Files
blender/source/gameengine/VideoTexture/ImageViewport.cpp

468 lines
14 KiB
C++
Raw Normal View History

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright (c) 2007 The Zdeno Ash Miklas
*
* This source file is part of VideoTexture library
*
* Contributor(s):
*
* ***** END GPL LICENSE BLOCK *****
*/
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
/** \file gameengine/VideoTexture/ImageViewport.cpp
* \ingroup bgevideotex
*/
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// implementation
#include "EXP_PyObjectPlus.h"
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
#include <structmember.h>
#include "GPU_glew.h"
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
#include "KX_PythonInit.h"
#include "RAS_ICanvas.h"
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
#include "Texture.h"
#include "ImageBase.h"
#include "VideoBase.h"
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
#include "FilterSource.h"
#include "ImageViewport.h"
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// constructor
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
ImageViewport::ImageViewport (PyRASOffScreen *offscreen) : m_alpha(false), m_texInit(false)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// get viewport rectangle
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
if (offscreen) {
m_viewport[0] = 0;
m_viewport[1] = 0;
m_viewport[2] = offscreen->ofs->GetWidth();
m_viewport[3] = offscreen->ofs->GetHeight();
}
else {
RAS_Rect rect = KX_GetActiveEngine()->GetCanvas()->GetWindowArea();
m_viewport[0] = rect.GetLeft();
m_viewport[1] = rect.GetBottom();
m_viewport[2] = rect.GetWidth();
m_viewport[3] = rect.GetHeight();
}
//glGetIntegerv(GL_VIEWPORT, m_viewport);
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// create buffer for viewport image
// Warning: this buffer is also used to get the depth buffer as an array of
// float (1 float = 4 bytes per pixel)
m_viewportImage = new BYTE [4 * getViewportSize()[0] * getViewportSize()[1]];
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// set attributes
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
setWhole((offscreen) ? true : false);
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
// destructor
ImageViewport::~ImageViewport (void)
{
2012-11-03 15:35:03 +00:00
delete [] m_viewportImage;
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// use whole viewport to capture image
void ImageViewport::setWhole (bool whole)
{
// set whole
m_whole = whole;
// set capture size to viewport size, if whole,
// otherwise place area in the middle of viewport
for (int idx = 0; idx < 2; ++idx)
{
// capture size
m_capSize[idx] = whole ? short(getViewportSize()[idx])
: calcSize(short(getViewportSize()[idx]));
// position
m_position[idx] = whole ? 0 : ((getViewportSize()[idx] - m_capSize[idx]) >> 1);
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
// init image
init(m_capSize[0], m_capSize[1]);
// set capture position
setPosition();
}
void ImageViewport::setCaptureSize (short size[2])
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
m_whole = false;
if (size == NULL)
size = m_capSize;
for (int idx = 0; idx < 2; ++idx)
{
if (size[idx] < 1)
m_capSize[idx] = 1;
else if (size[idx] > getViewportSize()[idx])
m_capSize[idx] = short(getViewportSize()[idx]);
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
else
m_capSize[idx] = size[idx];
}
init(m_capSize[0], m_capSize[1]);
// set capture position
setPosition();
}
// set position of capture rectangle
void ImageViewport::setPosition (GLint pos[2])
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// if new position is not provided, use existing position
if (pos == NULL) pos = m_position;
// save position
for (int idx = 0; idx < 2; ++idx)
m_position[idx] = pos[idx] < 0 ? 0 : pos[idx] >= getViewportSize()[idx]
- m_capSize[idx] ? getViewportSize()[idx] - m_capSize[idx] : pos[idx];
// recalc up left corner
for (int idx = 0; idx < 2; ++idx)
m_upLeft[idx] = m_position[idx] + m_viewport[idx];
}
// capture image from viewport
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
void ImageViewport::calcViewport (unsigned int texId, double ts, unsigned int format)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// if scale was changed
if (m_scaleChange)
// reset image
init(m_capSize[0], m_capSize[1]);
// if texture wasn't initialized
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
if (!m_texInit && texId != 0) {
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// initialize it
loadTexture(texId, m_image, m_size);
m_texInit = true;
}
// if texture can be directly created
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
if (texId != 0 && m_pyfilter == NULL && m_size[0] == m_capSize[0] &&
m_size[1] == m_capSize[1] && !m_flip && !m_zbuff && !m_depth)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// just copy current viewport to texture
2011-09-01 02:12:53 +00:00
glBindTexture(GL_TEXTURE_2D, texId);
glCopyTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1]);
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
glBindTexture(GL_TEXTURE_2D, 0);
2011-09-01 02:12:53 +00:00
// image is not available
m_avail = false;
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
// otherwise copy viewport to buffer, if image is not available
2012-11-03 15:35:03 +00:00
else if (!m_avail) {
if (m_zbuff) {
// Use read pixels with the depth buffer
// *** misusing m_viewportImage here, but since it has the correct size
2012-11-03 15:35:03 +00:00
// (4 bytes per pixel = size of float) and we just need it to apply
// the filter, it's ok
2012-11-03 15:35:03 +00:00
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1],
GL_DEPTH_COMPONENT, GL_FLOAT, m_viewportImage);
2011-09-01 02:12:53 +00:00
// filter loaded data
2012-11-03 15:35:03 +00:00
FilterZZZA filt;
filterImage(filt, (float *)m_viewportImage, m_capSize);
2011-09-01 02:12:53 +00:00
}
2012-11-03 15:35:03 +00:00
else {
if (m_depth) {
// Use read pixels with the depth buffer
// See warning above about m_viewportImage.
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1],
GL_DEPTH_COMPONENT, GL_FLOAT, m_viewportImage);
// filter loaded data
FilterDEPTH filt;
filterImage(filt, (float *)m_viewportImage, m_capSize);
}
else {
// get frame buffer data
if (m_alpha) {
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
// as we are reading the pixel in the native format, we can read directly in the image buffer
// if we are sure that no processing is needed on the image
if (m_size[0] == m_capSize[0] &&
m_size[1] == m_capSize[1] &&
!m_flip &&
!m_pyfilter)
{
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1], format,
GL_UNSIGNED_BYTE, m_image);
m_avail = true;
}
else if (!m_pyfilter) {
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1], format,
GL_UNSIGNED_BYTE, m_viewportImage);
FilterRGBA32 filt;
filterImage(filt, m_viewportImage, m_capSize);
}
else {
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1], GL_RGBA,
GL_UNSIGNED_BYTE, m_viewportImage);
FilterRGBA32 filt;
filterImage(filt, m_viewportImage, m_capSize);
if (format == GL_BGRA) {
// in place byte swapping
swapImageBR();
}
}
2012-11-03 15:35:03 +00:00
}
else {
glReadPixels(m_upLeft[0], m_upLeft[1], (GLsizei)m_capSize[0], (GLsizei)m_capSize[1], GL_RGB,
GL_UNSIGNED_BYTE, m_viewportImage);
// filter loaded data
FilterRGB24 filt;
filterImage(filt, m_viewportImage, m_capSize);
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
if (format == GL_BGRA) {
// in place byte swapping
swapImageBR();
}
2012-11-03 15:35:03 +00:00
}
}
2011-09-01 02:12:53 +00:00
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
}
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
bool ImageViewport::loadImage(unsigned int *buffer, unsigned int size, unsigned int format, double ts)
{
unsigned int *tmp_image;
bool ret;
// if scale was changed
if (m_scaleChange) {
// reset image
init(m_capSize[0], m_capSize[1]);
}
// size must be identical
if (size < getBuffSize())
return false;
if (m_avail) {
// just copy
return ImageBase::loadImage(buffer, size, format, ts);
}
else {
tmp_image = m_image;
m_image = buffer;
calcViewport(0, ts, format);
ret = m_avail;
m_image = tmp_image;
// since the image was not loaded to our buffer, it's not valid
m_avail = false;
}
return ret;
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// cast Image pointer to ImageViewport
2012-09-16 04:58:18 +00:00
inline ImageViewport * getImageViewport (PyImage *self)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{ return static_cast<ImageViewport*>(self->m_image); }
// python methods
// get whole
2012-09-16 04:58:18 +00:00
PyObject *ImageViewport_getWhole (PyImage *self, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
if (self->m_image != NULL && getImageViewport(self)->getWhole()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
// set whole
int ImageViewport_setWhole(PyImage *self, PyObject *value, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// check parameter, report failure
if (value == NULL || !PyBool_Check(value))
{
PyErr_SetString(PyExc_TypeError, "The value must be a bool");
return -1;
}
VideoTexture: improvements to image data access API. - Use BGL buffer instead of string for image data. - Add buffer interface to image source. - Allow customization of pixel format. - Add valid property to check if the image data is available. The image property of all Image source objects will now return a BGL 'buffer' object. Previously it was returning a string, which was not working at all with Python 3.1. The BGL buffer type allows sequence access to bytes and is directly usable in BGL OpenGL wrapper functions. The buffer is formated as a 1 dimensional array of bytes with 4 bytes per pixel in RGBA order. BGL buffers will also be accepted in the ImageBuff load() and plot() functions. It is possible to customize the pixel format by using the VideoTexture.imageToArray(image, mode) function: the first argument is a Image source object, the second optional argument is a format string using the R, G, B, A, 0 and 1 characters. For example "BGR" means that each pixel will be 3 bytes, corresponding to the Blue, Green and Red channel in that order. Use 0 for a fixed hex 00 value, 1 for hex FF. The default mode is "RGBA". All Image source objects now support the buffer interface which allows to create memoryview objects for direct access to the image internal buffer without memory copy. The buffer format is one dimensional array of bytes with 4 bytes per pixel in RGBA order. The buffer is writable, which allows custom modifications of the image data. v = memoryview(source) A bug in the Python 3.1 buffer API will cause a crash if the memoryview object cannot be created. Therefore, you must always check first that an image data is available before creating a memoryview object. Use the new valid attribute for that: if source.valid: v = memoryview(source) ... Note: the BGL buffer object itself does not yet support the buffer interface. Note: the valid attribute makes sense only if you use image source in conjunction with texture object like this: # refresh texture but keep image data in memory texture.refresh(False) if texture.source.valid: v = memoryview(texture.source) # process image ... # invalidate image for next texture refresh texture.source.refresh() Limitation: While memoryview objects exist, the image cannot be resized. Resizing occurs with ImageViewport objects when the viewport size is changed or with ImageFFmpeg when a new image is reloaded for example. Any attempt to resize will cause a runtime error. Delete the memoryview objects is you want to resize an image source object.
2010-02-21 22:20:00 +00:00
try
{
// set whole, can throw in case of resize and buffer exports
if (self->m_image != NULL) getImageViewport(self)->setWhole(value == Py_True);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// success
return 0;
}
// get alpha
2012-09-16 04:58:18 +00:00
PyObject *ImageViewport_getAlpha (PyImage *self, void *closure)
{
if (self->m_image != NULL && getImageViewport(self)->getAlpha()) Py_RETURN_TRUE;
else Py_RETURN_FALSE;
}
// set whole
int ImageViewport_setAlpha(PyImage *self, PyObject *value, void *closure)
{
// check parameter, report failure
if (value == NULL || !PyBool_Check(value))
{
PyErr_SetString(PyExc_TypeError, "The value must be a bool");
return -1;
}
// set alpha
if (self->m_image != NULL) getImageViewport(self)->setAlpha(value == Py_True);
// success
return 0;
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// get position
2012-09-16 04:58:18 +00:00
static PyObject *ImageViewport_getPosition (PyImage *self, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
GLint *pos = getImageViewport(self)->getPosition();
PyObject *ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, PyLong_FromLong(pos[0]));
PyTuple_SET_ITEM(ret, 1, PyLong_FromLong(pos[1]));
return ret;
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
// set position
static int ImageViewport_setPosition(PyImage *self, PyObject *value, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// check validity of parameter
if (value == NULL ||
!(PyTuple_Check(value) || PyList_Check(value)) ||
PySequence_Fast_GET_SIZE(value) != 2 ||
!PyLong_Check(PySequence_Fast_GET_ITEM(value, 0)) ||
!PyLong_Check(PySequence_Fast_GET_ITEM(value, 1)))
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
PyErr_SetString(PyExc_TypeError, "The value must be a sequence of 2 ints");
return -1;
}
// set position
GLint pos[2] = {
GLint(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 0))),
GLint(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 1)))
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
};
getImageViewport(self)->setPosition(pos);
// success
return 0;
}
// get capture size
2012-09-16 04:58:18 +00:00
PyObject *ImageViewport_getCaptureSize (PyImage *self, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
short *size = getImageViewport(self)->getCaptureSize();
PyObject *ret = PyTuple_New(2);
PyTuple_SET_ITEM(ret, 0, PyLong_FromLong(size[0]));
PyTuple_SET_ITEM(ret, 1, PyLong_FromLong(size[1]));
return ret;
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
}
// set capture size
int ImageViewport_setCaptureSize(PyImage *self, PyObject *value, void *closure)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
// check validity of parameter
if (value == NULL ||
!(PyTuple_Check(value) || PyList_Check(value)) ||
PySequence_Fast_GET_SIZE(value) != 2 ||
!PyLong_Check(PySequence_Fast_GET_ITEM(value, 0)) ||
!PyLong_Check(PySequence_Fast_GET_ITEM(value, 1)))
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{
PyErr_SetString(PyExc_TypeError, "The value must be a sequence of 2 ints");
return -1;
}
// set capture size
short size[2] = {
short(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 0))),
short(PyLong_AsLong(PySequence_Fast_GET_ITEM(value, 1)))
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
};
VideoTexture: improvements to image data access API. - Use BGL buffer instead of string for image data. - Add buffer interface to image source. - Allow customization of pixel format. - Add valid property to check if the image data is available. The image property of all Image source objects will now return a BGL 'buffer' object. Previously it was returning a string, which was not working at all with Python 3.1. The BGL buffer type allows sequence access to bytes and is directly usable in BGL OpenGL wrapper functions. The buffer is formated as a 1 dimensional array of bytes with 4 bytes per pixel in RGBA order. BGL buffers will also be accepted in the ImageBuff load() and plot() functions. It is possible to customize the pixel format by using the VideoTexture.imageToArray(image, mode) function: the first argument is a Image source object, the second optional argument is a format string using the R, G, B, A, 0 and 1 characters. For example "BGR" means that each pixel will be 3 bytes, corresponding to the Blue, Green and Red channel in that order. Use 0 for a fixed hex 00 value, 1 for hex FF. The default mode is "RGBA". All Image source objects now support the buffer interface which allows to create memoryview objects for direct access to the image internal buffer without memory copy. The buffer format is one dimensional array of bytes with 4 bytes per pixel in RGBA order. The buffer is writable, which allows custom modifications of the image data. v = memoryview(source) A bug in the Python 3.1 buffer API will cause a crash if the memoryview object cannot be created. Therefore, you must always check first that an image data is available before creating a memoryview object. Use the new valid attribute for that: if source.valid: v = memoryview(source) ... Note: the BGL buffer object itself does not yet support the buffer interface. Note: the valid attribute makes sense only if you use image source in conjunction with texture object like this: # refresh texture but keep image data in memory texture.refresh(False) if texture.source.valid: v = memoryview(texture.source) # process image ... # invalidate image for next texture refresh texture.source.refresh() Limitation: While memoryview objects exist, the image cannot be resized. Resizing occurs with ImageViewport objects when the viewport size is changed or with ImageFFmpeg when a new image is reloaded for example. Any attempt to resize will cause a runtime error. Delete the memoryview objects is you want to resize an image source object.
2010-02-21 22:20:00 +00:00
try
{
// can throw in case of resize and buffer exports
getImageViewport(self)->setCaptureSize(size);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// success
return 0;
}
// methods structure
static PyMethodDef imageViewportMethods[] =
{ // methods from ImageBase class
BGE: Various render improvements. bge.logic.setRender(flag) to enable/disable render. The render pass is enabled by default but it can be disabled with bge.logic.setRender(False). Once disabled, the render pass is skipped and a new logic frame starts immediately. Note that VSync no longer limits the fps when render is off but the 'Use Frame Rate' option in the Render Properties still does. To run as many frames as possible, untick the option This function is useful when you don't need the default render, e.g. when doing offscreen render to an alternate device than the monitor. Note that without VSync, you must limit the frame rate by other means. fbo = bge.render.offScreenCreate(width,height,[,samples=0][,target=bge.render.RAS_OFS_RENDER_BUFFER]) Use this method to create an offscreen buffer of given size, with given MSAA samples and targetting either a render buffer (bge.render.RAS_OFS_RENDER_BUFFER) or a texture (bge.render.RAS_OFS_RENDER_TEXTURE). Use the former if you want to retrieve the frame buffer on the host and the latter if you want to pass the render to another context (texture are proper OGL object, render buffers aren't) The object created by this function can only be used as a parameter of the bge.texture.ImageRender() constructor to send the the render to the FBO rather than to the frame buffer. This is best suited when you want to create a render of specific size, or if you need an image with an alpha channel. bge.texture.<imagetype>.refresh(buffer=None, format="RGBA", ts=-1.0) Without arg, the refresh method of the image objects is pretty much a no-op, it simply invalidates the image so that on next texture refresh, the image will be recalculated. It is now possible to pass an optional buffer object to transfer the image (and recalculate it if it was invalid) to an external object. The object must implement the 'buffer protocol'. The image will be transfered as "RGBA" or "BGRA" pixels depending on format argument (only those 2 formats are supported) and ts is an optional timestamp in the image depends on it (e.g. VideoFFmpeg playing a video file). With this function you don't need anymore to link the image object to a Texture object to use: the image object is self-sufficient. bge.texture.ImageRender(scene, camera, fbo=None) Render to buffer is possible by passing a FBO object (see offScreenCreate). bge.texture.ImageRender.render() Allows asynchronous render: call this method to render the scene but without extracting the pixels yet. The function returns as soon as the render commands have been send to the GPU. The render will proceed asynchronously in the GPU while the host can perform other tasks. To complete the render, you can either call refresh() directly of refresh the texture to which this object is the source. Asynchronous render is useful to achieve optimal performance: call render() on frame N and refresh() on frame N+1 to give as much as time as possible to the GPU to render the frame while the game engine can perform other tasks. Support negative scale on camera. Camera scale was previously ignored in the BGE. It is now injected in the modelview matrix as a vertical or horizontal flip of the scene (respectively if scaleY<0 and scaleX<0). Note that the actual value of the scale is not used, only the sign. This allows to flip the image produced by ImageRender() without any performance degradation: the flip is integrated in the render itself. Optimized image transfer from ImageRender to buffer. Previously, images that were transferred to the host were always going through buffers in VideoTexture. It is now possible to transfer ImageRender images to external buffer without intermediate copy (i.e. directly from OGL to buffer) if the attributes of the ImageRender objects are set as follow: flip=False, alpha=True, scale=False, depth=False, zbuff=False. (if you need to flip the image, use camera negative scale)
2016-06-09 23:56:45 +02:00
{"refresh", (PyCFunction)Image_refresh, METH_VARARGS, "Refresh image - invalidate its current content"},
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{NULL}
};
// attributes structure
static PyGetSetDef imageViewportGetSets[] =
{
{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to capture", NULL},
{(char*)"position", (getter)ImageViewport_getPosition, (setter)ImageViewport_setPosition, (char*)"upper left corner of captured area", NULL},
{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of viewport area being captured", NULL},
{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
// attributes from ImageBase class
VideoTexture: improvements to image data access API. - Use BGL buffer instead of string for image data. - Add buffer interface to image source. - Allow customization of pixel format. - Add valid property to check if the image data is available. The image property of all Image source objects will now return a BGL 'buffer' object. Previously it was returning a string, which was not working at all with Python 3.1. The BGL buffer type allows sequence access to bytes and is directly usable in BGL OpenGL wrapper functions. The buffer is formated as a 1 dimensional array of bytes with 4 bytes per pixel in RGBA order. BGL buffers will also be accepted in the ImageBuff load() and plot() functions. It is possible to customize the pixel format by using the VideoTexture.imageToArray(image, mode) function: the first argument is a Image source object, the second optional argument is a format string using the R, G, B, A, 0 and 1 characters. For example "BGR" means that each pixel will be 3 bytes, corresponding to the Blue, Green and Red channel in that order. Use 0 for a fixed hex 00 value, 1 for hex FF. The default mode is "RGBA". All Image source objects now support the buffer interface which allows to create memoryview objects for direct access to the image internal buffer without memory copy. The buffer format is one dimensional array of bytes with 4 bytes per pixel in RGBA order. The buffer is writable, which allows custom modifications of the image data. v = memoryview(source) A bug in the Python 3.1 buffer API will cause a crash if the memoryview object cannot be created. Therefore, you must always check first that an image data is available before creating a memoryview object. Use the new valid attribute for that: if source.valid: v = memoryview(source) ... Note: the BGL buffer object itself does not yet support the buffer interface. Note: the valid attribute makes sense only if you use image source in conjunction with texture object like this: # refresh texture but keep image data in memory texture.refresh(False) if texture.source.valid: v = memoryview(texture.source) # process image ... # invalidate image for next texture refresh texture.source.refresh() Limitation: While memoryview objects exist, the image cannot be resized. Resizing occurs with ImageViewport objects when the viewport size is changed or with ImageFFmpeg when a new image is reloaded for example. Any attempt to resize will cause a runtime error. Delete the memoryview objects is you want to resize an image source object.
2010-02-21 22:20:00 +00:00
{(char*)"valid", (getter)Image_valid, NULL, (char*)"bool to tell if an image is available", NULL},
{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
2012-03-01 12:20:18 +00:00
{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbor)", NULL},
{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
{(char*)"zbuff", (getter)Image_getZbuff, (setter)Image_setZbuff, (char*)"use depth buffer as texture", NULL},
{(char*)"depth", (getter)Image_getDepth, (setter)Image_setDepth, (char*)"get depth information from z-buffer as array of float", NULL},
{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
{NULL}
};
// define python type
PyTypeObject ImageViewportType = {
PyVarObject_HEAD_INIT(NULL, 0)
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
"VideoTexture.ImageViewport", /*tp_name*/
sizeof(PyImage), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Image_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
VideoTexture: improvements to image data access API. - Use BGL buffer instead of string for image data. - Add buffer interface to image source. - Allow customization of pixel format. - Add valid property to check if the image data is available. The image property of all Image source objects will now return a BGL 'buffer' object. Previously it was returning a string, which was not working at all with Python 3.1. The BGL buffer type allows sequence access to bytes and is directly usable in BGL OpenGL wrapper functions. The buffer is formated as a 1 dimensional array of bytes with 4 bytes per pixel in RGBA order. BGL buffers will also be accepted in the ImageBuff load() and plot() functions. It is possible to customize the pixel format by using the VideoTexture.imageToArray(image, mode) function: the first argument is a Image source object, the second optional argument is a format string using the R, G, B, A, 0 and 1 characters. For example "BGR" means that each pixel will be 3 bytes, corresponding to the Blue, Green and Red channel in that order. Use 0 for a fixed hex 00 value, 1 for hex FF. The default mode is "RGBA". All Image source objects now support the buffer interface which allows to create memoryview objects for direct access to the image internal buffer without memory copy. The buffer format is one dimensional array of bytes with 4 bytes per pixel in RGBA order. The buffer is writable, which allows custom modifications of the image data. v = memoryview(source) A bug in the Python 3.1 buffer API will cause a crash if the memoryview object cannot be created. Therefore, you must always check first that an image data is available before creating a memoryview object. Use the new valid attribute for that: if source.valid: v = memoryview(source) ... Note: the BGL buffer object itself does not yet support the buffer interface. Note: the valid attribute makes sense only if you use image source in conjunction with texture object like this: # refresh texture but keep image data in memory texture.refresh(False) if texture.source.valid: v = memoryview(texture.source) # process image ... # invalidate image for next texture refresh texture.source.refresh() Limitation: While memoryview objects exist, the image cannot be resized. Resizing occurs with ImageViewport objects when the viewport size is changed or with ImageFFmpeg when a new image is reloaded for example. Any attempt to resize will cause a runtime error. Delete the memoryview objects is you want to resize an image source object.
2010-02-21 22:20:00 +00:00
&imageBufferProcs, /*tp_as_buffer*/
VideoTexture module. The only compilation system that works for sure is the MSVC project files. I've tried my best to update the other compilation system but I count on the community to check and fix them. This is Zdeno Miklas video texture plugin ported to trunk. The original plugin API is maintained (can be found here http://home.scarlet.be/~tsi46445/blender/blendVideoTex.html) EXCEPT for the following: The module name is changed to VideoTexture (instead of blendVideoTex). A new (and only) video source is now available: VideoFFmpeg() You must pass 1 to 4 arguments when you create it (you can use named arguments): VideoFFmpeg(file) : play a video file VideoFFmpeg(file, capture, rate, width, height) : start a live video capture file: In the first form, file is a video file name, relative to startup directory. It can also be a URL, FFmpeg will happily stream a video from a network source. In the second form, file is empty or is a hint for the format of the video capture. In Windows, file is ignored and should be empty or not specified. In Linux, ffmpeg supports two types of device: VideoForLinux and DV1394. The user specifies the type of device with the file parameter: [<device_type>][:<standard>] <device_type> : 'v4l' for VideoForLinux, 'dv1394' for DV1394; default to 'v4l' <standard> : 'pal', 'secam' or 'ntsc', default to 'ntsc' The driver name is constructed automatically from the device types: v4l : /dev/video<capture> dv1394: /dev/dv1394/<capture> If you have different driver name, you can specify the driver name explicitely instead of device type. Examples of valid file parameter: /dev/v4l/video0:pal /dev/ieee1394/1:ntsc dv1394:ntsc v4l:pal :secam capture: Defines the index number of the capture source, starting from 0. The first capture device is always 0. The VideoTexutre modules knows that you want to start a live video capture when you set this parameter to a number >= 0. Setting this parameter < 0 indicates a video file playback. Default value is -1. rate: the capture frame rate, by default 25 frames/sec width: height: Width and height of the video capture in pixel, default value 0. In Windows you must specify these values and they must fit with the capture device capability. For example, if you have a webcam that can capture at 160x120, 320x240 or 640x480, you must specify one of these couple of values or the opening of the video source will fail. In Linux, default values are provided by the VideoForLinux driver if you don't specify width and height. Simple example ************** 1. Texture definition script: import VideoTexture contr = GameLogic.getCurrentController() obj = contr.getOwner() if not hasattr(GameLogic, 'video'): matID = VideoTexture.materialID(obj, 'MAVideoMat') GameLogic.video = VideoTexture.Texture(obj, matID) GameLogic.vidSrc = VideoTexture.VideoFFmpeg('trailer_400p.ogg') # Streaming is also possible: #GameLogic.vidSrc = VideoTexture.VideoFFmpeg('http://10.32.1.10/trailer_400p.ogg') GameLogic.vidSrc.repeat = -1 # If the video dimensions are not a power of 2, scaling must be done before # sending the texture to the GPU. This is done by default with gluScaleImage() # but you can also use a faster, but less precise, scaling by setting scale # to True. Best approach is to convert the video offline and set the dimensions right. GameLogic.vidSrc.scale = True # FFmpeg always delivers the video image upside down, so flipping is enabled automatically #GameLogic.vidSrc.flip = True if contr.getSensors()[0].isPositive(): GameLogic.video.source = GameLogic.vidSrc GameLogic.vidSrc.play() 2. Texture refresh script: obj = GameLogic.getCurrentController().getOwner() if hasattr(GameLogic, 'video') != 0: GameLogic.video.refresh(True) You can download this demo here: http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.blend http://home.scarlet.be/~tsi46445/blender/trailer_400p.ogg
2008-10-31 22:35:52 +00:00
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Image source from viewport", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
imageViewportMethods, /* tp_methods */
0, /* tp_members */
imageViewportGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)Image_init<ImageViewport>, /* tp_init */
0, /* tp_alloc */
Image_allocNew, /* tp_new */
};