Files
blender/source/blender/blenkernel/intern/collision.c

2581 lines
71 KiB
C
Raw Normal View History

2011-02-23 18:03:40 +00:00
/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-27 20:40:57 +00:00
/** \file blender/blenkernel/intern/collision.c
* \ingroup bke
*/
#include "MEM_guardedalloc.h"
#include "BKE_cloth.h"
#include "DNA_cloth_types.h"
#include "DNA_group_types.h"
#include "DNA_mesh_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_scene_types.h"
#include "DNA_meshdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "BLI_memarena.h"
#include "BLI_rand.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_scene.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_modifier.h"
#include "BKE_DerivedMesh.h"
2009-09-30 21:31:08 +00:00
#ifdef USE_BULLET
#include "Bullet-C-Api.h"
2009-09-30 21:31:08 +00:00
#endif
#include "BLI_kdopbvh.h"
#include "BKE_collision.h"
#ifdef WITH_ELTOPO
#include "eltopo-capi.h"
#endif
/***********************************
Collision modifier code start
***********************************/
/* step is limited from 0 (frame start position) to 1 (frame end position) */
void collision_move_object(CollisionModifierData *collmd, float step, float prevstep)
{
float tv[3] = {0, 0, 0};
unsigned int i = 0;
for ( i = 0; i < collmd->numverts; i++ )
{
sub_v3_v3v3 ( tv, collmd->xnew[i].co, collmd->x[i].co );
VECADDS ( collmd->current_x[i].co, collmd->x[i].co, tv, prevstep );
VECADDS ( collmd->current_xnew[i].co, collmd->x[i].co, tv, step );
sub_v3_v3v3 ( collmd->current_v[i].co, collmd->current_xnew[i].co, collmd->current_x[i].co );
}
bvhtree_update_from_mvert ( collmd->bvhtree, collmd->mfaces, collmd->numfaces, collmd->current_x, collmd->current_xnew, collmd->numverts, 1 );
}
BVHTree *bvhtree_build_from_mvert ( MFace *mfaces, unsigned int numfaces, MVert *x, unsigned int UNUSED(numverts), float epsilon )
{
BVHTree *tree;
float co[12];
unsigned int i;
MFace *tface = mfaces;
tree = BLI_bvhtree_new ( numfaces*2, epsilon, 4, 26 );
// fill tree
for ( i = 0; i < numfaces; i++, tface++ )
{
copy_v3_v3 ( &co[0*3], x[tface->v1].co );
copy_v3_v3 ( &co[1*3], x[tface->v2].co );
copy_v3_v3 ( &co[2*3], x[tface->v3].co );
if ( tface->v4 )
copy_v3_v3 ( &co[3*3], x[tface->v4].co );
BLI_bvhtree_insert ( tree, i, co, ( mfaces->v4 ? 4 : 3 ) );
}
// balance tree
BLI_bvhtree_balance ( tree );
return tree;
}
void bvhtree_update_from_mvert ( BVHTree * bvhtree, MFace *faces, int numfaces, MVert *x, MVert *xnew, int UNUSED(numverts), int moving )
{
int i;
MFace *mfaces = faces;
float co[12], co_moving[12];
int ret = 0;
if ( !bvhtree )
return;
if ( x )
{
for ( i = 0; i < numfaces; i++, mfaces++ )
{
copy_v3_v3 ( &co[0*3], x[mfaces->v1].co );
copy_v3_v3 ( &co[1*3], x[mfaces->v2].co );
copy_v3_v3 ( &co[2*3], x[mfaces->v3].co );
if ( mfaces->v4 )
copy_v3_v3 ( &co[3*3], x[mfaces->v4].co );
// copy new locations into array
if ( moving && xnew )
{
// update moving positions
copy_v3_v3 ( &co_moving[0*3], xnew[mfaces->v1].co );
copy_v3_v3 ( &co_moving[1*3], xnew[mfaces->v2].co );
copy_v3_v3 ( &co_moving[2*3], xnew[mfaces->v3].co );
if ( mfaces->v4 )
copy_v3_v3 ( &co_moving[3*3], xnew[mfaces->v4].co );
ret = BLI_bvhtree_update_node ( bvhtree, i, co, co_moving, ( mfaces->v4 ? 4 : 3 ) );
}
else
{
ret = BLI_bvhtree_update_node ( bvhtree, i, co, NULL, ( mfaces->v4 ? 4 : 3 ) );
}
// check if tree is already full
if ( !ret )
break;
}
BLI_bvhtree_update_tree ( bvhtree );
}
}
/***********************************
Collision modifier code end
***********************************/
/**
* gsl_poly_solve_cubic -
*
* copied from SOLVE_CUBIC.C --> GSL
*/
#define mySWAP(a,b) do { double tmp = b ; b = a ; a = tmp ; } while(0)
#if 0 /* UNUSED */
static int
gsl_poly_solve_cubic (double a, double b, double c,
double *x0, double *x1, double *x2)
{
double q = (a * a - 3 * b);
double r = (2 * a * a * a - 9 * a * b + 27 * c);
double Q = q / 9;
double R = r / 54;
double Q3 = Q * Q * Q;
double R2 = R * R;
double CR2 = 729 * r * r;
double CQ3 = 2916 * q * q * q;
if (R == 0 && Q == 0)
{
2012-02-27 10:35:39 +00:00
*x0 = - a / 3;
*x1 = - a / 3;
*x2 = - a / 3;
return 3;
}
else if (CR2 == CQ3)
{
/* this test is actually R2 == Q3, written in a form suitable
for exact computation with integers */
/* Due to finite precision some double roots may be missed, and
considered to be a pair of complex roots z = x +/- epsilon i
close to the real axis. */
double sqrtQ = sqrt (Q);
if (R > 0)
{
*x0 = -2 * sqrtQ - a / 3;
*x1 = sqrtQ - a / 3;
*x2 = sqrtQ - a / 3;
}
else
{
*x0 = - sqrtQ - a / 3;
*x1 = - sqrtQ - a / 3;
*x2 = 2 * sqrtQ - a / 3;
}
2012-02-27 10:35:39 +00:00
return 3;
}
else if (CR2 < CQ3) /* equivalent to R2 < Q3 */
{
double sqrtQ = sqrt (Q);
double sqrtQ3 = sqrtQ * sqrtQ * sqrtQ;
double theta = acos (R / sqrtQ3);
double norm = -2 * sqrtQ;
*x0 = norm * cos (theta / 3) - a / 3;
*x1 = norm * cos ((theta + 2.0 * M_PI) / 3) - a / 3;
*x2 = norm * cos ((theta - 2.0 * M_PI) / 3) - a / 3;
/* Sort *x0, *x1, *x2 into increasing order */
if (*x0 > *x1)
2012-02-27 10:35:39 +00:00
mySWAP(*x0, *x1);
if (*x1 > *x2)
{
2012-02-27 10:35:39 +00:00
mySWAP(*x1, *x2);
if (*x0 > *x1)
2012-02-27 10:35:39 +00:00
mySWAP(*x0, *x1);
}
return 3;
}
else
{
double sgnR = (R >= 0 ? 1 : -1);
double A = -sgnR * pow (fabs (R) + sqrt (R2 - Q3), 1.0/3.0);
2012-02-27 10:35:39 +00:00
double B = Q / A;
*x0 = A + B - a / 3;
return 1;
}
}
/**
* gsl_poly_solve_quadratic
*
* copied from GSL
*/
static int
gsl_poly_solve_quadratic (double a, double b, double c,
double *x0, double *x1)
{
double disc = b * b - 4 * a * c;
if (a == 0) /* Handle linear case */
{
if (b == 0)
{
return 0;
}
else
{
*x0 = -c / b;
return 1;
};
}
if (disc > 0)
{
if (b == 0)
{
double r = fabs (0.5 * sqrt (disc) / a);
*x0 = -r;
*x1 = r;
}
else
{
double sgnb = (b > 0 ? 1 : -1);
double temp = -0.5 * (b + sgnb * sqrt (disc));
2012-02-27 10:35:39 +00:00
double r1 = temp / a;
double r2 = c / temp;
if (r1 < r2)
{
2012-02-27 10:35:39 +00:00
*x0 = r1;
*x1 = r2;
}
else
{
2012-02-27 10:35:39 +00:00
*x0 = r2;
*x1 = r1;
}
}
return 2;
}
else if (disc == 0)
{
2012-02-27 10:35:39 +00:00
*x0 = -0.5 * b / a;
*x1 = -0.5 * b / a;
return 2;
}
else
{
return 0;
}
}
#endif /* UNUSED */
/*
* See Bridson et al. "Robust Treatment of Collision, Contact and Friction for Cloth Animation"
* page 4, left column
*/
#if 0
static int cloth_get_collision_time ( double a[3], double b[3], double c[3], double d[3], double e[3], double f[3], double solution[3] )
{
int num_sols = 0;
// x^0 - checked
double g = a[0] * c[1] * e[2] - a[0] * c[2] * e[1] +
a[1] * c[2] * e[0] - a[1] * c[0] * e[2] +
a[2] * c[0] * e[1] - a[2] * c[1] * e[0];
// x^1
double h = -b[2] * c[1] * e[0] + b[1] * c[2] * e[0] - a[2] * d[1] * e[0] +
a[1] * d[2] * e[0] + b[2] * c[0] * e[1] - b[0] * c[2] * e[1] +
a[2] * d[0] * e[1] - a[0] * d[2] * e[1] - b[1] * c[0] * e[2] +
b[0] * c[1] * e[2] - a[1] * d[0] * e[2] + a[0] * d[1] * e[2] -
a[2] * c[1] * f[0] + a[1] * c[2] * f[0] + a[2] * c[0] * f[1] -
a[0] * c[2] * f[1] - a[1] * c[0] * f[2] + a[0] * c[1] * f[2];
// x^2
double i = -b[2] * d[1] * e[0] + b[1] * d[2] * e[0] +
b[2] * d[0] * e[1] - b[0] * d[2] * e[1] -
b[1] * d[0] * e[2] + b[0] * d[1] * e[2] -
b[2] * c[1] * f[0] + b[1] * c[2] * f[0] -
a[2] * d[1] * f[0] + a[1] * d[2] * f[0] +
b[2] * c[0] * f[1] - b[0] * c[2] * f[1] +
a[2] * d[0] * f[1] - a[0] * d[2] * f[1] -
b[1] * c[0] * f[2] + b[0] * c[1] * f[2] -
a[1] * d[0] * f[2] + a[0] * d[1] * f[2];
// x^3 - checked
double j = -b[2] * d[1] * f[0] + b[1] * d[2] * f[0] +
b[2] * d[0] * f[1] - b[0] * d[2] * f[1] -
b[1] * d[0] * f[2] + b[0] * d[1] * f[2];
/*
printf("r1: %lf\n", a[0] * c[1] * e[2] - a[0] * c[2] * e[1]);
printf("r2: %lf\n", a[1] * c[2] * e[0] - a[1] * c[0] * e[2]);
printf("r3: %lf\n", a[2] * c[0] * e[1] - a[2] * c[1] * e[0]);
printf("x1 x: %f, y: %f, z: %f\n", a[0], a[1], a[2]);
printf("x2 x: %f, y: %f, z: %f\n", c[0], c[1], c[2]);
printf("x3 x: %f, y: %f, z: %f\n", e[0], e[1], e[2]);
printf("v1 x: %f, y: %f, z: %f\n", b[0], b[1], b[2]);
printf("v2 x: %f, y: %f, z: %f\n", d[0], d[1], d[2]);
printf("v3 x: %f, y: %f, z: %f\n", f[0], f[1], f[2]);
printf("t^3: %lf, t^2: %lf, t^1: %lf, t^0: %lf\n", j, i, h, g);
*/
// Solve cubic equation to determine times t1, t2, t3, when the collision will occur.
if ( ABS ( j ) > DBL_EPSILON )
{
i /= j;
h /= j;
g /= j;
num_sols = gsl_poly_solve_cubic ( i, h, g, &solution[0], &solution[1], &solution[2] );
}
else
{
num_sols = gsl_poly_solve_quadratic ( i, h, g, &solution[0], &solution[1] );
solution[2] = -1.0;
}
// printf("num_sols: %d, sol1: %lf, sol2: %lf, sol3: %lf\n", num_sols, solution[0], solution[1], solution[2]);
// Discard negative solutions
if ( ( num_sols >= 1 ) && ( solution[0] < DBL_EPSILON ) )
{
--num_sols;
solution[0] = solution[num_sols];
}
if ( ( num_sols >= 2 ) && ( solution[1] < DBL_EPSILON ) )
{
--num_sols;
solution[1] = solution[num_sols];
}
if ( ( num_sols == 3 ) && ( solution[2] < DBL_EPSILON ) )
{
--num_sols;
}
// Sort
if ( num_sols == 2 )
{
if ( solution[0] > solution[1] )
{
double tmp = solution[0];
solution[0] = solution[1];
solution[1] = tmp;
}
}
else if ( num_sols == 3 )
{
// Bubblesort
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
if ( solution[1] > solution[2] )
{
double tmp = solution[1]; solution[1] = solution[2]; solution[2] = tmp;
}
if ( solution[0] > solution[1] )
{
double tmp = solution[0]; solution[0] = solution[1]; solution[1] = tmp;
}
}
return num_sols;
}
#endif
// w3 is not perfect
static void collision_compute_barycentric ( float pv[3], float p1[3], float p2[3], float p3[3], float *w1, float *w2, float *w3 )
{
double tempV1[3], tempV2[3], tempV4[3];
double a,b,c,d,e,f;
VECSUB ( tempV1, p1, p3 );
VECSUB ( tempV2, p2, p3 );
VECSUB ( tempV4, pv, p3 );
a = INPR ( tempV1, tempV1 );
b = INPR ( tempV1, tempV2 );
c = INPR ( tempV2, tempV2 );
e = INPR ( tempV1, tempV4 );
f = INPR ( tempV2, tempV4 );
d = ( a * c - b * b );
2011-11-11 12:00:08 +00:00
if ( ABS ( d ) < (double)ALMOST_ZERO )
{
*w1 = *w2 = *w3 = 1.0 / 3.0;
return;
}
w1[0] = ( float ) ( ( e * c - b * f ) / d );
if ( w1[0] < 0 )
w1[0] = 0;
w2[0] = ( float ) ( ( f - b * ( double ) w1[0] ) / c );
if ( w2[0] < 0 )
w2[0] = 0;
w3[0] = 1.0f - w1[0] - w2[0];
}
DO_INLINE void collision_interpolateOnTriangle ( float to[3], float v1[3], float v2[3], float v3[3], double w1, double w2, double w3 )
{
2012-03-23 20:18:09 +00:00
zero_v3(to);
VECADDMUL(to, v1, w1);
VECADDMUL(to, v2, w2);
VECADDMUL(to, v3, w3);
}
#ifndef WITH_ELTOPO
static int cloth_collision_response_static ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle static collisions here
if ( collpair->flag & COLLISION_IN_FUTURE )
continue;
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3 ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = dot_v3v3( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
// calculate tangential velocity
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
sub_v3_v3v3 ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01f * magrelVel, sqrtf( dot_v3v3( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
2011-11-11 12:00:08 +00:00
impulse = magtangent / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // 2.0 *
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
2011-11-11 12:00:08 +00:00
d = clmd->coll_parms->epsilon*8.0f/9.0f + epsilon2*8.0f/9.0f - collpair->distance;
if ( ( magrelVel < 0.1f*d*spf ) && ( d > ALMOST_ZERO ) )
{
2011-11-11 12:00:08 +00:00
repulse = MIN2 ( d*1.0f/spf, 0.1f*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
2011-11-11 12:00:08 +00:00
impulse = repulse / ( 1.0f + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
result = 1;
}
}
return result;
}
#endif /* !WITH_ELTOPO */
#ifdef WITH_ELTOPO
typedef struct edgepairkey {
int a1, a2, b1, b2;
} edgepairkey;
unsigned int edgepair_hash(void *vkey)
{
edgepairkey *key = vkey;
int keys[4] = {key->a1, key->a2, key->b1, key->b2};
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<3; j++) {
if (keys[j] >= keys[j+1]) {
SWAP(int, keys[j], keys[j+1]);
}
}
}
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
}
int edgepair_cmp(const void *va, const void *vb)
{
edgepairkey *a = va, *b = vb;
int keysa[4] = {a->a1, a->a2, a->b1, a->b2};
int keysb[4] = {b->a1, b->a2, b->b1, b->b2};
int i;
for (i=0; i<4; i++) {
int j, ok=0;
for (j=0; j<4; j++) {
if (keysa[i] == keysa[j]) {
ok = 1;
break;
}
}
if (!ok)
return -1;
}
return 0;
}
static void get_edgepairkey(edgepairkey *key, int a1, int a2, int b1, int b2)
{
key->a1 = a1;
key->a2 = a2;
key->b1 = b1;
key->b2 = b2;
}
/*an immense amount of duplication goes on here. . .a major performance hit, I'm sure*/
static CollPair* cloth_edge_collision ( ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair,
GHash *visithash, MemArena *arena)
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
edgepairkey *key, tstkey;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float no[3], uv[3], t, relnor;
int i, i1, i2, i3, i4, i5, i6;
Cloth *cloth = clmd->clothObject;
float n1[3], n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
void **verts[] = {v1, v2, v3, v4, v5, v6};
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3, table[6];
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else {
continue;
}
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
/*offset new positions a bit, to account for margins*/
i1 = ap1; i2 = ap2; i3 = ap3;
i4 = bp1; i5 = bp2; i6 = bp3;
for (j=0; j<3; j++) {
int collp1, collp2, k, j2 = (j+1)%3;
table[0] = ap1; table[1] = ap2; table[2] = ap3;
table[3] = bp1; table[4] = bp2; table[5] = bp3;
for (k=0; k<3; k++) {
float p1[3], p2[3];
int k2 = (k+1)%3;
get_edgepairkey(&tstkey, table[j], table[j2], table[k+3], table[k2+3]);
//if (BLI_ghash_haskey(visithash, &tstkey))
// continue;
key = BLI_memarena_alloc(arena, sizeof(edgepairkey));
*key = tstkey;
BLI_ghash_insert(visithash, key, NULL);
sub_v3_v3v3(p1, verts[j], verts[j2]);
sub_v3_v3v3(p2, verts[k+3], verts[k2+3]);
cross_v3_v3v3(off, p1, p2);
normalize_v3(off);
if (dot_v3v3(n2, off) < 0.0)
negate_v3(off);
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
copy_v3_v3(p1, verts[k+3]);
copy_v3_v3(p2, verts[k2+3]);
add_v3_v3(p1, off);
add_v3_v3(p2, off);
ret = eltopo_line_line_moving_isect_v3v3_f(verts[j], table[j], verts[j2], table[j2],
p1, table[k+3], p2, table[k2+3],
no, uv, &t, &relnor);
/*cloth vert versus coll face*/
if (ret) {
collpair->ap1 = table[j]; collpair->ap2 = table[j2];
collpair->bp1 = table[k+3]; collpair->bp2 = table[k2+3];
/*I'm not sure if this is correct, but hopefully it's
better then simply ignoring back edges*/
if (dot_v3v3(n2, no) < 0.0) {
negate_v3(no);
}
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v2_v2(collpair->bary, uv);
collpair->flag = COLLISION_IS_EDGES;
collpair++;
}
}
}
}
return collpair;
}
static int cloth_edge_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel, pimpulse[3];
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
if (!(collpair->flag & COLLISION_IS_EDGES))
continue;
// was: txold
w1 = collpair->bary[0]; w2 = collpair->bary[1];
// Calculate relative "velocity".
VECADDFAC(v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, w1);
VECADDFAC(v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, w2);
sub_v3_v3v3 ( relativeVelocity, v2, v1);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = dot_v3v3 ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
zero_v3(pimpulse);
// calculate tangential velocity
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
sub_v3_v3v3 ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( dot_v3v3 ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent;
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel;
mul_v3_fl(collpair->normal, 0.5);
VECADDMUL ( pimpulse, collpair->normal, impulse);
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = collpair->distance;
if ( ( magrelVel < 0.1*d*spf && ( d > ALMOST_ZERO ) ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
VECADDMUL ( pimpulse, collpair->normal, impulse);
}
w2 = 1.0f-w1;
if (w1 < 0.5)
w1 *= 2.0;
else
w2 *= 2.0;
VECADDFAC(cloth1->verts[collpair->ap1].impulse, cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
VECADDFAC(cloth1->verts[collpair->ap2].impulse, cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
result = 1;
}
}
return result;
}
static int cloth_collision_response_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
if (collpair->flag & COLLISION_IS_EDGES)
continue;
if ( collpair->flag & COLLISION_USE_COLLFACE ) {
// was: txold
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, w1, w2, w3);
sub_v3_v3v3 ( relativeVelocity, v1, cloth1->verts[collpair->collp].tv);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = dot_v3v3 ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3], spf;
// calculate tangential velocity
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
sub_v3_v3v3 ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( dot_v3v3 ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent; // 2.0 *
VECADDMUL ( cloth1->verts[collpair->collp].impulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel/2.0;
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
cloth1->verts[collpair->collp].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = -collpair->distance;
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 5.0 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->collp].impulse, collpair->normal, impulse);
}
result = 1;
}
} else {
w1 = collpair->bary[0]; w2 = collpair->bary[1]; w3 = collpair->bary[2];
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
sub_v3_v3v3 ( relativeVelocity, collmd->current_v[collpair->collp].co, v1);
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = dot_v3v3 ( relativeVelocity, collpair->normal );
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0, repulse = 0, d = 0;
double impulse = 0.0;
float vrel_t_pre[3], pimpulse[3] = {0.0f, 0.0f, 0.0f};
float temp[3], spf;
// calculate tangential velocity
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
sub_v3_v3v3 ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( dot_v3v3 ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = magtangent; // 2.0 *
VECADDMUL ( pimpulse, vrel_t_pre, impulse);
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel/2.0;
VECADDMUL ( pimpulse, collpair->normal, impulse);
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
d = -collpair->distance;
if ( ( magrelVel < 0.1*d*spf ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/spf, 0.1*d*spf - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 2.0 ); // original 2.0 / 0.25
VECADDMUL ( pimpulse, collpair->normal, impulse);
}
if (w1 < 0.5) w1 *= 2.0;
if (w2 < 0.5) w2 *= 2.0;
if (w3 < 0.5) w3 *= 2.0;
VECADDMUL(cloth1->verts[collpair->ap1].impulse, pimpulse, w1*2.0);
VECADDMUL(cloth1->verts[collpair->ap2].impulse, pimpulse, w2*2.0);
2011-08-31 01:07:55 +00:00
VECADDMUL(cloth1->verts[collpair->ap3].impulse, pimpulse, w3*2.0);
cloth1->verts[collpair->ap1].impulse_count++;
cloth1->verts[collpair->ap2].impulse_count++;
cloth1->verts[collpair->ap3].impulse_count++;
result = 1;
}
}
}
return result;
}
typedef struct tripairkey {
int p, a1, a2, a3;
} tripairkey;
unsigned int tripair_hash(void *vkey)
{
tripairkey *key = vkey;
int keys[4] = {key->p, key->a1, key->a2, key->a3};
int i, j;
for (i=0; i<4; i++) {
for (j=0; j<3; j++) {
if (keys[j] >= keys[j+1]) {
SWAP(int, keys[j], keys[j+1]);
}
}
}
return keys[0]*101 + keys[1]*72 + keys[2]*53 + keys[3]*34;
}
int tripair_cmp(const void *va, const void *vb)
{
tripairkey *a = va, *b = vb;
int keysa[4] = {a->p, a->a1, a->a2, a->a3};
int keysb[4] = {b->p, b->a1, b->a2, b->a3};
int i;
for (i=0; i<4; i++) {
int j, ok=0;
for (j=0; j<4; j++) {
if (keysa[i] == keysa[j]) {
ok = 1;
break;
}
}
if (!ok)
return -1;
}
return 0;
}
static void get_tripairkey(tripairkey *key, int p, int a1, int a2, int a3)
{
key->a1 = a1;
key->a2 = a2;
key->a3 = a3;
key->p = p;
}
static int checkvisit(MemArena *arena, GHash *gh, int p, int a1, int a2, int a3)
{
tripairkey key, *key2;
get_tripairkey(&key, p, a1, a2, a3);
if (BLI_ghash_haskey(gh, &key))
return 1;
key2 = BLI_memarena_alloc(arena, sizeof(*key2));
*key2 = key;
BLI_ghash_insert(gh, key2, NULL);
return 0;
}
int cloth_point_tri_moving_v3v3_f(float v1[2][3], int i1, float v2[2][3], int i2,
float v3[2][3], int i3, float v4[2][3], int i4,
float normal[3], float bary[3], float *t,
float *relnor, GHash *gh, MemArena *arena)
{
if (checkvisit(arena, gh, i1, i2, i3, i4))
return 0;
return eltopo_point_tri_moving_v3v3_f(v1, i1, v2, i2, v3, i3, v4, i4, normal, bary, t, relnor);
}
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2, BVHTreeOverlap *overlap,
CollPair *collpair, double dt, GHash *gh, MemArena *arena)
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
MFace *face1=NULL, *face2 = NULL;
ClothVertex *verts1 = clmd->clothObject->verts;
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float no[3], uv[3], t, relnor;
int i, i1, i2, i3, i4, i5, i6;
Cloth *cloth = clmd->clothObject;
float n1[3], sdis, p[3], l, n2[3], off[3], v1[2][3], v2[2][3], v3[2][3], v4[2][3], v5[2][3], v6[2][3];
int j, ret, bp1, bp2, bp3, ap1, ap2, ap3;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v2;
bp3 = face2->v3;
}
else {
continue;
}
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v2;
ap3 = face1->v3;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
ap1 = face1->v1;
ap2 = face1->v3;
ap3 = face1->v4;
// fill faceB
bp1 = face2->v1;
bp2 = face2->v3;
bp3 = face2->v4;
}
else {
continue;
}
}
copy_v3_v3(v1[0], cloth->verts[ap1].txold);
copy_v3_v3(v1[1], cloth->verts[ap1].tx);
copy_v3_v3(v2[0], cloth->verts[ap2].txold);
copy_v3_v3(v2[1], cloth->verts[ap2].tx);
copy_v3_v3(v3[0], cloth->verts[ap3].txold);
copy_v3_v3(v3[1], cloth->verts[ap3].tx);
copy_v3_v3(v4[0], collmd->current_x[bp1].co);
copy_v3_v3(v4[1], collmd->current_xnew[bp1].co);
copy_v3_v3(v5[0], collmd->current_x[bp2].co);
copy_v3_v3(v5[1], collmd->current_xnew[bp2].co);
copy_v3_v3(v6[0], collmd->current_x[bp3].co);
copy_v3_v3(v6[1], collmd->current_xnew[bp3].co);
normal_tri_v3(n2, v4[1], v5[1], v6[1]);
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
/*apply a repulsion force, to help the solver along*/
copy_v3_v3(off, n2);
negate_v3(off);
if (isect_ray_plane_v3(v1[1], off, v4[1], v5[1], v6[1], &l, 0)) {
if (l >= 0.0 && l < sdis) {
mul_v3_fl(off, (l-sdis)*cloth->verts[ap1].mass*dt*clmd->coll_parms->repel_force*0.1);
add_v3_v3(cloth->verts[ap1].tv, off);
add_v3_v3(cloth->verts[ap2].tv, off);
add_v3_v3(cloth->verts[ap3].tv, off);
}
}
/*offset new positions a bit, to account for margins*/
copy_v3_v3(off, n2);
mul_v3_fl(off, epsilon1 + epsilon2 + ALMOST_ZERO);
add_v3_v3(v4[1], off); add_v3_v3(v5[1], off); add_v3_v3(v6[1], off);
i1 = ap1; i2 = ap2; i3 = ap3;
i4 = bp1+cloth->numverts; i5 = bp2+cloth->numverts; i6 = bp3+cloth->numverts;
for (j=0; j<6; j++) {
int collp;
switch (j) {
case 0:
ret = cloth_point_tri_moving_v3v3_f(v1, i1, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
collp = ap1;
break;
case 1:
collp = ap2;
ret = cloth_point_tri_moving_v3v3_f(v2, i2, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
break;
case 2:
collp = ap3;
ret = cloth_point_tri_moving_v3v3_f(v3, i3, v4, i4, v5, i5, v6, i6, no, uv, &t, &relnor, gh, arena);
break;
case 3:
collp = bp1;
ret = cloth_point_tri_moving_v3v3_f(v4, i4, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
case 4:
collp = bp2;
ret = cloth_point_tri_moving_v3v3_f(v5, i5, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
case 5:
collp = bp3;
ret = cloth_point_tri_moving_v3v3_f(v6, i6, v1, i1, v2, i2, v3, i3, no, uv, &t, &relnor, gh, arena);
break;
}
/*cloth vert versus coll face*/
if (ret && j < 3) {
collpair->bp1 = bp1; collpair->bp2 = bp2; collpair->bp3 = bp3;
collpair->collp = collp;
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v3_v3(collpair->bary, uv);
collpair->flag = COLLISION_USE_COLLFACE;
collpair++;
} else if (ret && j >= 3) { /*coll vert versus cloth face*/
collpair->ap1 = ap1; collpair->ap2 = ap2; collpair->ap3 = ap3;
collpair->collp = collp;
copy_v3_v3(collpair->normal, no);
mul_v3_v3fl(collpair->vector, collpair->normal, relnor);
collpair->distance = relnor;
collpair->time = t;
copy_v3_v3(collpair->bary, uv);
collpair->flag = 0;
collpair++;
}
}
}
return collpair;
}
static void machine_epsilon_offset(Cloth *cloth)
{
ClothVertex *cv;
int i, j;
cv = cloth->verts;
for (i=0; i<cloth->numverts; i++, cv++) {
2012-03-01 12:20:18 +00:00
/*aggrevatingly enough, it's necessary to offset the coordinates
by a multiple of the 32-bit floating point epsilon when switching
into doubles*/
#define RNDSIGN (float)(-1*(BLI_rand()%2==0)|1)
for (j=0; j<3; j++) {
cv->tx[j] += FLT_EPSILON*30.0f*RNDSIGN;
cv->txold[j] += FLT_EPSILON*30.0f*RNDSIGN;
cv->tv[j] += FLT_EPSILON*30.0f*RNDSIGN;
}
}
}
#else /* !WITH_ELTOPO */
//Determines collisions on overlap, collisions are written to collpair[i] and collision+number_collision_found is returned
static CollPair* cloth_collision ( ModifierData *md1, ModifierData *md2,
BVHTreeOverlap *overlap, CollPair *collpair, float dt )
{
ClothModifierData *clmd = ( ClothModifierData * ) md1;
CollisionModifierData *collmd = ( CollisionModifierData * ) md2;
Cloth *cloth = clmd->clothObject;
MFace *face1=NULL, *face2 = NULL;
#ifdef USE_BULLET
ClothVertex *verts1 = clmd->clothObject->verts;
#endif
double distance = 0;
float epsilon1 = clmd->coll_parms->epsilon;
float epsilon2 = BLI_bvhtree_getepsilon ( collmd->bvhtree );
float n2[3], sdis, l;
int i;
face1 = & ( clmd->clothObject->mfaces[overlap->indexA] );
face2 = & ( collmd->mfaces[overlap->indexB] );
// check all 4 possible collisions
for ( i = 0; i < 4; i++ )
{
if ( i == 0 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else if ( i == 1 )
{
if ( face1->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v2;
collpair->bp3 = face2->v3;
}
else
i++;
}
if ( i == 2 )
{
if ( face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v2;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
else if ( i == 3 )
{
if ( face1->v4 && face2->v4 )
{
// fill faceA
collpair->ap1 = face1->v1;
collpair->ap2 = face1->v4;
collpair->ap3 = face1->v3;
// fill faceB
collpair->bp1 = face2->v1;
collpair->bp2 = face2->v4;
collpair->bp3 = face2->v3;
}
else
break;
}
normal_tri_v3(n2, collmd->current_xnew[collpair->bp1].co,
collmd->current_xnew[collpair->bp2].co,
collmd->current_xnew[collpair->bp3].co);
sdis = clmd->coll_parms->distance_repel + epsilon2 + FLT_EPSILON;
/* apply a repulsion force, to help the solver along.
* this is kindof crude, it only tests one vert of the triangle */
if (isect_ray_plane_v3(cloth->verts[collpair->ap1].tx, n2, collmd->current_xnew[collpair->bp1].co,
collmd->current_xnew[collpair->bp2].co,
collmd->current_xnew[collpair->bp3].co, &l, 0))
{
2011-11-11 12:00:08 +00:00
if (l >= 0.0f && l < sdis) {
mul_v3_fl(n2, (l-sdis)*cloth->verts[collpair->ap1].mass*dt*clmd->coll_parms->repel_force*0.1f);
add_v3_v3(cloth->verts[collpair->ap1].tv, n2);
add_v3_v3(cloth->verts[collpair->ap2].tv, n2);
add_v3_v3(cloth->verts[collpair->ap3].tv, n2);
}
}
#ifdef USE_BULLET
// calc distance + normal
distance = plNearestPoints (
verts1[collpair->ap1].txold, verts1[collpair->ap2].txold, verts1[collpair->ap3].txold, collmd->current_x[collpair->bp1].co, collmd->current_x[collpair->bp2].co, collmd->current_x[collpair->bp3].co, collpair->pa,collpair->pb,collpair->vector );
#else
// just be sure that we don't add anything
2011-11-11 12:00:08 +00:00
distance = 2.0 * (double)( epsilon1 + epsilon2 + ALMOST_ZERO );
#endif
if ( distance <= ( epsilon1 + epsilon2 + ALMOST_ZERO ) )
{
2010-08-15 15:14:08 +00:00
normalize_v3_v3( collpair->normal, collpair->vector );
collpair->distance = distance;
collpair->flag = 0;
2008-06-05 10:52:52 +00:00
collpair++;
}/*
else
{
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
// calc relative velocity
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
verts1[collpair->ap1].txold,
verts1[collpair->ap2].txold,
verts1[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, verts1[collpair->ap1].tv, verts1[collpair->ap2].tv, verts1[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3 ( relativeVelocity, v2, v1 );
if(sqrt(dot_v3v3(relativeVelocity, relativeVelocity)) >= distance)
{
// check for collision in the future
collpair->flag |= COLLISION_IN_FUTURE;
2008-06-05 10:52:52 +00:00
collpair++;
}
2008-06-05 10:52:52 +00:00
}*/
}
return collpair;
}
#endif /* WITH_ELTOPO */
#if 0
static int cloth_collision_response_moving( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
int result = 0;
Cloth *cloth1;
float w1, w2, w3, u1, u2, u3;
float v1[3], v2[3], relativeVelocity[3];
float magrelVel;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// compute barycentric coordinates for both collision points
collision_compute_barycentric ( collpair->pa,
cloth1->verts[collpair->ap1].txold,
cloth1->verts[collpair->ap2].txold,
cloth1->verts[collpair->ap3].txold,
&w1, &w2, &w3 );
// was: txold
collision_compute_barycentric ( collpair->pb,
collmd->current_x[collpair->bp1].co,
collmd->current_x[collpair->bp2].co,
collmd->current_x[collpair->bp3].co,
&u1, &u2, &u3 );
// Calculate relative "velocity".
collision_interpolateOnTriangle ( v1, cloth1->verts[collpair->ap1].tv, cloth1->verts[collpair->ap2].tv, cloth1->verts[collpair->ap3].tv, w1, w2, w3 );
collision_interpolateOnTriangle ( v2, collmd->current_v[collpair->bp1].co, collmd->current_v[collpair->bp2].co, collmd->current_v[collpair->bp3].co, u1, u2, u3 );
sub_v3_v3v3 ( relativeVelocity, v2, v1 );
// Calculate the normal component of the relative velocity (actually only the magnitude - the direction is stored in 'normal').
magrelVel = dot_v3v3 ( relativeVelocity, collpair->normal );
// printf("magrelVel: %f\n", magrelVel);
// Calculate masses of points.
// TODO
// If v_n_mag < 0 the edges are approaching each other.
if ( magrelVel > ALMOST_ZERO )
{
// Calculate Impulse magnitude to stop all motion in normal direction.
float magtangent = 0;
double impulse = 0.0;
float vrel_t_pre[3];
float temp[3];
// calculate tangential velocity
copy_v3_v3 ( temp, collpair->normal );
mul_v3_fl( temp, magrelVel );
sub_v3_v3v3 ( vrel_t_pre, relativeVelocity, temp );
// Decrease in magnitude of relative tangential velocity due to coulomb friction
// in original formula "magrelVel" should be the "change of relative velocity in normal direction"
magtangent = MIN2 ( clmd->coll_parms->friction * 0.01 * magrelVel,sqrt ( dot_v3v3 ( vrel_t_pre,vrel_t_pre ) ) );
// Apply friction impulse.
if ( magtangent > ALMOST_ZERO )
{
normalize_v3( vrel_t_pre );
impulse = 2.0 * magtangent / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, vrel_t_pre, w1 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, vrel_t_pre, w2 * impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, vrel_t_pre, w3 * impulse );
}
// Apply velocity stopping impulse
// I_c = m * v_N / 2.0
// no 2.0 * magrelVel normally, but looks nicer DG
impulse = magrelVel / ( 1.0 + w1*w1 + w2*w2 + w3*w3 );
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, w1 * impulse );
cloth1->verts[collpair->ap1].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, w2 * impulse );
cloth1->verts[collpair->ap2].impulse_count++;
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, w3 * impulse );
cloth1->verts[collpair->ap3].impulse_count++;
// Apply repulse impulse if distance too short
// I_r = -min(dt*kd, m(0,1d/dt - v_n))
/*
d = clmd->coll_parms->epsilon*8.0/9.0 + epsilon2*8.0/9.0 - collpair->distance;
if ( ( magrelVel < 0.1*d*clmd->sim_parms->stepsPerFrame ) && ( d > ALMOST_ZERO ) )
{
repulse = MIN2 ( d*1.0/clmd->sim_parms->stepsPerFrame, 0.1*d*clmd->sim_parms->stepsPerFrame - magrelVel );
// stay on the safe side and clamp repulse
if ( impulse > ALMOST_ZERO )
repulse = MIN2 ( repulse, 5.0*impulse );
repulse = MAX2 ( impulse, repulse );
impulse = repulse / ( 1.0 + w1*w1 + w2*w2 + w3*w3 ); // original 2.0 / 0.25
VECADDMUL ( cloth1->verts[collpair->ap1].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap2].impulse, collpair->normal, impulse );
VECADDMUL ( cloth1->verts[collpair->ap3].impulse, collpair->normal, impulse );
}
*/
result = 1;
}
}
return result;
}
#endif
#if 0
static float projectPointOntoLine(float *p, float *a, float *b)
{
float ba[3], pa[3];
sub_v3_v3v3(ba, b, a);
sub_v3_v3v3(pa, p, a);
return dot_v3v3(pa, ba) / dot_v3v3(ba, ba);
}
static void calculateEENormal(float *np1, float *np2, float *np3, float *np4,float *out_normal)
{
float line1[3], line2[3];
float length;
sub_v3_v3v3(line1, np2, np1);
sub_v3_v3v3(line2, np3, np1);
// printf("l1: %f, l1: %f, l2: %f, l2: %f\n", line1[0], line1[1], line2[0], line2[1]);
cross_v3_v3v3(out_normal, line1, line2);
length = normalize_v3(out_normal);
if (length <= FLT_EPSILON)
{ // lines are collinear
sub_v3_v3v3(out_normal, np2, np1);
normalize_v3(out_normal);
}
}
static void findClosestPointsEE(float *x1, float *x2, float *x3, float *x4, float *w1, float *w2)
{
float temp[3], temp2[3];
double a, b, c, e, f;
sub_v3_v3v3(temp, x2, x1);
a = dot_v3v3(temp, temp);
sub_v3_v3v3(temp2, x4, x3);
b = -dot_v3v3(temp, temp2);
c = dot_v3v3(temp2, temp2);
sub_v3_v3v3(temp2, x3, x1);
e = dot_v3v3(temp, temp2);
sub_v3_v3v3(temp, x4, x3);
f = -dot_v3v3(temp, temp2);
*w1 = (e * c - b * f) / (a * c - b * b);
*w2 = (f - b * *w1) / c;
}
// calculates the distance of 2 edges
static float edgedge_distance(float np11[3], float np12[3], float np21[3], float np22[3], float *out_a1, float *out_a2, float *out_normal)
{
float line1[3], line2[3], cross[3];
float length;
float temp[3], temp2[3];
float dist_a1, dist_a2;
sub_v3_v3v3(line1, np12, np11);
sub_v3_v3v3(line2, np22, np21);
cross_v3_v3v3(cross, line1, line2);
length = dot_v3v3(cross, cross);
if (length < FLT_EPSILON)
{
*out_a2 = projectPointOntoLine(np11, np21, np22);
if ((*out_a2 >= -FLT_EPSILON) && (*out_a2 <= 1.0 + FLT_EPSILON))
{
*out_a1 = 0;
calculateEENormal(np11, np12, np21, np22, out_normal);
sub_v3_v3v3(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(temp2, temp, np21);
VECADD(temp2, temp2, np11);
return dot_v3v3(temp2, temp2);
}
CLAMP(*out_a2, 0.0, 1.0);
if (*out_a2 > .5)
{ // == 1.0
*out_a1 = projectPointOntoLine(np22, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (np22 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
sub_v3_v3v3(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp2, temp, np11);
sub_v3_v3v3(temp2, np22, temp2);
return dot_v3v3(temp2, temp2);
}
}
else
{ // == 0.0
*out_a1 = projectPointOntoLine(np21, np11, np12);
if ((*out_a1 >= -FLT_EPSILON) && (*out_a1 <= 1.0 + FLT_EPSILON))
{
calculateEENormal(np11, np11, np21, np22, out_normal);
// return (np21 - (np11 + (np12 - np11) * out_a1)).lengthSquared();
sub_v3_v3v3(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp2, temp, np11);
sub_v3_v3v3(temp2, np21, temp2);
return dot_v3v3(temp2, temp2);
}
}
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
if(*out_a1 > .5)
{
if(*out_a2 > .5)
{
sub_v3_v3v3(temp, np12, np22);
}
else
{
sub_v3_v3v3(temp, np12, np21);
}
}
else
{
if(*out_a2 > .5)
{
sub_v3_v3v3(temp, np11, np22);
}
else
{
sub_v3_v3v3(temp, np11, np21);
}
}
return dot_v3v3(temp, temp);
}
else
{
// If the lines aren't parallel (but coplanar) they have to intersect
findClosestPointsEE(np11, np12, np21, np22, out_a1, out_a2);
// If both points are on the finite edges, we're done.
if (*out_a1 >= 0.0 && *out_a1 <= 1.0 && *out_a2 >= 0.0 && *out_a2 <= 1.0)
{
float p1[3], p2[3];
// p1= np11 + (np12 - np11) * out_a1;
sub_v3_v3v3(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(p1, np11, temp);
// p2 = np21 + (np22 - np21) * out_a2;
sub_v3_v3v3(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(p2, np21, temp);
calculateEENormal(np11, np12, np21, np22, out_normal);
sub_v3_v3v3(temp, p1, p2);
return dot_v3v3(temp, temp);
}
/*
* Clamp both points to the finite edges.
* The one that moves most during clamping is one part of the solution.
*/
dist_a1 = *out_a1;
CLAMP(dist_a1, 0.0, 1.0);
dist_a2 = *out_a2;
CLAMP(dist_a2, 0.0, 1.0);
// Now project the "most clamped" point on the other line.
if (dist_a1 > dist_a2)
{
/* keep out_a1 */
float p1[3];
// p1 = np11 + (np12 - np11) * out_a1;
sub_v3_v3v3(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(p1, np11, temp);
*out_a2 = projectPointOntoLine(p1, np21, np22);
CLAMP(*out_a2, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return (p1 - (np21 + (np22 - np21) * out_a2)).lengthSquared();
sub_v3_v3v3(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(temp, temp, np21);
sub_v3_v3v3(temp, p1, temp);
return dot_v3v3(temp, temp);
}
else
{
/* keep out_a2 */
float p2[3];
// p2 = np21 + (np22 - np21) * out_a2;
sub_v3_v3v3(temp, np22, np21);
mul_v3_fl(temp, *out_a2);
VECADD(p2, np21, temp);
*out_a1 = projectPointOntoLine(p2, np11, np12);
CLAMP(*out_a1, 0.0, 1.0);
calculateEENormal(np11, np12, np21, np22, out_normal);
// return ((np11 + (np12 - np11) * out_a1) - p2).lengthSquared();
sub_v3_v3v3(temp, np12, np11);
mul_v3_fl(temp, *out_a1);
VECADD(temp, temp, np11);
sub_v3_v3v3(temp, temp, p2);
return dot_v3v3(temp, temp);
}
}
printf("Error in edgedge_distance: end of function\n");
return 0;
}
static int cloth_collision_moving_edges ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair )
{
EdgeCollPair edgecollpair;
Cloth *cloth1=NULL;
ClothVertex *verts1=NULL;
unsigned int i = 0, k = 0;
int numsolutions = 0;
double x1[3], v1[3], x2[3], v2[3], x3[3], v3[3];
double solution[3], solution2[3];
MVert *verts2 = collmd->current_x; // old x
MVert *velocity2 = collmd->current_v; // velocity
float distance = 0;
float triA[3][3], triB[3][3];
int result = 0;
cloth1 = clmd->clothObject;
verts1 = cloth1->verts;
for(i = 0; i < 9; i++)
{
// 9 edge - edge possibilities
if(i == 0) // cloth edge: 1-2; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 1) // cloth edge: 1-2; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 2) // cloth edge: 1-2; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap2;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 3) // cloth edge: 2-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i == 4) // cloth edge: 2-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 5) // cloth edge: 2-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap2;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
else if(i ==6) // cloth edge: 1-3; coll edge: 1-2
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp2;
}
else if(i ==7) // cloth edge: 1-3; coll edge: 2-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp2;
edgecollpair.p22 = collpair->bp3;
}
else if(i == 8) // cloth edge: 1-3; coll edge: 1-3
{
edgecollpair.p11 = collpair->ap1;
edgecollpair.p12 = collpair->ap3;
edgecollpair.p21 = collpair->bp1;
edgecollpair.p22 = collpair->bp3;
}
/*
if((edgecollpair.p11 == 3) && (edgecollpair.p12 == 16))
printf("Ahier!\n");
if((edgecollpair.p11 == 16) && (edgecollpair.p12 == 3))
printf("Ahier!\n");
*/
// if ( !cloth_are_edges_adjacent ( clmd, collmd, &edgecollpair ) )
{
// always put coll points in p21/p22
sub_v3_v3v3 ( x1, verts1[edgecollpair.p12].txold, verts1[edgecollpair.p11].txold );
sub_v3_v3v3 ( v1, verts1[edgecollpair.p12].tv, verts1[edgecollpair.p11].tv );
sub_v3_v3v3 ( x2, verts2[edgecollpair.p21].co, verts1[edgecollpair.p11].txold );
sub_v3_v3v3 ( v2, velocity2[edgecollpair.p21].co, verts1[edgecollpair.p11].tv );
sub_v3_v3v3 ( x3, verts2[edgecollpair.p22].co, verts1[edgecollpair.p11].txold );
sub_v3_v3v3 ( v3, velocity2[edgecollpair.p22].co, verts1[edgecollpair.p11].tv );
numsolutions = cloth_get_collision_time ( x1, v1, x2, v2, x3, v3, solution );
if((edgecollpair.p11 == 3 && edgecollpair.p12==16)|| (edgecollpair.p11==16 && edgecollpair.p12==3))
{
if(edgecollpair.p21==6 || edgecollpair.p22 == 6)
{
printf("dist: %f, sol[k]: %f, sol2[k]: %f\n", distance, solution[k], solution2[k]);
printf("a1: %f, a2: %f, b1: %f, b2: %f\n", x1[0], x2[0], x3[0], v1[0]);
printf("b21: %d, b22: %d\n", edgecollpair.p21, edgecollpair.p22);
}
}
for ( k = 0; k < numsolutions; k++ )
{
// printf("sol %d: %lf\n", k, solution[k]);
if ( ( solution[k] >= ALMOST_ZERO ) && ( solution[k] <= 1.0 ) && ( solution[k] > ALMOST_ZERO))
{
float a,b;
float out_normal[3];
float distance;
float impulse = 0;
float I_mag;
// move verts
VECADDS(triA[0], verts1[edgecollpair.p11].txold, verts1[edgecollpair.p11].tv, solution[k]);
VECADDS(triA[1], verts1[edgecollpair.p12].txold, verts1[edgecollpair.p12].tv, solution[k]);
VECADDS(triB[0], collmd->current_x[edgecollpair.p21].co, collmd->current_v[edgecollpair.p21].co, solution[k]);
VECADDS(triB[1], collmd->current_x[edgecollpair.p22].co, collmd->current_v[edgecollpair.p22].co, solution[k]);
// TODO: check for collisions
distance = edgedge_distance(triA[0], triA[1], triB[0], triB[1], &a, &b, out_normal);
if ((distance <= clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree ) + ALMOST_ZERO) && (dot_v3v3(out_normal, out_normal) > 0))
{
float vrel_1_to_2[3], temp[3], temp2[3], out_normalVelocity;
float desiredVn;
copy_v3_v3(vrel_1_to_2, verts1[edgecollpair.p11].tv);
mul_v3_fl(vrel_1_to_2, 1.0 - a);
copy_v3_v3(temp, verts1[edgecollpair.p12].tv);
mul_v3_fl(temp, a);
VECADD(vrel_1_to_2, vrel_1_to_2, temp);
copy_v3_v3(temp, verts1[edgecollpair.p21].tv);
mul_v3_fl(temp, 1.0 - b);
copy_v3_v3(temp2, verts1[edgecollpair.p22].tv);
mul_v3_fl(temp2, b);
VECADD(temp, temp, temp2);
sub_v3_v3v3(vrel_1_to_2, vrel_1_to_2, temp);
out_normalVelocity = dot_v3v3(vrel_1_to_2, out_normal);
/*
// this correction results in wrong normals sometimes?
if(out_normalVelocity < 0.0)
{
out_normalVelocity*= -1.0;
negate_v3(out_normal);
}
*/
/* Inelastic repulsion impulse. */
// Calculate which normal velocity we need.
desiredVn = (out_normalVelocity * (float)solution[k] - (.1 * (clmd->coll_parms->epsilon + BLI_bvhtree_getepsilon ( collmd->bvhtree )) - sqrt(distance)) - ALMOST_ZERO);
// Now calculate what impulse we need to reach that velocity.
I_mag = (out_normalVelocity - desiredVn) / 2.0; // / (1/m1 + 1/m2);
// Finally apply that impulse.
impulse = (2.0 * -I_mag) / (a*a + (1.0-a)*(1.0-a) + b*b + (1.0-b)*(1.0-b));
VECADDMUL ( verts1[edgecollpair.p11].impulse, out_normal, (1.0-a) * impulse );
verts1[edgecollpair.p11].impulse_count++;
VECADDMUL ( verts1[edgecollpair.p12].impulse, out_normal, a * impulse );
verts1[edgecollpair.p12].impulse_count++;
// return true;
result = 1;
break;
}
else
{
// missing from collision.hpp
}
// mintime = MIN2(mintime, (float)solution[k]);
break;
}
}
}
}
return result;
}
static int cloth_collision_moving ( ClothModifierData *clmd, CollisionModifierData *collmd, CollPair *collpair, CollPair *collision_end )
{
Cloth *cloth1;
cloth1 = clmd->clothObject;
for ( ; collpair != collision_end; collpair++ )
{
// only handle moving collisions here
if (!( collpair->flag & COLLISION_IN_FUTURE ))
continue;
cloth_collision_moving_edges ( clmd, collmd, collpair);
// cloth_collision_moving_tris ( clmd, collmd, collpair);
}
return 1;
}
#endif
static void add_collision_object(Object ***objs, unsigned int *numobj, unsigned int *maxobj, Object *ob, Object *self, int level, unsigned int modifier_type)
{
CollisionModifierData *cmd= NULL;
if(ob == self)
return;
/* only get objects with collision modifier */
if(((modifier_type == eModifierType_Collision) && ob->pd && ob->pd->deflect) || (modifier_type != eModifierType_Collision))
cmd= (CollisionModifierData *)modifiers_findByType(ob, modifier_type);
if(cmd) {
/* extend array */
if(*numobj >= *maxobj) {
*maxobj *= 2;
*objs= MEM_reallocN(*objs, sizeof(Object*)*(*maxobj));
}
(*objs)[*numobj] = ob;
(*numobj)++;
}
/* objects in dupli groups, one level only for now */
if(ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
/* add objects */
for(go= group->gobject.first; go; go= go->next)
add_collision_object(objs, numobj, maxobj, go->ob, self, level+1, modifier_type);
}
}
// return all collision objects in scene
// collision object will exclude self
Object **get_collisionobjects(Scene *scene, Object *self, Group *group, unsigned int *numcollobj, unsigned int modifier_type)
{
Base *base;
Object **objs;
GroupObject *go;
unsigned int numobj= 0, maxobj= 100;
objs= MEM_callocN(sizeof(Object *)*maxobj, "CollisionObjectsArray");
/* gather all collision objects */
if(group) {
/* use specified group */
for(go= group->gobject.first; go; go= go->next)
add_collision_object(&objs, &numobj, &maxobj, go->ob, self, 0, modifier_type);
}
else {
Scene *sce_iter;
/* add objects in same layer in scene */
for(SETLOOPER(scene, sce_iter, base)) {
if(base->lay & self->lay)
add_collision_object(&objs, &numobj, &maxobj, base->object, self, 0, modifier_type);
}
}
*numcollobj= numobj;
return objs;
}
static void add_collider_cache_object(ListBase **objs, Object *ob, Object *self, int level)
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
{
CollisionModifierData *cmd= NULL;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
ColliderCache *col;
if(ob == self)
return;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
if(ob->pd && ob->pd->deflect)
cmd =(CollisionModifierData *)modifiers_findByType(ob, eModifierType_Collision);
if(cmd && cmd->bvhtree) {
if(*objs == NULL)
*objs = MEM_callocN(sizeof(ListBase), "ColliderCache array");
col = MEM_callocN(sizeof(ColliderCache), "ColliderCache");
col->ob = ob;
col->collmd = cmd;
/* make sure collider is properly set up */
collision_move_object(cmd, 1.0, 0.0);
BLI_addtail(*objs, col);
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
/* objects in dupli groups, one level only for now */
if(ob->dup_group && level == 0) {
GroupObject *go;
Group *group= ob->dup_group;
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
/* add objects */
for(go= group->gobject.first; go; go= go->next)
add_collider_cache_object(objs, go->ob, self, level+1);
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
}
}
ListBase *get_collider_cache(Scene *scene, Object *self, Group *group)
{
GroupObject *go;
ListBase *objs= NULL;
/* add object in same layer in scene */
if(group) {
for(go= group->gobject.first; go; go= go->next)
add_collider_cache_object(&objs, go->ob, self, 0);
}
else {
Scene *sce_iter;
Base *base;
/* add objects in same layer in scene */
for(SETLOOPER(scene, sce_iter, base)) {
if(!self || (base->lay & self->lay))
add_collider_cache_object(&objs, base->object, self, 0);
}
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
return objs;
}
Unified effector functionality for particles, cloth and softbody * Unified scene wide gravity (currently in scene buttons) instead of each simulation having it's own gravity. * Weight parameters for all effectors and an effector group setting. * Every effector can use noise. * Most effectors have "shapes" point, plane, surface, every point. - "Point" is most like the old effectors and uses the effector location as the effector point. - "Plane" uses the closest point on effectors local xy-plane as the effector point. - "Surface" uses the closest point on an effector object's surface as the effector point. - "Every Point" uses every point in a mesh effector object as an effector point. - The falloff is calculated from this point, so for example with "surface" shape and "use only negative z axis" it's possible to apply force only "inside" the effector object. * Spherical effector is now renamed as "force" as it's no longer just spherical. * New effector parameter "flow", which makes the effector act as surrounding air velocity, so the resulting force is proportional to the velocity difference of the point and "air velocity". For example a wind field with flow=1.0 results in proper non-accelerating wind. * New effector fields "turbulence", which creates nice random flow paths, and "drag", which slows the points down. * Much improved vortex field. * Effectors can now effect particle rotation as well as location. * Use full, or only positive/negative z-axis to apply force (note. the z-axis is the surface normal in the case of effector shape "surface") * New "force field" submenu in add menu, which adds an empty with the chosen effector (curve object for corve guides). * Other dynamics should be quite easy to add to the effector system too if wanted. * "Unified" doesn't mean that force fields give the exact same results for particles, softbody & cloth, since their final effect depends on many external factors, like for example the surface area of the effected faces. Code changes * Subversion bump for correct handling of global gravity. * Separate ui py file for common dynamics stuff. * Particle settings updating is flushed with it's id through DAG_id_flush_update(..). Known issues * Curve guides don't yet have all ui buttons in place, but they should work none the less. * Hair dynamics don't yet respect force fields. Other changes * Particle emission defaults now to frames 1-200 with life of 50 frames to fill the whole default timeline. * Many particles drawing related crashes fixed. * Sometimes particles didn't update on first frame properly. * Hair with object/group visualization didn't work properly. * Memory leaks with PointCacheID lists (Genscher, remember to free pidlists after use :).
2009-09-30 22:10:14 +00:00
void free_collider_cache(ListBase **colliders)
{
if(*colliders) {
BLI_freelistN(*colliders);
MEM_freeN(*colliders);
*colliders = NULL;
}
}
static void cloth_bvh_objcollisions_nearcheck ( ClothModifierData * clmd, CollisionModifierData *collmd,
CollPair **collisions, CollPair **collisions_index, int numresult, BVHTreeOverlap *overlap, double dt)
{
int i;
#ifdef WITH_ELTOPO
GHash *visithash = BLI_ghash_new(edgepair_hash, edgepair_cmp, "visthash, collision.c");
GHash *tri_visithash = BLI_ghash_new(tripair_hash, tripair_cmp, "tri_visthash, collision.c");
MemArena *arena = BLI_memarena_new(1<<16, "edge hash arena, collision.c");
#endif
*collisions = ( CollPair* ) MEM_mallocN ( sizeof ( CollPair ) * numresult * 64, "collision array" ); //*4 since cloth_collision_static can return more than 1 collision
*collisions_index = *collisions;
#ifdef WITH_ELTOPO
machine_epsilon_offset(clmd->clothObject);
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, dt, tri_visithash, arena );
}
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_edge_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, visithash, arena );
}
BLI_ghash_free(visithash, NULL, NULL);
BLI_ghash_free(tri_visithash, NULL, NULL);
BLI_memarena_free(arena);
#else /* WITH_ELTOPO */
for ( i = 0; i < numresult; i++ )
{
*collisions_index = cloth_collision ( ( ModifierData * ) clmd, ( ModifierData * ) collmd,
overlap+i, *collisions_index, dt );
}
#endif /* WITH_ELTOPO */
}
static int cloth_bvh_objcollisions_resolve ( ClothModifierData * clmd, CollisionModifierData *collmd, CollPair *collisions, CollPair *collisions_index)
{
Cloth *cloth = clmd->clothObject;
int i=0, j = 0, /*numfaces = 0,*/ numverts = 0;
ClothVertex *verts = NULL;
int ret = 0;
int result = 0;
float tnull[3] = {0,0,0};
/*numfaces = clmd->clothObject->numfaces;*/ /*UNUSED*/
numverts = clmd->clothObject->numverts;
verts = cloth->verts;
// process all collisions (calculate impulses, TODO: also repulses if distance too short)
result = 1;
for ( j = 0; j < 5; j++ ) // 5 is just a value that ensures convergence
{
result = 0;
if ( collmd->bvhtree )
{
#ifdef WITH_ELTOPO
result += cloth_collision_response_moving(clmd, collmd, collisions, collisions_index);
result += cloth_edge_collision_response_moving(clmd, collmd, collisions, collisions_index);
#else
result += cloth_collision_response_static ( clmd, collmd, collisions, collisions_index );
#endif
#ifdef WITH_ELTOPO
{
#else
// apply impulses in parallel
if ( result )
{
#endif
for ( i = 0; i < numverts; i++ )
{
// calculate "velocities" (just xnew = xold + v; no dt in v)
if ( verts[i].impulse_count )
{
VECADDMUL ( verts[i].tv, verts[i].impulse, 1.0f / verts[i].impulse_count );
copy_v3_v3 ( verts[i].impulse, tnull );
verts[i].impulse_count = 0;
ret++;
}
}
}
}
}
return ret;
}
// cloth - object collisions
int cloth_bvh_objcollision (Object *ob, ClothModifierData * clmd, float step, float dt )
{
Cloth *cloth= clmd->clothObject;
BVHTree *cloth_bvh= cloth->bvhtree;
unsigned int i=0, /* numfaces = 0, */ /* UNUSED */ numverts = 0, k, l, j;
int rounds = 0; // result counts applied collisions; ic is for debug output;
ClothVertex *verts = NULL;
int ret = 0, ret2 = 0;
Object **collobjs = NULL;
unsigned int numcollobj = 0;
if ((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_COLLOBJ) || cloth_bvh==NULL)
return 0;
verts = cloth->verts;
/* numfaces = cloth->numfaces; */ /* UNUSED */
numverts = cloth->numverts;
////////////////////////////////////////////////////////////
// static collisions
////////////////////////////////////////////////////////////
// update cloth bvh
bvhtree_update_from_cloth ( clmd, 1 ); // 0 means STATIC, 1 means MOVING (see later in this function)
bvhselftree_update_from_cloth ( clmd, 0 ); // 0 means STATIC, 1 means MOVING (see later in this function)
collobjs = get_collisionobjects(clmd->scene, ob, clmd->coll_parms->group, &numcollobj, eModifierType_Collision);
if(!collobjs)
return 0;
do
{
CollPair **collisions, **collisions_index;
ret2 = 0;
collisions = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
collisions_index = MEM_callocN(sizeof(CollPair *) *numcollobj , "CollPair");
// check all collision objects
for(i = 0; i < numcollobj; i++)
{
Object *collob= collobjs[i];
CollisionModifierData *collmd = (CollisionModifierData*)modifiers_findByType(collob, eModifierType_Collision);
BVHTreeOverlap *overlap = NULL;
2010-10-21 22:45:54 +00:00
unsigned int result = 0;
if(!collmd->bvhtree)
continue;
/* move object to position (step) in time */
collision_move_object ( collmd, step + dt, step );
/* search for overlapping collision pairs */
overlap = BLI_bvhtree_overlap ( cloth_bvh, collmd->bvhtree, &result );
// go to next object if no overlap is there
if( result && overlap ) {
/* check if collisions really happen (costly near check) */
cloth_bvh_objcollisions_nearcheck ( clmd, collmd, &collisions[i],
&collisions_index[i], result, overlap, dt/(float)clmd->coll_parms->loop_count);
// resolve nearby collisions
ret += cloth_bvh_objcollisions_resolve ( clmd, collmd, collisions[i], collisions_index[i]);
ret2 += ret;
}
if ( overlap )
MEM_freeN ( overlap );
}
rounds++;
for(i = 0; i < numcollobj; i++)
{
if ( collisions[i] ) MEM_freeN ( collisions[i] );
}
MEM_freeN(collisions);
MEM_freeN(collisions_index);
////////////////////////////////////////////////////////////
// update positions
// this is needed for bvh_calc_DOP_hull_moving() [kdop.c]
////////////////////////////////////////////////////////////
// verts come from clmd
for ( i = 0; i < numverts; i++ )
{
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
continue;
}
}
VECADD ( verts[i].tx, verts[i].txold, verts[i].tv );
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// Test on *simple* selfcollisions
////////////////////////////////////////////////////////////
if ( clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_SELF )
{
for(l = 0; l < (unsigned int)clmd->coll_parms->self_loop_count; l++)
{
// TODO: add coll quality rounds again
BVHTreeOverlap *overlap = NULL;
unsigned int result = 0;
// collisions = 1;
verts = cloth->verts; // needed for openMP
/* numfaces = cloth->numfaces; */ /* UNUSED */
numverts = cloth->numverts;
verts = cloth->verts;
if ( cloth->bvhselftree )
{
// search for overlapping collision pairs
overlap = BLI_bvhtree_overlap ( cloth->bvhselftree, cloth->bvhselftree, &result );
// #pragma omp parallel for private(k, i, j) schedule(static)
for ( k = 0; k < result; k++ )
{
float temp[3];
float length = 0;
float mindistance;
i = overlap[k].indexA;
j = overlap[k].indexB;
mindistance = clmd->coll_parms->selfepsilon* ( cloth->verts[i].avg_spring_len + cloth->verts[j].avg_spring_len );
if ( clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL )
{
if ( ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
&& ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED ) )
{
continue;
}
}
sub_v3_v3v3 ( temp, verts[i].tx, verts[j].tx );
if ( ( ABS ( temp[0] ) > mindistance ) || ( ABS ( temp[1] ) > mindistance ) || ( ABS ( temp[2] ) > mindistance ) ) continue;
// check for adjacent points (i must be smaller j)
if ( BLI_edgehash_haskey ( cloth->edgehash, MIN2(i, j), MAX2(i, j) ) )
{
continue;
}
length = normalize_v3( temp );
if ( length < mindistance )
{
float correction = mindistance - length;
if ( cloth->verts [i].flags & CLOTH_VERT_FLAG_PINNED )
{
mul_v3_fl( temp, -correction );
VECADD ( verts[j].tx, verts[j].tx, temp );
}
else if ( cloth->verts [j].flags & CLOTH_VERT_FLAG_PINNED )
{
mul_v3_fl( temp, correction );
VECADD ( verts[i].tx, verts[i].tx, temp );
}
else
{
2011-11-11 12:00:08 +00:00
mul_v3_fl( temp, correction * -0.5 );
VECADD ( verts[j].tx, verts[j].tx, temp );
sub_v3_v3v3 ( verts[i].tx, verts[i].tx, temp );
}
ret = 1;
ret2 += ret;
}
else {
// check for approximated time collisions
}
}
if ( overlap )
MEM_freeN ( overlap );
}
}
////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////
// SELFCOLLISIONS: update velocities
////////////////////////////////////////////////////////////
if ( ret2 )
{
for ( i = 0; i < cloth->numverts; i++ )
{
if ( ! ( verts [i].flags & CLOTH_VERT_FLAG_PINNED ) )
{
sub_v3_v3v3 ( verts[i].tv, verts[i].tx, verts[i].txold );
}
}
}
////////////////////////////////////////////////////////////
}
}
while ( ret2 && ( clmd->coll_parms->loop_count>rounds ) );
if(collobjs)
MEM_freeN(collobjs);
return 1|MIN2 ( ret, 1 );
}