keys,
num_steps,
step + 1,
k0,
k1,
k2,
k3,
next_keys);
/* Interpolate between steps. */
r_keys[0] = (1.0f - t) * curr_keys[0] + t * next_keys[0];
r_keys[1] = (1.0f - t) * curr_keys[1] + t * next_keys[1];
r_keys[2] = (1.0f - t) * curr_keys[2] + t * next_keys[2];
r_keys[3] = (1.0f - t) * curr_keys[3] + t * next_keys[3];
}
void Mesh::Curve::keys_for_step(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
size_t step,
size_t k0,
size_t k1,
float4 r_keys[2]) const
{
k0 = max(k0, 0);
k1 = min(k1, num_keys - 1);
const size_t center_step = ((num_steps - 1) / 2);
if (step == center_step) {
/* Center step: regular key location. */
/* TODO(sergey): Consider adding make_float4(float3, float)
* function.
*/
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
curve_keys[first_key + k0].y,
curve_keys[first_key + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
curve_keys[first_key + k1].y,
curve_keys[first_key + k1].z,
curve_radius[first_key + k1]);
}
else {
/* Center step is not stored in this array. */
if (step > center_step) {
step--;
}
const size_t offset = first_key + step * num_curve_keys;
r_keys[0] = make_float4(key_steps[offset + k0].x,
key_steps[offset + k0].y,
key_steps[offset + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(key_steps[offset + k1].x,
key_steps[offset + k1].y,
key_steps[offset + k1].z,
curve_radius[first_key + k1]);
}
}
void Mesh::Curve::cardinal_keys_for_step(const float3 *curve_keys,
const float *curve_radius,
const float3 *key_steps,
size_t num_curve_keys,
size_t num_steps,
size_t step,
size_t k0,
size_t k1,
size_t k2,
size_t k3,
float4 r_keys[4]) const
{
k0 = max(k0, 0);
k3 = min(k3, num_keys - 1);
const size_t center_step = ((num_steps - 1) / 2);
if (step == center_step) {
/* Center step: regular key location. */
r_keys[0] = make_float4(curve_keys[first_key + k0].x,
curve_keys[first_key + k0].y,
curve_keys[first_key + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(curve_keys[first_key + k1].x,
curve_keys[first_key + k1].y,
curve_keys[first_key + k1].z,
curve_radius[first_key + k1]);
r_keys[2] = make_float4(curve_keys[first_key + k2].x,
curve_keys[first_key + k2].y,
curve_keys[first_key + k2].z,
curve_radius[first_key + k2]);
r_keys[3] = make_float4(curve_keys[first_key + k3].x,
curve_keys[first_key + k3].y,
curve_keys[first_key + k3].z,
curve_radius[first_key + k3]);
}
else {
/* Center step is not stored in this array. */
if (step > center_step) {
step--;
}
const size_t offset = first_key + step * num_curve_keys;
r_keys[0] = make_float4(key_steps[offset + k0].x,
key_steps[offset + k0].y,
key_steps[offset + k0].z,
curve_radius[first_key + k0]);
r_keys[1] = make_float4(key_steps[offset + k1].x,
key_steps[offset + k1].y,
key_steps[offset + k1].z,
curve_radius[first_key + k1]);
r_keys[2] = make_float4(key_steps[offset + k2].x,
key_steps[offset + k2].y,
key_steps[offset + k2].z,
curve_radius[first_key + k2]);
r_keys[3] = make_float4(key_steps[offset + k3].x,
key_steps[offset + k3].y,
key_steps[offset + k3].z,
curve_radius[first_key + k3]);
}
}
/* SubdFace */
float3 Mesh::SubdFace::normal(const Mesh *mesh) const
{
float3 v0 = mesh->verts[mesh->subd_face_corners[start_corner + 0]];
float3 v1 = mesh->verts[mesh->subd_face_corners[start_corner + 1]];
float3 v2 = mesh->verts[mesh->subd_face_corners[start_corner + 2]];
return safe_normalize(cross(v1 - v0, v2 - v0));
}
/* Mesh */
NODE_DEFINE(Mesh)
{
NodeType *type = NodeType::add("mesh", create);
SOCKET_UINT(motion_steps, "Motion Steps", 3);
SOCKET_BOOLEAN(use_motion_blur, "Use Motion Blur", false);
SOCKET_INT_ARRAY(triangles, "Triangles", array<int>());
SOCKET_POINT_ARRAY(verts, "Vertices", array<float3>());
SOCKET_INT_ARRAY(shader, "Shader", array<int>());
SOCKET_BOOLEAN_ARRAY(smooth, "Smooth", array<bool>());
SOCKET_POINT_ARRAY(curve_keys, "Curve Keys", array<float3>());
SOCKET_FLOAT_ARRAY(curve_radius, "Curve Radius", array<float>());
SOCKET_INT_ARRAY(curve_first_key, "Curve First Key", array<int>());
SOCKET_INT_ARRAY(curve_shader, "Curve Shader", array<int>());
return type;
}
Mesh::Mesh() : Node(node_type)
{
need_update = true;
need_update_rebuild = false;
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
bounds = BoundBox::empty;
bvh = NULL;
tri_offset = 0;
vert_offset = 0;
curve_offset = 0;
curvekey_offset = 0;
patch_offset = 0;
face_offset = 0;
corner_offset = 0;
attr_map_offset = 0;
prim_offset = 0;
num_subd_verts = 0;
attributes.triangle_mesh = this;
curve_attributes.curve_mesh = this;
subd_attributes.subd_mesh = this;
geometry_flags = GEOMETRY_NONE;
volume_isovalue = 0.001f;
has_volume = false;
has_surface_bssrdf = false;
num_ngons = 0;
subdivision_type = SUBDIVISION_NONE;
subd_params = NULL;
patch_table = NULL;
}
Mesh::~Mesh()
{
delete bvh;
delete patch_table;
delete subd_params;
}
void Mesh::resize_mesh(int numverts, int numtris)
{
verts.resize(numverts);
triangles.resize(numtris * 3);
shader.resize(numtris);
smooth.resize(numtris);
if (subd_faces.size()) {
triangle_patch.resize(numtris);
vert_patch_uv.resize(numverts);
}
attributes.resize();
}
void Mesh::reserve_mesh(int numverts, int numtris)
{
/* reserve space to add verts and triangles later */
verts.reserve(numverts);
triangles.reserve(numtris * 3);
shader.reserve(numtris);
smooth.reserve(numtris);
if (subd_faces.size()) {
triangle_patch.reserve(numtris);
vert_patch_uv.reserve(numverts);
}
attributes.resize(true);
}
void Mesh::resize_curves(int numcurves, int numkeys)
{
curve_keys.resize(numkeys);
curve_radius.resize(numkeys);
curve_first_key.resize(numcurves);
curve_shader.resize(numcurves);
curve_attributes.resize();
}
void Mesh::reserve_curves(int numcurves, int numkeys)
{
curve_keys.reserve(numkeys);
curve_radius.reserve(numkeys);
curve_first_key.reserve(numcurves);
curve_shader.reserve(numcurves);
curve_attributes.resize(true);
}
void Mesh::resize_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_faces.resize(numfaces);
subd_face_corners.resize(numcorners);
num_ngons = num_ngons_;
subd_attributes.resize();
}
void Mesh::reserve_subd_faces(int numfaces, int num_ngons_, int numcorners)
{
subd_faces.reserve(numfaces);
subd_face_corners.reserve(numcorners);
num_ngons = num_ngons_;
subd_attributes.resize(true);
}
void Mesh::clear(bool preserve_voxel_data)
{
/* clear all verts and triangles */
verts.clear();
triangles.clear();
shader.clear();
smooth.clear();
triangle_patch.clear();
vert_patch_uv.clear();
curve_keys.clear();
curve_radius.clear();
curve_first_key.clear();
curve_shader.clear();
subd_faces.clear();
subd_face_corners.clear();
num_subd_verts = 0;
subd_creases.clear();
curve_attributes.clear();
subd_attributes.clear();
attributes.clear(preserve_voxel_data);
used_shaders.clear();
vert_to_stitching_key_map.clear();
vert_stitching_map.clear();
if (!preserve_voxel_data) {
geometry_flags = GEOMETRY_NONE;
}
transform_applied = false;
transform_negative_scaled = false;
transform_normal = transform_identity();
delete patch_table;
patch_table = NULL;
}
void Mesh::add_vertex(float3 P)
{
verts.push_back_reserved(P);
if (subd_faces.size()) {
vert_patch_uv.push_back_reserved(make_float2(0.0f, 0.0f));
}
}
void Mesh::add_vertex_slow(float3 P)
{
verts.push_back_slow(P);
if (subd_faces.size()) {
vert_patch_uv.push_back_slow(make_float2(0.0f, 0.0f));
}
}
void Mesh::add_triangle(int v0, int v1, int v2, int shader_, bool smooth_)
{
triangles.push_back_reserved(v0);
triangles.push_back_reserved(v1);
triangles.push_back_reserved(v2);
shader.push_back_reserved(shader_);
smooth.push_back_reserved(smooth_);
if (subd_faces.size()) {
triangle_patch.push_back_reserved(-1);
}
}
void Mesh::add_curve_key(float3 co, float radius)
{
curve_keys.push_back_reserved(co);
curve_radius.push_back_reserved(radius);
}
void Mesh::add_curve(int first_key, int shader)
{
curve_first_key.push_back_reserved(first_key);
curve_shader.push_back_reserved(shader);
}
void Mesh::add_subd_face(int *corners, int num_corners, int shader_, bool smooth_)
{
int start_corner = subd_face_corners.size();
for (int i = 0; i < num_corners; i++) {
subd_face_corners.push_back_reserved(corners[i]);
}
int ptex_offset = 0;
if (subd_faces.size()) {
SubdFace &s = subd_faces[subd_faces.size() - 1];
ptex_offset = s.ptex_offset + s.num_ptex_faces();
}
SubdFace face = {start_corner, num_corners, shader_, smooth_, ptex_offset};
subd_faces.push_back_reserved(face);
}
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
static void get_uv_tiles_from_attribute(Attribute *attr, int num, unordered_set<int> &tiles)
{
if (attr == NULL) {
return;
}
const float2 *uv = attr->data_float2();
for (int i = 0; i < num; i++, uv++) {
float u = uv->x, v = uv->y;
int x = (int)u, y = (int)v;
if (x < 0 || y < 0 || x >= 10) {
continue;
}
/* Be conservative in corners - precisely touching the right or upper edge of a tile
* should not load its right/upper neighbor as well. */
if (x > 0 && (u < x + 1e-6f)) {
x--;
}
if (y > 0 && (v < y + 1e-6f)) {
y--;
}
tiles.insert(1001 + 10 * y + x);
}
}
void Mesh::get_uv_tiles(ustring map, unordered_set<int> &tiles)
{
if (map.empty()) {
get_uv_tiles_from_attribute(attributes.find(ATTR_STD_UV), num_triangles() * 3, tiles);
get_uv_tiles_from_attribute(
subd_attributes.find(ATTR_STD_UV), subd_face_corners.size() + num_ngons, tiles);
get_uv_tiles_from_attribute(curve_attributes.find(ATTR_STD_UV), num_curves(), tiles);
}
else {
get_uv_tiles_from_attribute(attributes.find(map), num_triangles() * 3, tiles);
get_uv_tiles_from_attribute(
subd_attributes.find(map), subd_face_corners.size() + num_ngons, tiles);
get_uv_tiles_from_attribute(curve_attributes.find(map), num_curves(), tiles);
}
}
void Mesh::compute_bounds()
{
BoundBox bnds = BoundBox::empty;
size_t verts_size = verts.size();
size_t curve_keys_size = curve_keys.size();
if (verts_size + curve_keys_size > 0) {
for (size_t i = 0; i < verts_size; i++)
bnds.grow(verts[i]);
for (size_t i = 0; i < curve_keys_size; i++)
bnds.grow(curve_keys[i], curve_radius[i]);
Attribute *attr = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow(vert_steps[i]);
}
Attribute *curve_attr = curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if (use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow(key_steps[i]);
}
if (!bnds.valid()) {
bnds = BoundBox::empty;
/* skip nan or inf coordinates */
for (size_t i = 0; i < verts_size; i++)
bnds.grow_safe(verts[i]);
for (size_t i = 0; i < curve_keys_size; i++)
bnds.grow_safe(curve_keys[i], curve_radius[i]);
if (use_motion_blur && attr) {
size_t steps_size = verts.size() * (motion_steps - 1);
float3 *vert_steps = attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow_safe(vert_steps[i]);
}
if (use_motion_blur && curve_attr) {
size_t steps_size = curve_keys.size() * (motion_steps - 1);
float3 *key_steps = curve_attr->data_float3();
for (size_t i = 0; i < steps_size; i++)
bnds.grow_safe(key_steps[i]);
}
}
}
if (!bnds.valid()) {
/* empty mesh */
bnds.grow(make_float3(0.0f, 0.0f, 0.0f));
}
bounds = bnds;
}
void Mesh::add_face_normals()
{
/* don't compute if already there */
if (attributes.find(ATTR_STD_FACE_NORMAL))
return;
/* get attributes */
Attribute *attr_fN = attributes.add(ATTR_STD_FACE_NORMAL);
float3 *fN = attr_fN->data_float3();
/* compute face normals */
size_t triangles_size = num_triangles();
if (triangles_size) {
float3 *verts_ptr = verts.data();
for (size_t i = 0; i < triangles_size; i++) {
fN[i] = get_triangle(i).compute_normal(verts_ptr);
}
}
/* expected to be in local space */
if (transform_applied) {
Transform ntfm = transform_inverse(transform_normal);
for (size_t i = 0; i < triangles_size; i++)
fN[i] = normalize(transform_direction(&ntfm, fN[i]));
}
}
void Mesh::add_vertex_normals()
{
bool flip = transform_negative_scaled;
size_t verts_size = verts.size();
size_t triangles_size = num_triangles();
/* static vertex normals */
if (!attributes.find(ATTR_STD_VERTEX_NORMAL) && triangles_size) {
/* get attributes */
Attribute *attr_fN = attributes.find(ATTR_STD_FACE_NORMAL);
Attribute *attr_vN = attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *fN = attr_fN->data_float3();
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < triangles_size; i++) {
for (size_t j = 0; j < 3; j++) {
vN[get_triangle(i).v[j]] += fN[i];
}
}
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if (flip) {
vN[i] = -vN[i];
}
}
}
/* motion vertex normals */
Attribute *attr_mP = attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
Attribute *attr_mN = attributes.find(ATTR_STD_MOTION_VERTEX_NORMAL);
if (has_motion_blur() && attr_mP && !attr_mN && triangles_size) {
/* create attribute */
attr_mN = attributes.add(ATTR_STD_MOTION_VERTEX_NORMAL);
for (int step = 0; step < motion_steps - 1; step++) {
float3 *mP = attr_mP->data_float3() + step * verts.size();
float3 *mN = attr_mN->data_float3() + step * verts.size();
/* compute */
memset(mN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < triangles_size; i++) {
for (size_t j = 0; j < 3; j++) {
float3 fN = get_triangle(i).compute_normal(mP);
mN[get_triangle(i).v[j]] += fN;
}
}
for (size_t i = 0; i < verts_size; i++) {
mN[i] = normalize(mN[i]);
if (flip) {
mN[i] = -mN[i];
}
}
}
}
/* subd vertex normals */
if (!subd_attributes.find(ATTR_STD_VERTEX_NORMAL) && subd_faces.size()) {
/* get attributes */
Attribute *attr_vN = subd_attributes.add(ATTR_STD_VERTEX_NORMAL);
float3 *vN = attr_vN->data_float3();
/* compute vertex normals */
memset(vN, 0, verts.size() * sizeof(float3));
for (size_t i = 0; i < subd_faces.size(); i++) {
SubdFace &face = subd_faces[i];
float3 fN = face.normal(this);
for (size_t j = 0; j < face.num_corners; j++) {
size_t corner = subd_face_corners[face.start_corner + j];
vN[corner] += fN;
}
}
for (size_t i = 0; i < verts_size; i++) {
vN[i] = normalize(vN[i]);
if (flip) {
vN[i] = -vN[i];
}
}
}
}
void Mesh::add_undisplaced()
{
AttributeSet &attrs = (subdivision_type == SUBDIVISION_NONE) ? attributes : subd_attributes;
/* don't compute if already there */
if (attrs.find(ATTR_STD_POSITION_UNDISPLACED)) {
return;
}
/* get attribute */
Attribute *attr = attrs.add(ATTR_STD_POSITION_UNDISPLACED);
attr->flags |= ATTR_SUBDIVIDED;
float3 *data = attr->data_float3();
/* copy verts */
size_t size = attr->buffer_size(
this, (subdivision_type == SUBDIVISION_NONE) ? ATTR_PRIM_TRIANGLE : ATTR_PRIM_SUBD);
/* Center points for ngons aren't stored in Mesh::verts but are included in size since they will
* be calculated later, we subtract them from size here so we don't have an overflow while
* copying.
*/
size -= num_ngons * attr->data_sizeof();
if (size) {
memcpy(data, verts.data(), size);
}
}
void Mesh::pack_shaders(Scene *scene, uint *tri_shader)
{
uint shader_id = 0;
uint last_shader = -1;
bool last_smooth = false;
size_t triangles_size = num_triangles();
int *shader_ptr = shader.data();
for (size_t i = 0; i < triangles_size; i++) {
if (shader_ptr[i] != last_shader || last_smooth != smooth[i]) {
last_shader = shader_ptr[i];
last_smooth = smooth[i];
Shader *shader = (last_shader < used_shaders.size()) ? used_shaders[last_shader] :
scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, last_smooth);
}
tri_shader[i] = shader_id;
}
}
2018-03-10 06:51:52 +01:00
void Mesh::pack_normals(float4 *vnormal)
{
Attribute *attr_vN = attributes.find(ATTR_STD_VERTEX_NORMAL);
if (attr_vN == NULL) {
/* Happens on objects with just hair. */
return;
}
bool do_transform = transform_applied;
Transform ntfm = transform_normal;
float3 *vN = attr_vN->data_float3();
size_t verts_size = verts.size();
for (size_t i = 0; i < verts_size; i++) {
float3 vNi = vN[i];
if (do_transform)
vNi = safe_normalize(transform_direction(&ntfm, vNi));
vnormal[i] = make_float4(vNi.x, vNi.y, vNi.z, 0.0f);
}
}
void Mesh::pack_verts(const vector<uint> &tri_prim_index,
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 16:13:50 +02:00
uint4 *tri_vindex,
uint *tri_patch,
float2 *tri_patch_uv,
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 16:13:50 +02:00
size_t vert_offset,
size_t tri_offset)
{
size_t verts_size = verts.size();
if (verts_size && subd_faces.size()) {
float2 *vert_patch_uv_ptr = vert_patch_uv.data();
for (size_t i = 0; i < verts_size; i++) {
tri_patch_uv[i] = vert_patch_uv_ptr[i];
}
}
size_t triangles_size = num_triangles();
for (size_t i = 0; i < triangles_size; i++) {
Triangle t = get_triangle(i);
tri_vindex[i] = make_uint4(t.v[0] + vert_offset,
t.v[1] + vert_offset,
t.v[2] + vert_offset,
tri_prim_index[i + tri_offset]);
tri_patch[i] = (!subd_faces.size()) ? -1 : (triangle_patch[i] * 8 + patch_offset);
}
}
void Mesh::pack_curves(Scene *scene,
float4 *curve_key_co,
float4 *curve_data,
size_t curvekey_offset)
{
size_t curve_keys_size = curve_keys.size();
/* pack curve keys */
if (curve_keys_size) {
float3 *keys_ptr = curve_keys.data();
float *radius_ptr = curve_radius.data();
for (size_t i = 0; i < curve_keys_size; i++)
curve_key_co[i] = make_float4(keys_ptr[i].x, keys_ptr[i].y, keys_ptr[i].z, radius_ptr[i]);
}
/* pack curve segments */
size_t curve_num = num_curves();
for (size_t i = 0; i < curve_num; i++) {
Curve curve = get_curve(i);
int shader_id = curve_shader[i];
Shader *shader = (shader_id < used_shaders.size()) ? used_shaders[shader_id] :
scene->default_surface;
shader_id = scene->shader_manager->get_shader_id(shader, false);
2016-08-25 10:45:48 -04:00
curve_data[i] = make_float4(__int_as_float(curve.first_key + curvekey_offset),
__int_as_float(curve.num_keys),
__int_as_float(shader_id),
0.0f);
}
}
void Mesh::pack_patches(uint *patch_data, uint vert_offset, uint face_offset, uint corner_offset)
{
size_t num_faces = subd_faces.size();
int ngons = 0;
for (size_t f = 0; f < num_faces; f++) {
SubdFace face = subd_faces[f];
if (face.is_quad()) {
int c[4];
memcpy(c, &subd_face_corners[face.start_corner], sizeof(int) * 4);
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f + face_offset;
*(patch_data++) = face.num_corners;
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = 0;
}
else {
for (int i = 0; i < face.num_corners; i++) {
int c[4];
c[0] = subd_face_corners[face.start_corner + mod(i + 0, face.num_corners)];
c[1] = subd_face_corners[face.start_corner + mod(i + 1, face.num_corners)];
c[2] = verts.size() - num_subd_verts + ngons;
c[3] = subd_face_corners[face.start_corner + mod(i - 1, face.num_corners)];
*(patch_data++) = c[0] + vert_offset;
*(patch_data++) = c[1] + vert_offset;
*(patch_data++) = c[2] + vert_offset;
*(patch_data++) = c[3] + vert_offset;
*(patch_data++) = f + face_offset;
*(patch_data++) = face.num_corners | (i << 16);
*(patch_data++) = face.start_corner + corner_offset;
*(patch_data++) = subd_face_corners.size() + ngons + corner_offset;
}
ngons++;
}
}
}
void Mesh::compute_bvh(
Device *device, DeviceScene *dscene, SceneParams *params, Progress *progress, int n, int total)
{
if (progress->get_cancel())
return;
compute_bounds();
const BVHLayout bvh_layout = BVHParams::best_bvh_layout(params->bvh_layout,
device->get_bvh_layout_mask());
if (need_build_bvh(bvh_layout)) {
string msg = "Updating Mesh BVH ";
if (name.empty())
msg += string_printf("%u/%u", (uint)(n + 1), (uint)total);
else
msg += string_printf("%s %u/%u", name.c_str(), (uint)(n + 1), (uint)total);
Object object;
object.mesh = this;
vector<Mesh *> meshes;
meshes.push_back(this);
vector<Object *> objects;
objects.push_back(&object);
if (bvh && !need_update_rebuild) {
progress->set_status(msg, "Refitting BVH");
bvh->meshes = meshes;
bvh->objects = objects;
bvh->refit(*progress);
}
else {
progress->set_status(msg, "Building BVH");
BVHParams bparams;
bparams.use_spatial_split = params->use_bvh_spatial_split;
bparams.bvh_layout = bvh_layout;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
params->use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = params->num_bvh_time_steps;
bparams.num_motion_curve_steps = params->num_bvh_time_steps;
bparams.bvh_type = params->bvh_type;
bparams.curve_flags = dscene->data.curve.curveflags;
bparams.curve_subdivisions = dscene->data.curve.subdivisions;
delete bvh;
bvh = BVH::create(bparams, meshes, objects);
MEM_GUARDED_CALL(progress, bvh->build, *progress);
}
}
need_update = false;
need_update_rebuild = false;
}
void Mesh::tag_update(Scene *scene, bool rebuild)
{
need_update = true;
if (rebuild) {
need_update_rebuild = true;
scene->light_manager->need_update = true;
}
else {
foreach (Shader *shader, used_shaders)
if (shader->has_surface_emission)
scene->light_manager->need_update = true;
}
scene->mesh_manager->need_update = true;
scene->object_manager->need_update = true;
}
bool Mesh::has_motion_blur() const
{
return (use_motion_blur && (attributes.find(ATTR_STD_MOTION_VERTEX_POSITION) ||
curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION)));
}
bool Mesh::has_true_displacement() const
{
foreach (Shader *shader, used_shaders) {
if (shader->has_displacement && shader->displacement_method != DISPLACE_BUMP) {
return true;
}
}
return false;
}
bool Mesh::has_voxel_attributes() const
{
foreach (const Attribute &attr, attributes.attributes) {
if (attr.element == ATTR_ELEMENT_VOXEL) {
return true;
}
}
return false;
}
float Mesh::motion_time(int step) const
{
return (motion_steps > 1) ? 2.0f * step / (motion_steps - 1) - 1.0f : 0.0f;
}
int Mesh::motion_step(float time) const
{
if (motion_steps > 1) {
int attr_step = 0;
for (int step = 0; step < motion_steps; step++) {
float step_time = motion_time(step);
if (step_time == time) {
return attr_step;
}
/* Center step is stored in a separate attribute. */
if (step != motion_steps / 2) {
attr_step++;
}
}
}
return -1;
}
bool Mesh::need_build_bvh(BVHLayout layout) const
{
return !transform_applied || has_surface_bssrdf || layout == BVH_LAYOUT_OPTIX;
}
bool Mesh::is_instanced() const
{
/* Currently we treat subsurface objects as instanced.
*
* While it might be not very optimal for ray traversal, it avoids having
* duplicated BVH in the memory, saving quite some space.
*/
return !transform_applied || has_surface_bssrdf;
}
/* Mesh Manager */
MeshManager::MeshManager()
{
need_update = true;
need_flags_update = true;
}
MeshManager::~MeshManager()
{
}
void MeshManager::update_osl_attributes(Device *device,
Scene *scene,
vector<AttributeRequestSet> &mesh_attributes)
{
#ifdef WITH_OSL
/* for OSL, a hash map is used to lookup the attribute by name. */
OSLGlobals *og = (OSLGlobals *)device->osl_memory();
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
og->attribute_map.resize(scene->objects.size() * ATTR_PRIM_TYPES);
for (size_t i = 0; i < scene->objects.size(); i++) {
/* set object name to object index map */
Object *object = scene->objects[i];
og->object_name_map[object->name] = i;
og->object_names.push_back(object->name);
/* set object attributes */
foreach (ParamValue &attr, object->attributes) {
OSLGlobals::Attribute osl_attr;
osl_attr.type = attr.type();
osl_attr.desc.element = ATTR_ELEMENT_OBJECT;
osl_attr.value = attr;
osl_attr.desc.offset = 0;
osl_attr.desc.flags = 0;
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][attr.name()] = osl_attr;
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][attr.name()] = osl_attr;
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][attr.name()] = osl_attr;
}
/* find mesh attributes */
size_t j;
for (j = 0; j < scene->meshes.size(); j++)
if (scene->meshes[j] == object->mesh)
break;
AttributeRequestSet &attributes = mesh_attributes[j];
/* set object attributes */
foreach (AttributeRequest &req, attributes.requests) {
OSLGlobals::Attribute osl_attr;
if (req.triangle_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.triangle_desc;
if (req.triangle_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if (req.triangle_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else if (req.triangle_type == TypeFloat2)
osl_attr.type = TypeFloat2;
else if (req.triangle_type == TypeRGBA)
osl_attr.type = TypeRGBA;
else
osl_attr.type = TypeDesc::TypeColor;
if (req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][stdname] = osl_attr;
}
else if (req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_TRIANGLE][req.name] = osl_attr;
}
}
if (req.curve_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.curve_desc;
if (req.curve_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if (req.curve_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else if (req.curve_type == TypeFloat2)
osl_attr.type = TypeFloat2;
else if (req.curve_type == TypeRGBA)
osl_attr.type = TypeRGBA;
else
osl_attr.type = TypeDesc::TypeColor;
if (req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][stdname] = osl_attr;
}
else if (req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_CURVE][req.name] = osl_attr;
}
}
if (req.subd_desc.element != ATTR_ELEMENT_NONE) {
osl_attr.desc = req.subd_desc;
if (req.subd_type == TypeDesc::TypeFloat)
osl_attr.type = TypeDesc::TypeFloat;
else if (req.subd_type == TypeDesc::TypeMatrix)
osl_attr.type = TypeDesc::TypeMatrix;
else if (req.subd_type == TypeFloat2)
osl_attr.type = TypeFloat2;
else if (req.subd_type == TypeRGBA)
osl_attr.type = TypeRGBA;
else
osl_attr.type = TypeDesc::TypeColor;
if (req.std != ATTR_STD_NONE) {
/* if standard attribute, add lookup by geom: name convention */
ustring stdname(string("geom:") + string(Attribute::standard_name(req.std)));
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][stdname] = osl_attr;
}
else if (req.name != ustring()) {
/* add lookup by mesh attribute name */
og->attribute_map[i * ATTR_PRIM_TYPES + ATTR_PRIM_SUBD][req.name] = osl_attr;
}
}
}
}
#else
(void)device;
(void)scene;
(void)mesh_attributes;
#endif
}
void MeshManager::update_svm_attributes(Device *,
DeviceScene *dscene,
Scene *scene,
vector<AttributeRequestSet> &mesh_attributes)
{
/* for SVM, the attributes_map table is used to lookup the offset of an
* attribute, based on a unique shader attribute id. */
/* compute array stride */
int attr_map_size = 0;
for (size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
mesh->attr_map_offset = attr_map_size;
attr_map_size += (mesh_attributes[i].size() + 1) * ATTR_PRIM_TYPES;
}
if (attr_map_size == 0)
return;
/* create attribute map */
uint4 *attr_map = dscene->attributes_map.alloc(attr_map_size);
memset(attr_map, 0, dscene->attributes_map.size() * sizeof(uint));
for (size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet &attributes = mesh_attributes[i];
/* set object attributes */
int index = mesh->attr_map_offset;
foreach (AttributeRequest &req, attributes.requests) {
uint id;
if (req.std == ATTR_STD_NONE)
id = scene->shader_manager->get_attribute_id(req.name);
else
id = scene->shader_manager->get_attribute_id(req.std);
if (mesh->num_triangles()) {
attr_map[index].x = id;
attr_map[index].y = req.triangle_desc.element;
attr_map[index].z = as_uint(req.triangle_desc.offset);
if (req.triangle_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if (req.triangle_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else if (req.triangle_type == TypeFloat2)
attr_map[index].w = NODE_ATTR_FLOAT2;
else if (req.triangle_type == TypeRGBA)
attr_map[index].w = NODE_ATTR_RGBA;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.triangle_desc.flags << 8;
}
index++;
if (mesh->num_curves()) {
attr_map[index].x = id;
attr_map[index].y = req.curve_desc.element;
attr_map[index].z = as_uint(req.curve_desc.offset);
if (req.curve_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if (req.curve_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else if (req.curve_type == TypeFloat2)
attr_map[index].w = NODE_ATTR_FLOAT2;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.curve_desc.flags << 8;
}
index++;
if (mesh->subd_faces.size()) {
attr_map[index].x = id;
attr_map[index].y = req.subd_desc.element;
attr_map[index].z = as_uint(req.subd_desc.offset);
if (req.subd_type == TypeDesc::TypeFloat)
attr_map[index].w = NODE_ATTR_FLOAT;
else if (req.subd_type == TypeDesc::TypeMatrix)
attr_map[index].w = NODE_ATTR_MATRIX;
else if (req.subd_type == TypeFloat2)
attr_map[index].w = NODE_ATTR_FLOAT2;
else if (req.triangle_type == TypeRGBA)
attr_map[index].w = NODE_ATTR_RGBA;
else
attr_map[index].w = NODE_ATTR_FLOAT3;
attr_map[index].w |= req.subd_desc.flags << 8;
}
index++;
}
/* terminator */
for (int j = 0; j < ATTR_PRIM_TYPES; j++) {
attr_map[index].x = ATTR_STD_NONE;
attr_map[index].y = 0;
attr_map[index].z = 0;
attr_map[index].w = 0;
index++;
}
}
/* copy to device */
dscene->attributes_map.copy_to_device();
}
static void update_attribute_element_size(Mesh *mesh,
Attribute *mattr,
AttributePrimitive prim,
size_t *attr_float_size,
size_t *attr_float2_size,
size_t *attr_float3_size,
size_t *attr_uchar4_size)
{
if (mattr) {
size_t size = mattr->element_size(mesh, prim);
if (mattr->element == ATTR_ELEMENT_VOXEL) {
/* pass */
}
else if (mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
*attr_uchar4_size += size;
}
else if (mattr->type == TypeDesc::TypeFloat) {
*attr_float_size += size;
}
else if (mattr->type == TypeFloat2) {
*attr_float2_size += size;
}
else if (mattr->type == TypeDesc::TypeMatrix) {
*attr_float3_size += size * 4;
}
else {
*attr_float3_size += size;
}
}
}
static void update_attribute_element_offset(Mesh *mesh,
device_vector<float> &attr_float,
size_t &attr_float_offset,
device_vector<float2> &attr_float2,
size_t &attr_float2_offset,
device_vector<float4> &attr_float3,
size_t &attr_float3_offset,
device_vector<uchar4> &attr_uchar4,
size_t &attr_uchar4_offset,
Attribute *mattr,
AttributePrimitive prim,
TypeDesc &type,
AttributeDescriptor &desc)
{
if (mattr) {
/* store element and type */
desc.element = mattr->element;
desc.flags = mattr->flags;
type = mattr->type;
/* store attribute data in arrays */
size_t size = mattr->element_size(mesh, prim);
AttributeElement &element = desc.element;
int &offset = desc.offset;
if (mattr->element == ATTR_ELEMENT_VOXEL) {
/* store slot in offset value */
VoxelAttribute *voxel_data = mattr->data_voxel();
offset = voxel_data->slot;
}
else if (mattr->element == ATTR_ELEMENT_CORNER_BYTE) {
uchar4 *data = mattr->data_uchar4();
offset = attr_uchar4_offset;
assert(attr_uchar4.size() >= offset + size);
for (size_t k = 0; k < size; k++) {
attr_uchar4[offset + k] = data[k];
}
attr_uchar4_offset += size;
}
else if (mattr->type == TypeDesc::TypeFloat) {
float *data = mattr->data_float();
offset = attr_float_offset;
assert(attr_float.size() >= offset + size);
for (size_t k = 0; k < size; k++) {
attr_float[offset + k] = data[k];
}
attr_float_offset += size;
}
else if (mattr->type == TypeFloat2) {
float2 *data = mattr->data_float2();
offset = attr_float2_offset;
assert(attr_float2.size() >= offset + size);
for (size_t k = 0; k < size; k++) {
attr_float2[offset + k] = data[k];
}
attr_float2_offset += size;
}
else if (mattr->type == TypeDesc::TypeMatrix) {
Transform *tfm = mattr->data_transform();
offset = attr_float3_offset;
assert(attr_float3.size() >= offset + size * 3);
for (size_t k = 0; k < size * 3; k++) {
attr_float3[offset + k] = (&tfm->x)[k];
}
attr_float3_offset += size * 3;
}
else {
float4 *data = mattr->data_float4();
offset = attr_float3_offset;
assert(attr_float3.size() >= offset + size);
for (size_t k = 0; k < size; k++) {
attr_float3[offset + k] = data[k];
}
attr_float3_offset += size;
}
/* mesh vertex/curve index is global, not per object, so we sneak
* a correction for that in here */
if (mesh->subdivision_type == Mesh::SUBDIVISION_CATMULL_CLARK &&
desc.flags & ATTR_SUBDIVIDED) {
/* indices for subdivided attributes are retrieved
* from patch table so no need for correction here*/
}
else if (element == ATTR_ELEMENT_VERTEX)
offset -= mesh->vert_offset;
else if (element == ATTR_ELEMENT_VERTEX_MOTION)
offset -= mesh->vert_offset;
else if (element == ATTR_ELEMENT_FACE) {
if (prim == ATTR_PRIM_TRIANGLE)
offset -= mesh->tri_offset;
else
offset -= mesh->face_offset;
}
else if (element == ATTR_ELEMENT_CORNER || element == ATTR_ELEMENT_CORNER_BYTE) {
if (prim == ATTR_PRIM_TRIANGLE)
offset -= 3 * mesh->tri_offset;
else
offset -= mesh->corner_offset;
}
else if (element == ATTR_ELEMENT_CURVE)
offset -= mesh->curve_offset;
else if (element == ATTR_ELEMENT_CURVE_KEY)
offset -= mesh->curvekey_offset;
else if (element == ATTR_ELEMENT_CURVE_KEY_MOTION)
offset -= mesh->curvekey_offset;
}
else {
/* attribute not found */
desc.element = ATTR_ELEMENT_NONE;
desc.offset = 0;
}
}
void MeshManager::device_update_attributes(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Mesh", "Computing attributes");
/* gather per mesh requested attributes. as meshes may have multiple
* shaders assigned, this merges the requested attributes that have
* been set per shader by the shader manager */
vector<AttributeRequestSet> mesh_attributes(scene->meshes.size());
for (size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
scene->need_global_attributes(mesh_attributes[i]);
foreach (Shader *shader, mesh->used_shaders) {
mesh_attributes[i].add(shader->attributes);
}
}
/* mesh attribute are stored in a single array per data type. here we fill
* those arrays, and set the offset and element type to create attribute
* maps next */
/* Pre-allocate attributes to avoid arrays re-allocation which would
* take 2x of overall attribute memory usage.
*/
size_t attr_float_size = 0;
size_t attr_float2_size = 0;
size_t attr_float3_size = 0;
size_t attr_uchar4_size = 0;
for (size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet &attributes = mesh_attributes[i];
foreach (AttributeRequest &req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
Attribute *subd_mattr = mesh->subd_attributes.find(req);
update_attribute_element_size(mesh,
triangle_mattr,
ATTR_PRIM_TRIANGLE,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
curve_mattr,
ATTR_PRIM_CURVE,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_uchar4_size);
update_attribute_element_size(mesh,
subd_mattr,
ATTR_PRIM_SUBD,
&attr_float_size,
&attr_float2_size,
&attr_float3_size,
&attr_uchar4_size);
}
}
dscene->attributes_float.alloc(attr_float_size);
dscene->attributes_float2.alloc(attr_float2_size);
dscene->attributes_float3.alloc(attr_float3_size);
dscene->attributes_uchar4.alloc(attr_uchar4_size);
size_t attr_float_offset = 0;
size_t attr_float2_offset = 0;
size_t attr_float3_offset = 0;
size_t attr_uchar4_offset = 0;
/* Fill in attributes. */
for (size_t i = 0; i < scene->meshes.size(); i++) {
Mesh *mesh = scene->meshes[i];
AttributeRequestSet &attributes = mesh_attributes[i];
/* todo: we now store std and name attributes from requests even if
* they actually refer to the same mesh attributes, optimize */
foreach (AttributeRequest &req, attributes.requests) {
Attribute *triangle_mattr = mesh->attributes.find(req);
Attribute *curve_mattr = mesh->curve_attributes.find(req);
Attribute *subd_mattr = mesh->subd_attributes.find(req);
update_attribute_element_offset(mesh,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
triangle_mattr,
ATTR_PRIM_TRIANGLE,
req.triangle_type,
req.triangle_desc);
update_attribute_element_offset(mesh,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
curve_mattr,
ATTR_PRIM_CURVE,
req.curve_type,
req.curve_desc);
update_attribute_element_offset(mesh,
dscene->attributes_float,
attr_float_offset,
dscene->attributes_float2,
attr_float2_offset,
dscene->attributes_float3,
attr_float3_offset,
dscene->attributes_uchar4,
attr_uchar4_offset,
subd_mattr,
ATTR_PRIM_SUBD,
req.subd_type,
req.subd_desc);
if (progress.get_cancel())
return;
}
}
/* create attribute lookup maps */
if (scene->shader_manager->use_osl())
update_osl_attributes(device, scene, mesh_attributes);
update_svm_attributes(device, dscene, scene, mesh_attributes);
if (progress.get_cancel())
return;
/* copy to device */
progress.set_status("Updating Mesh", "Copying Attributes to device");
if (dscene->attributes_float.size()) {
dscene->attributes_float.copy_to_device();
}
if (dscene->attributes_float2.size()) {
dscene->attributes_float2.copy_to_device();
}
if (dscene->attributes_float3.size()) {
dscene->attributes_float3.copy_to_device();
}
if (dscene->attributes_uchar4.size()) {
dscene->attributes_uchar4.copy_to_device();
}
if (progress.get_cancel())
return;
/* After mesh attributes and patch tables have been copied to device memory,
* we need to update offsets in the objects. */
scene->object_manager->device_update_mesh_offsets(device, dscene, scene);
}
Cycles: Reduce memory usage by de-duplicating triangle storage There are several internal changes for this: First idea is to make __tri_verts to behave similar to __tri_storage, meaning, __tri_verts array now contains all vertices of all triangles instead of just mesh vertices. This saves some lookup when reading triangle coordinates in functions like triangle_normal(). In order to make it efficient needed to store global triangle offset somewhere. So no __tri_vindex.w contains a global triangle index which can be used to read triangle vertices. Additionally, the order of vertices in that array is aligned with primitives from BVH. This is needed to keep cache as much coherent as possible for BVH traversal. This causes some extra tricks needed to fill the array in and deal with True Displacement but those trickery is fully required to prevent noticeable slowdown. Next idea was to use this __tri_verts instead of __tri_storage in intersection code. Unfortunately, this is quite tricky to do without noticeable speed loss. Mainly this loss is caused by extra lookup happening to access vertex coordinate. Fortunately, tricks here and there (i,e, some types changes to avoid casts which are not really coming for free) reduces those losses to an acceptable level. So now they are within couple of percent only, On a positive site we've achieved: - Few percent of memory save with triangle-only scenes. Actual save in this case is close to size of all vertices. On a more fine-subdivided scenes this benefit might become more obvious. - Huge memory save of hairy scenes. For example, on koro.blend there is about 20% memory save. Similar figure for bunny.blend. This memory save was the main goal of this commit to move forward with Hair BVH which required more memory per BVH node. So while this sounds exciting, this memory optimization will become invisible by upcoming Hair BVH work. But again on a positive side, we can add an option to NOT use Hair BVH and then we'll have same-ish render times as we've got currently but will have this 20% memory benefit on hairy scenes.
2016-06-10 16:13:50 +02:00
void MeshManager::mesh_calc_offset(Scene *scene)
{
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
size_t patch_size = 0;
size_t face_size = 0;
size_t corner_size = 0;
size_t prim_size = 0;
foreach (Mesh *mesh, scene->meshes) {
mesh->vert_offset = vert_size;
mesh->tri_offset = tri_size;
mesh->curvekey_offset = curve_key_size;
mesh->curve_offset = curve_size;
mesh->patch_offset = patch_size;
mesh->face_offset = face_size;
mesh->corner_offset = corner_size;
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->num_curves();
if (mesh->subd_faces.size()) {
Mesh::SubdFace &last = mesh->subd_faces[mesh->subd_faces.size() - 1];
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if (mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
face_size += mesh->subd_faces.size();
corner_size += mesh->subd_face_corners.size();
mesh->prim_offset = prim_size;
prim_size += mesh->num_primitives();
}
}
void MeshManager::device_update_mesh(
Device *, DeviceScene *dscene, Scene *scene, bool for_displacement, Progress &progress)
{
/* Count. */
size_t vert_size = 0;
size_t tri_size = 0;
size_t curve_key_size = 0;
size_t curve_size = 0;
size_t patch_size = 0;
foreach (Mesh *mesh, scene->meshes) {
vert_size += mesh->verts.size();
tri_size += mesh->num_triangles();
curve_key_size += mesh->curve_keys.size();
curve_size += mesh->num_curves();
if (mesh->subd_faces.size()) {
Mesh::SubdFace &last = mesh->subd_faces[mesh->subd_faces.size() - 1];
patch_size += (last.ptex_offset + last.num_ptex_faces()) * 8;
/* patch tables are stored in same array so include them in patch_size */
if (mesh->patch_table) {
mesh->patch_table_offset = patch_size;
patch_size += mesh->patch_table->total_size();
}
}
}
/* Create mapping from triangle to primitive triangle array. */
vector<uint> tri_prim_index(tri_size);
if (for_displacement) {
/* For displacement kernels we do some trickery to make them believe
* we've got all required data ready. However, that data is different
* from final render kernels since we don't have BVH yet, so can't
* really use same semantic of arrays.
*/
foreach (Mesh *mesh, scene->meshes) {
for (size_t i = 0; i < mesh->num_triangles(); ++i) {
tri_prim_index[i + mesh->tri_offset] = 3 * (i + mesh->tri_offset);
}
}
}
else {
for (size_t i = 0; i < dscene->prim_index.size(); ++i) {
if ((dscene->prim_type[i] & PRIMITIVE_ALL_TRIANGLE) != 0) {
tri_prim_index[dscene->prim_index[i]] = dscene->prim_tri_index[i];
}
}
}
/* Fill in all the arrays. */
if (tri_size != 0) {
/* normals */
progress.set_status("Updating Mesh", "Computing normals");
uint *tri_shader = dscene->tri_shader.alloc(tri_size);
float4 *vnormal = dscene->tri_vnormal.alloc(vert_size);
uint4 *tri_vindex = dscene->tri_vindex.alloc(tri_size);
uint *tri_patch = dscene->tri_patch.alloc(tri_size);
float2 *tri_patch_uv = dscene->tri_patch_uv.alloc(vert_size);
foreach (Mesh *mesh, scene->meshes) {
mesh->pack_shaders(scene, &tri_shader[mesh->tri_offset]);
mesh->pack_normals(&vnormal[mesh->vert_offset]);
mesh->pack_verts(tri_prim_index,
&tri_vindex[mesh->tri_offset],
&tri_patch[mesh->tri_offset],
&tri_patch_uv[mesh->vert_offset],
mesh->vert_offset,
mesh->tri_offset);
if (progress.get_cancel())
return;
}
/* vertex coordinates */
progress.set_status("Updating Mesh", "Copying Mesh to device");
dscene->tri_shader.copy_to_device();
dscene->tri_vnormal.copy_to_device();
dscene->tri_vindex.copy_to_device();
dscene->tri_patch.copy_to_device();
dscene->tri_patch_uv.copy_to_device();
}
if (curve_size != 0) {
progress.set_status("Updating Mesh", "Copying Strands to device");
float4 *curve_keys = dscene->curve_keys.alloc(curve_key_size);
float4 *curves = dscene->curves.alloc(curve_size);
foreach (Mesh *mesh, scene->meshes) {
mesh->pack_curves(scene,
&curve_keys[mesh->curvekey_offset],
&curves[mesh->curve_offset],
mesh->curvekey_offset);
if (progress.get_cancel())
return;
}
dscene->curve_keys.copy_to_device();
dscene->curves.copy_to_device();
}
if (patch_size != 0) {
progress.set_status("Updating Mesh", "Copying Patches to device");
uint *patch_data = dscene->patches.alloc(patch_size);
foreach (Mesh *mesh, scene->meshes) {
mesh->pack_patches(&patch_data[mesh->patch_offset],
mesh->vert_offset,
mesh->face_offset,
mesh->corner_offset);
if (mesh->patch_table) {
mesh->patch_table->copy_adjusting_offsets(&patch_data[mesh->patch_table_offset],
mesh->patch_table_offset);
}
if (progress.get_cancel())
return;
}
dscene->patches.copy_to_device();
}
if (for_displacement) {
float4 *prim_tri_verts = dscene->prim_tri_verts.alloc(tri_size * 3);
foreach (Mesh *mesh, scene->meshes) {
for (size_t i = 0; i < mesh->num_triangles(); ++i) {
Mesh::Triangle t = mesh->get_triangle(i);
size_t offset = 3 * (i + mesh->tri_offset);
prim_tri_verts[offset + 0] = float3_to_float4(mesh->verts[t.v[0]]);
prim_tri_verts[offset + 1] = float3_to_float4(mesh->verts[t.v[1]]);
prim_tri_verts[offset + 2] = float3_to_float4(mesh->verts[t.v[2]]);
}
}
dscene->prim_tri_verts.copy_to_device();
}
}
void MeshManager::device_update_bvh(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
/* bvh build */
progress.set_status("Updating Scene BVH", "Building");
BVHParams bparams;
bparams.top_level = true;
bparams.bvh_layout = BVHParams::best_bvh_layout(scene->params.bvh_layout,
device->get_bvh_layout_mask());
bparams.use_spatial_split = scene->params.use_bvh_spatial_split;
bparams.use_unaligned_nodes = dscene->data.bvh.have_curves &&
scene->params.use_bvh_unaligned_nodes;
bparams.num_motion_triangle_steps = scene->params.num_bvh_time_steps;
bparams.num_motion_curve_steps = scene->params.num_bvh_time_steps;
bparams.bvh_type = scene->params.bvh_type;
bparams.curve_flags = dscene->data.curve.curveflags;
bparams.curve_subdivisions = dscene->data.curve.subdivisions;
VLOG(1) << "Using " << bvh_layout_name(bparams.bvh_layout) << " layout.";
#ifdef WITH_EMBREE
if (bparams.bvh_layout == BVH_LAYOUT_EMBREE) {
if (dscene->data.bvh.scene) {
BVHEmbree::destroy(dscene->data.bvh.scene);
}
}
#endif
BVH *bvh = BVH::create(bparams, scene->meshes, scene->objects);
bvh->build(progress, &device->stats);
if (progress.get_cancel()) {
#ifdef WITH_EMBREE
if (bparams.bvh_layout == BVH_LAYOUT_EMBREE) {
if (dscene->data.bvh.scene) {
BVHEmbree::destroy(dscene->data.bvh.scene);
}
}
#endif
delete bvh;
return;
}
/* copy to device */
progress.set_status("Updating Scene BVH", "Copying BVH to device");
PackedBVH &pack = bvh->pack;
if (pack.nodes.size()) {
dscene->bvh_nodes.steal_data(pack.nodes);
dscene->bvh_nodes.copy_to_device();
}
if (pack.leaf_nodes.size()) {
dscene->bvh_leaf_nodes.steal_data(pack.leaf_nodes);
dscene->bvh_leaf_nodes.copy_to_device();
}
if (pack.object_node.size()) {
dscene->object_node.steal_data(pack.object_node);
dscene->object_node.copy_to_device();
}
if (pack.prim_tri_index.size()) {
dscene->prim_tri_index.steal_data(pack.prim_tri_index);
dscene->prim_tri_index.copy_to_device();
}
if (pack.prim_tri_verts.size()) {
dscene->prim_tri_verts.steal_data(pack.prim_tri_verts);
dscene->prim_tri_verts.copy_to_device();
}
if (pack.prim_type.size()) {
dscene->prim_type.steal_data(pack.prim_type);
dscene->prim_type.copy_to_device();
}
if (pack.prim_visibility.size()) {
dscene->prim_visibility.steal_data(pack.prim_visibility);
dscene->prim_visibility.copy_to_device();
}
if (pack.prim_index.size()) {
dscene->prim_index.steal_data(pack.prim_index);
dscene->prim_index.copy_to_device();
}
if (pack.prim_object.size()) {
dscene->prim_object.steal_data(pack.prim_object);
dscene->prim_object.copy_to_device();
}
if (pack.prim_time.size()) {
dscene->prim_time.steal_data(pack.prim_time);
dscene->prim_time.copy_to_device();
}
dscene->data.bvh.root = pack.root_index;
dscene->data.bvh.bvh_layout = bparams.bvh_layout;
dscene->data.bvh.use_bvh_steps = (scene->params.num_bvh_time_steps != 0);
bvh->copy_to_device(progress, dscene);
delete bvh;
}
void MeshManager::device_update_preprocess(Device *device, Scene *scene, Progress &progress)
{
if (!need_update && !need_flags_update) {
return;
}
progress.set_status("Updating Meshes Flags");
/* Update flags. */
bool volume_images_updated = false;
foreach (Mesh *mesh, scene->meshes) {
mesh->has_volume = false;
foreach (const Shader *shader, mesh->used_shaders) {
if (shader->has_volume) {
mesh->has_volume = true;
}
if (shader->has_surface_bssrdf) {
mesh->has_surface_bssrdf = true;
}
}
if (need_update && mesh->has_volume) {
/* Create volume meshes if there is voxel data. */
if (mesh->has_voxel_attributes()) {
if (!volume_images_updated) {
progress.set_status("Updating Meshes Volume Bounds");
device_update_volume_images(device, scene, progress);
volume_images_updated = true;
}
create_volume_mesh(scene, mesh, progress);
}
}
}
need_flags_update = false;
}
void MeshManager::device_update_displacement_images(Device *device,
Scene *scene,
Progress &progress)
{
progress.set_status("Updating Displacement Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> bump_images;
foreach (Mesh *mesh, scene->meshes) {
if (mesh->need_update) {
foreach (Shader *shader, mesh->used_shaders) {
if (!shader->has_displacement || shader->displacement_method == DISPLACE_BUMP) {
continue;
}
foreach (ShaderNode *node, shader->graph->nodes) {
if (node->special_type != SHADER_SPECIAL_TYPE_IMAGE_SLOT) {
continue;
}
ImageSlotTextureNode *image_node = static_cast<ImageSlotTextureNode *>(node);
Add support for tiled images and the UDIM naming scheme This patch contains the work that I did during my week at the Code Quest - adding support for tiled images to Blender. With this patch, images now contain a list of tiles. By default, this just contains one tile, but if the source type is set to Tiled, the user can add additional tiles. When acquiring an ImBuf, the tile to be loaded is specified in the ImageUser. Therefore, code that is not yet aware of tiles will just access the default tile as usual. The filenames of the additional tiles are derived from the original filename according to the UDIM naming scheme - the filename contains an index that is calculated as (1001 + 10*<y coordinate of the tile> + <x coordinate of the tile>), where the x coordinate never goes above 9. Internally, the various tiles are stored in a cache just like sequences. When acquired for the first time, the code will try to load the corresponding file from disk. Alternatively, a new operator can be used to initialize the tile similar to the New Image operator. The following features are supported so far: - Automatic detection and loading of all tiles when opening the first tile (1001) - Saving all tiles - Adding and removing tiles - Filling tiles with generated images - Drawing all tiles in the Image Editor - Viewing a tiled grid even if no image is selected - Rendering tiled images in Eevee - Rendering tiled images in Cycles (in SVM mode) - Automatically skipping loading of unused tiles in Cycles - 2D texture painting (also across tiles) - 3D texture painting (also across tiles, only limitation: individual faces can not cross tile borders) - Assigning custom labels to individual tiles (drawn in the Image Editor instead of the ID) - Different resolutions between tiles There still are some missing features that will be added later (see T72390): - Workbench engine support - Packing/Unpacking support - Baking support - Cycles OSL support - many other Blender features that rely on images Thanks to Brecht for the review and to all who tested the intermediate versions! Differential Revision: https://developer.blender.org/D3509
2019-12-12 16:06:08 +01:00
foreach (int slot, image_node->slots) {
if (slot != -1) {
bump_images.insert(slot);
}
}
}
}
}
}
foreach (int slot, bump_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void MeshManager::device_update_volume_images(Device *device, Scene *scene, Progress &progress)
{
progress.set_status("Updating Volume Images");
TaskPool pool;
ImageManager *image_manager = scene->image_manager;
set<int> volume_images;
foreach (Mesh *mesh, scene->meshes) {
if (!mesh->need_update) {
continue;
}
foreach (Attribute &attr, mesh->attributes.attributes) {
if (attr.element != ATTR_ELEMENT_VOXEL) {
continue;
}
VoxelAttribute *voxel = attr.data_voxel();
if (voxel->slot != -1) {
volume_images.insert(voxel->slot);
}
}
}
foreach (int slot, volume_images) {
pool.push(function_bind(
&ImageManager::device_update_slot, image_manager, device, scene, slot, &progress));
}
pool.wait_work();
}
void MeshManager::device_update(Device *device,
DeviceScene *dscene,
Scene *scene,
Progress &progress)
{
if (!need_update)
return;
VLOG(1) << "Total " << scene->meshes.size() << " meshes.";
bool true_displacement_used = false;
size_t total_tess_needed = 0;
foreach (Mesh *mesh, scene->meshes) {
foreach (Shader *shader, mesh->used_shaders) {
if (shader->need_update_mesh)
mesh->need_update = true;
}
if (mesh->need_update) {
/* Update normals. */
mesh->add_face_normals();
mesh->add_vertex_normals();
if (mesh->need_attribute(scene, ATTR_STD_POSITION_UNDISPLACED)) {
mesh->add_undisplaced();
}
/* Test if we need tessellation. */
if (mesh->subdivision_type != Mesh::SUBDIVISION_NONE && mesh->num_subd_verts == 0 &&
mesh->subd_params) {
total_tess_needed++;
}
/* Test if we need displacement. */
if (mesh->has_true_displacement()) {
true_displacement_used = true;
}
if (progress.get_cancel())
return;
}
}
/* Tessellate meshes that are using subdivision */
if (total_tess_needed) {
Camera *dicing_camera = scene->dicing_camera;
dicing_camera->update(scene);
size_t i = 0;
foreach (Mesh *mesh, scene->meshes) {
if (mesh->need_update && mesh->subdivision_type != Mesh::SUBDIVISION_NONE &&
mesh->num_subd_verts == 0 && mesh->subd_params) {
string msg = "Tessellating ";
if (mesh->name == "")
msg += string_printf("%u/%u", (uint)(i + 1), (uint)total_tess_needed);
else
msg += string_printf(
"%s %u/%u", mesh->name.c_str(), (uint)(i + 1), (uint)total_tess_needed);
progress.set_status("Updating Mesh", msg);
mesh->subd_params->camera = dicing_camera;
DiagSplit dsplit(*mesh->subd_params);
mesh->tessellate(&dsplit);
i++;
if (progress.get_cancel())
return;
}
}
}
/* Update images needed for true displacement. */
bool old_need_object_flags_update = false;
if (true_displacement_used) {
VLOG(1) << "Updating images used for true displacement.";
device_update_displacement_images(device, scene, progress);
old_need_object_flags_update = scene->object_manager->need_flags_update;
scene->object_manager->device_update_flags(device, dscene, scene, progress, false);
}
/* Device update. */
device_free(device, dscene);
mesh_calc_offset(scene);
if (true_displacement_used) {
device_update_mesh(device, dscene, scene, true, progress);
}
if (progress.get_cancel())
return;
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel())
return;
/* Update displacement. */
bool displacement_done = false;
size_t num_bvh = 0;
BVHLayout bvh_layout = BVHParams::best_bvh_layout(scene->params.bvh_layout,
device->get_bvh_layout_mask());
foreach (Mesh *mesh, scene->meshes) {
if (mesh->need_update) {
if (displace(device, dscene, scene, mesh, progress)) {
displacement_done = true;
}
if (mesh->need_build_bvh(bvh_layout)) {
num_bvh++;
}
}
if (progress.get_cancel())
return;
}
/* Device re-update after displacement. */
if (displacement_done) {
device_free(device, dscene);
device_update_attributes(device, dscene, scene, progress);
if (progress.get_cancel())
return;
}
TaskPool pool;
size_t i = 0;
foreach (Mesh *mesh, scene->meshes) {
if (mesh->need_update) {
pool.push(function_bind(
&Mesh::compute_bvh, mesh, device, dscene, &scene->params, &progress, i, num_bvh));
if (mesh->need_build_bvh(bvh_layout)) {
i++;
}
}
}
TaskPool::Summary summary;
pool.wait_work(&summary);
VLOG(2) << "Objects BVH build pool statistics:\n" << summary.full_report();
foreach (Shader *shader, scene->shaders) {
shader->need_update_mesh = false;
}
Scene::MotionType need_motion = scene->need_motion();
bool motion_blur = need_motion == Scene::MOTION_BLUR;
/* Update objects. */
vector<Object *> volume_objects;
foreach (Object *object, scene->objects) {
object->compute_bounds(motion_blur);
}
if (progress.get_cancel())
return;
device_update_bvh(device, dscene, scene, progress);
if (progress.get_cancel())
return;
device_update_mesh(device, dscene, scene, false, progress);
if (progress.get_cancel())
return;
need_update = false;
if (true_displacement_used) {
/* Re-tag flags for update, so they're re-evaluated
* for meshes with correct bounding boxes.
*
* This wouldn't cause wrong results, just true
* displacement might be less optimal ot calculate.
*/
scene->object_manager->need_flags_update = old_need_object_flags_update;
}
}
void MeshManager::device_free(Device *device, DeviceScene *dscene)
{
dscene->bvh_nodes.free();
dscene->bvh_leaf_nodes.free();
dscene->object_node.free();
dscene->prim_tri_verts.free();
dscene->prim_tri_index.free();
dscene->prim_type.free();
dscene->prim_visibility.free();
dscene->prim_index.free();
dscene->prim_object.free();
dscene->prim_time.free();
dscene->tri_shader.free();
dscene->tri_vnormal.free();
dscene->tri_vindex.free();
dscene->tri_patch.free();
dscene->tri_patch_uv.free();
dscene->curves.free();
dscene->curve_keys.free();
dscene->patches.free();
dscene->attributes_map.free();
dscene->attributes_float.free();
dscene->attributes_float2.free();
dscene->attributes_float3.free();
dscene->attributes_uchar4.free();
/* Signal for shaders like displacement not to do ray tracing. */
dscene->data.bvh.bvh_layout = BVH_LAYOUT_NONE;
#ifdef WITH_OSL
OSLGlobals *og = (OSLGlobals *)device->osl_memory();
if (og) {
og->object_name_map.clear();
og->attribute_map.clear();
og->object_names.clear();
}
#else
(void)device;
#endif
}
void MeshManager::tag_update(Scene *scene)
{
need_update = true;
scene->object_manager->need_update = true;
}
void MeshManager::collect_statistics(const Scene *scene, RenderStats *stats)
{
foreach (Mesh *mesh, scene->meshes) {
stats->mesh.geometry.add_entry(
NamedSizeEntry(string(mesh->name.c_str()), mesh->get_total_size_in_bytes()));
}
}
bool Mesh::need_attribute(Scene *scene, AttributeStandard std)
{
if (std == ATTR_STD_NONE)
return false;
if (scene->need_global_attribute(std))
return true;
foreach (Shader *shader, used_shaders)
if (shader->attributes.find(std))
return true;
return false;
}
bool Mesh::need_attribute(Scene * /*scene*/, ustring name)
{
if (name == ustring())
return false;
foreach (Shader *shader, used_shaders)
if (shader->attributes.find(name))
return true;
return false;
}
CCL_NAMESPACE_END