Files
blender/intern/cycles/scene/integrator.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

391 lines
14 KiB
C++
Raw Normal View History

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#include "device/device.h"
#include "scene/background.h"
#include "scene/bake.h"
#include "scene/camera.h"
#include "scene/film.h"
#include "scene/integrator.h"
#include "scene/jitter.h"
#include "scene/light.h"
#include "scene/object.h"
#include "scene/scene.h"
#include "scene/shader.h"
#include "scene/sobol.h"
#include "scene/stats.h"
#include "kernel/types.h"
#include "util/foreach.h"
#include "util/hash.h"
#include "util/log.h"
#include "util/task.h"
#include "util/time.h"
CCL_NAMESPACE_BEGIN
NODE_DEFINE(Integrator)
{
NodeType *type = NodeType::add("integrator", create);
SOCKET_INT(min_bounce, "Min Bounce", 0);
SOCKET_INT(max_bounce, "Max Bounce", 7);
SOCKET_INT(max_diffuse_bounce, "Max Diffuse Bounce", 7);
SOCKET_INT(max_glossy_bounce, "Max Glossy Bounce", 7);
SOCKET_INT(max_transmission_bounce, "Max Transmission Bounce", 7);
SOCKET_INT(max_volume_bounce, "Max Volume Bounce", 7);
SOCKET_INT(transparent_min_bounce, "Transparent Min Bounce", 0);
SOCKET_INT(transparent_max_bounce, "Transparent Max Bounce", 7);
#ifdef WITH_CYCLES_DEBUG
static NodeEnum direct_light_sampling_type_enum;
direct_light_sampling_type_enum.insert("multiple_importance_sampling",
DIRECT_LIGHT_SAMPLING_MIS);
direct_light_sampling_type_enum.insert("forward_path_tracing", DIRECT_LIGHT_SAMPLING_FORWARD);
direct_light_sampling_type_enum.insert("next_event_estimation", DIRECT_LIGHT_SAMPLING_NEE);
SOCKET_ENUM(direct_light_sampling_type,
"Direct Light Sampling Type",
direct_light_sampling_type_enum,
DIRECT_LIGHT_SAMPLING_MIS);
#endif
SOCKET_INT(ao_bounces, "AO Bounces", 0);
SOCKET_FLOAT(ao_factor, "AO Factor", 0.0f);
SOCKET_FLOAT(ao_distance, "AO Distance", FLT_MAX);
SOCKET_FLOAT(ao_additive_factor, "AO Additive Factor", 0.0f);
SOCKET_INT(volume_max_steps, "Volume Max Steps", 1024);
SOCKET_FLOAT(volume_step_rate, "Volume Step Rate", 1.0f);
SOCKET_BOOLEAN(caustics_reflective, "Reflective Caustics", true);
SOCKET_BOOLEAN(caustics_refractive, "Refractive Caustics", true);
SOCKET_FLOAT(filter_glossy, "Filter Glossy", 0.0f);
SOCKET_BOOLEAN(use_direct_light, "Use Direct Light", true);
SOCKET_BOOLEAN(use_indirect_light, "Use Indirect Light", true);
SOCKET_BOOLEAN(use_diffuse, "Use Diffuse", true);
SOCKET_BOOLEAN(use_glossy, "Use Glossy", true);
SOCKET_BOOLEAN(use_transmission, "Use Transmission", true);
SOCKET_BOOLEAN(use_emission, "Use Emission", true);
SOCKET_INT(seed, "Seed", 0);
SOCKET_FLOAT(sample_clamp_direct, "Sample Clamp Direct", 0.0f);
SOCKET_FLOAT(sample_clamp_indirect, "Sample Clamp Indirect", 10.0f);
SOCKET_BOOLEAN(motion_blur, "Motion Blur", false);
SOCKET_INT(aa_samples, "AA Samples", 0);
SOCKET_INT(start_sample, "Start Sample", 0);
SOCKET_BOOLEAN(use_adaptive_sampling, "Use Adaptive Sampling", true);
SOCKET_FLOAT(adaptive_threshold, "Adaptive Threshold", 0.01f);
SOCKET_INT(adaptive_min_samples, "Adaptive Min Samples", 0);
SOCKET_FLOAT(light_sampling_threshold, "Light Sampling Threshold", 0.01f);
static NodeEnum sampling_pattern_enum;
sampling_pattern_enum.insert("sobol", SAMPLING_PATTERN_SOBOL);
sampling_pattern_enum.insert("pmj", SAMPLING_PATTERN_PMJ);
SOCKET_ENUM(sampling_pattern, "Sampling Pattern", sampling_pattern_enum, SAMPLING_PATTERN_SOBOL);
SOCKET_FLOAT(scrambling_distance, "Scrambling Distance", 1.0f);
static NodeEnum denoiser_type_enum;
denoiser_type_enum.insert("optix", DENOISER_OPTIX);
denoiser_type_enum.insert("openimagedenoise", DENOISER_OPENIMAGEDENOISE);
static NodeEnum denoiser_prefilter_enum;
denoiser_prefilter_enum.insert("none", DENOISER_PREFILTER_NONE);
denoiser_prefilter_enum.insert("fast", DENOISER_PREFILTER_FAST);
denoiser_prefilter_enum.insert("accurate", DENOISER_PREFILTER_ACCURATE);
/* Default to accurate denoising with OpenImageDenoise. For interactive viewport
* it's best use OptiX and disable the normal pass since it does not always have
* the desired effect for that denoiser. */
SOCKET_BOOLEAN(use_denoise, "Use Denoiser", false);
SOCKET_ENUM(denoiser_type, "Denoiser Type", denoiser_type_enum, DENOISER_OPENIMAGEDENOISE);
SOCKET_INT(denoise_start_sample, "Start Sample to Denoise", 0);
SOCKET_BOOLEAN(use_denoise_pass_albedo, "Use Albedo Pass for Denoiser", true);
SOCKET_BOOLEAN(use_denoise_pass_normal, "Use Normal Pass for Denoiser", true);
2022-03-24 11:01:12 +01:00
SOCKET_ENUM(denoiser_prefilter,
"Denoiser Prefilter",
denoiser_prefilter_enum,
DENOISER_PREFILTER_ACCURATE);
return type;
}
Integrator::Integrator() : Node(get_node_type())
{
}
Integrator::~Integrator()
{
}
void Integrator::device_update(Device *device, DeviceScene *dscene, Scene *scene)
{
if (!is_modified())
return;
scoped_callback_timer timer([scene](double time) {
if (scene->update_stats) {
scene->update_stats->integrator.times.add_entry({"device_update", time});
}
});
KernelIntegrator *kintegrator = &dscene->data.integrator;
/* Adaptive sampling requires PMJ samples.
*
* This also makes detection of sampling pattern a bit more involved: can not rely on the changed
* state of socket, since its value might be different from the effective value used here. So
* instead compare with previous value in the KernelIntegrator. Only do it if the device was
* updated once (in which case the `sample_pattern_lut` will be allocated to a non-zero size). */
const SamplingPattern new_sampling_pattern = (use_adaptive_sampling) ? SAMPLING_PATTERN_PMJ :
sampling_pattern;
const bool need_update_lut = max_bounce_is_modified() || max_transmission_bounce_is_modified() ||
dscene->sample_pattern_lut.size() == 0 ||
kintegrator->sampling_pattern != new_sampling_pattern;
if (need_update_lut) {
dscene->sample_pattern_lut.tag_realloc();
}
device_free(device, dscene);
/* integrator parameters */
kintegrator->min_bounce = min_bounce + 1;
kintegrator->max_bounce = max_bounce + 1;
kintegrator->max_diffuse_bounce = max_diffuse_bounce + 1;
kintegrator->max_glossy_bounce = max_glossy_bounce + 1;
kintegrator->max_transmission_bounce = max_transmission_bounce + 1;
kintegrator->max_volume_bounce = max_volume_bounce + 1;
kintegrator->transparent_min_bounce = transparent_min_bounce + 1;
kintegrator->transparent_max_bounce = transparent_max_bounce + 1;
kintegrator->ao_bounces = (ao_factor != 0.0f) ? ao_bounces : 0;
kintegrator->ao_bounces_distance = ao_distance;
kintegrator->ao_bounces_factor = ao_factor;
kintegrator->ao_additive_factor = ao_additive_factor;
#ifdef WITH_CYCLES_DEBUG
kintegrator->direct_light_sampling_type = direct_light_sampling_type;
#else
kintegrator->direct_light_sampling_type = DIRECT_LIGHT_SAMPLING_MIS;
#endif
/* Transparent Shadows
* We only need to enable transparent shadows, if we actually have
* transparent shaders in the scene. Otherwise we can disable it
* to improve performance a bit. */
kintegrator->transparent_shadows = false;
foreach (Shader *shader, scene->shaders) {
/* keep this in sync with SD_HAS_TRANSPARENT_SHADOW in shader.cpp */
if ((shader->has_surface_transparent && shader->get_use_transparent_shadow()) ||
shader->has_volume) {
kintegrator->transparent_shadows = true;
break;
}
}
kintegrator->volume_max_steps = volume_max_steps;
kintegrator->volume_step_rate = volume_step_rate;
kintegrator->caustics_reflective = caustics_reflective;
kintegrator->caustics_refractive = caustics_refractive;
Cycles: merging features from tomato branch. === BVH build time optimizations === * BVH building was multithreaded. Not all building is multithreaded, packing and the initial bounding/splitting is still single threaded, but recursive splitting is, which was the main bottleneck. * Object splitting now uses binning rather than sorting of all elements, using code from the Embree raytracer from Intel. http://software.intel.com/en-us/articles/embree-photo-realistic-ray-tracing-kernels/ * Other small changes to avoid allocations, pack memory more tightly, avoid some unnecessary operations, ... These optimizations do not work yet when Spatial Splits are enabled, for that more work is needed. There's also other optimizations still needed, in particular for the case of many low poly objects, the packing step and node memory allocation. BVH raytracing time should remain about the same, but BVH build time should be significantly reduced, test here show speedup of about 5x to 10x on a dual core and 5x to 25x on an 8-core machine, depending on the scene. === Threads === Centralized task scheduler for multithreading, which is basically the CPU device threading code wrapped into something reusable. Basic idea is that there is a single TaskScheduler that keeps a pool of threads, one for each core. Other places in the code can then create a TaskPool that they can drop Tasks in to be executed by the scheduler, and wait for them to complete or cancel them early. === Normal ==== Added a Normal output to the texture coordinate node. This currently gives the object space normal, which is the same under object animation. In the future this might become a "generated" normal so it's also stable for deforming objects, but for now it's already useful for non-deforming objects. === Render Layers === Per render layer Samples control, leaving it to 0 will use the common scene setting. Environment pass will now render environment even if film is set to transparent. Exclude Layers" added. Scene layers (all object that influence the render, directly or indirectly) are shared between all render layers. However sometimes it's useful to leave out some object influence for a particular render layer. That's what this option allows you to do. === Filter Glossy === When using a value higher than 0.0, this will blur glossy reflections after blurry bounces, to reduce noise at the cost of accuracy. 1.0 is a good starting value to tweak. Some light paths have a low probability of being found while contributing much light to the pixel. As a result these light paths will be found in some pixels and not in others, causing fireflies. An example of such a difficult path might be a small light that is causing a small specular highlight on a sharp glossy material, which we are seeing through a rough glossy material. With path tracing it is difficult to find the specular highlight, but if we increase the roughness on the material the highlight gets bigger and softer, and so easier to find. Often this blurring will be hardly noticeable, because we are seeing it through a blurry material anyway, but there are also cases where this will lead to a loss of detail in lighting.
2012-04-28 08:53:59 +00:00
kintegrator->filter_glossy = (filter_glossy == 0.0f) ? FLT_MAX : 1.0f / filter_glossy;
kintegrator->filter_closures = 0;
if (!use_direct_light) {
kintegrator->filter_closures |= FILTER_CLOSURE_DIRECT_LIGHT;
}
if (!use_indirect_light) {
kintegrator->min_bounce = 1;
kintegrator->max_bounce = 1;
}
if (!use_diffuse) {
kintegrator->filter_closures |= FILTER_CLOSURE_DIFFUSE;
}
if (!use_glossy) {
kintegrator->filter_closures |= FILTER_CLOSURE_GLOSSY;
}
if (!use_transmission) {
kintegrator->filter_closures |= FILTER_CLOSURE_TRANSMISSION;
}
if (!use_emission) {
kintegrator->filter_closures |= FILTER_CLOSURE_EMISSION;
}
if (scene->bake_manager->get_baking()) {
/* Baking does not need to trace through transparency, we only want to bake
* the object itself. */
kintegrator->filter_closures |= FILTER_CLOSURE_TRANSPARENT;
}
kintegrator->seed = seed;
kintegrator->sample_clamp_direct = (sample_clamp_direct == 0.0f) ? FLT_MAX :
sample_clamp_direct * 3.0f;
kintegrator->sample_clamp_indirect = (sample_clamp_indirect == 0.0f) ?
FLT_MAX :
sample_clamp_indirect * 3.0f;
kintegrator->sampling_pattern = new_sampling_pattern;
kintegrator->scrambling_distance = scrambling_distance;
if (light_sampling_threshold > 0.0f) {
kintegrator->light_inv_rr_threshold = 1.0f / light_sampling_threshold;
}
else {
kintegrator->light_inv_rr_threshold = 0.0f;
}
/* sobol directions table */
int max_samples = max_bounce + transparent_max_bounce + 3 + VOLUME_BOUNDS_MAX +
max(BSSRDF_MAX_HITS, BSSRDF_MAX_BOUNCES);
int dimensions = PRNG_BASE_NUM + max_samples * PRNG_BOUNCE_NUM;
dimensions = min(dimensions, SOBOL_MAX_DIMENSIONS);
if (need_update_lut) {
if (kintegrator->sampling_pattern == SAMPLING_PATTERN_SOBOL) {
uint *directions = (uint *)dscene->sample_pattern_lut.alloc(SOBOL_BITS * dimensions);
sobol_generate_direction_vectors((uint(*)[SOBOL_BITS])directions, dimensions);
dscene->sample_pattern_lut.copy_to_device();
}
else {
constexpr int sequence_size = NUM_PMJ_SAMPLES;
constexpr int num_sequences = NUM_PMJ_PATTERNS;
float2 *directions = (float2 *)dscene->sample_pattern_lut.alloc(sequence_size *
num_sequences * 2);
TaskPool pool;
for (int j = 0; j < num_sequences; ++j) {
float2 *sequence = directions + j * sequence_size;
pool.push(
function_bind(&progressive_multi_jitter_02_generate_2D, sequence, sequence_size, j));
}
pool.wait_work();
dscene->sample_pattern_lut.copy_to_device();
}
}
kintegrator->has_shadow_catcher = scene->has_shadow_catcher();
dscene->sample_pattern_lut.clear_modified();
clear_modified();
}
void Integrator::device_free(Device *, DeviceScene *dscene, bool force_free)
{
dscene->sample_pattern_lut.free_if_need_realloc(force_free);
}
void Integrator::tag_update(Scene *scene, uint32_t flag)
{
if (flag & UPDATE_ALL) {
tag_modified();
}
if (flag & AO_PASS_MODIFIED) {
/* tag only the ao_bounces socket as modified so we avoid updating sample_pattern_lut
* unnecessarily */
tag_ao_bounces_modified();
}
if (filter_glossy_is_modified()) {
foreach (Shader *shader, scene->shaders) {
if (shader->has_integrator_dependency) {
scene->shader_manager->tag_update(scene, ShaderManager::INTEGRATOR_MODIFIED);
break;
}
}
}
if (motion_blur_is_modified()) {
scene->object_manager->tag_update(scene, ObjectManager::MOTION_BLUR_MODIFIED);
scene->camera->tag_modified();
}
}
2021-10-26 15:30:12 +02:00
uint Integrator::get_kernel_features() const
{
uint kernel_features = 0;
if (ao_additive_factor != 0.0f) {
kernel_features |= KERNEL_FEATURE_AO_ADDITIVE;
}
return kernel_features;
}
AdaptiveSampling Integrator::get_adaptive_sampling() const
{
AdaptiveSampling adaptive_sampling;
adaptive_sampling.use = use_adaptive_sampling;
if (!adaptive_sampling.use) {
return adaptive_sampling;
}
if (aa_samples > 0 && adaptive_threshold == 0.0f) {
adaptive_sampling.threshold = max(0.001f, 1.0f / (float)aa_samples);
VLOG(1) << "Cycles adaptive sampling: automatic threshold = " << adaptive_sampling.threshold;
}
else {
adaptive_sampling.threshold = adaptive_threshold;
}
if (adaptive_sampling.threshold > 0 && adaptive_min_samples == 0) {
/* Threshold 0.1 -> 32, 0.01 -> 64, 0.001 -> 128.
* This is highly scene dependent, we make a guess that seemed to work well
* in various test scenes. */
const int min_samples = (int)ceilf(16.0f / powf(adaptive_sampling.threshold, 0.3f));
adaptive_sampling.min_samples = max(4, min_samples);
VLOG(1) << "Cycles adaptive sampling: automatic min samples = "
<< adaptive_sampling.min_samples;
}
else {
adaptive_sampling.min_samples = max(4, adaptive_min_samples);
}
/* Arbitrary factor that makes the threshold more similar to what is was before,
* and gives arguably more intuitive values. */
adaptive_sampling.threshold *= 5.0f;
adaptive_sampling.adaptive_step = 16;
DCHECK(is_power_of_two(adaptive_sampling.adaptive_step))
<< "Adaptive step must be a power of two for bitwise operations to work";
return adaptive_sampling;
}
DenoiseParams Integrator::get_denoise_params() const
{
DenoiseParams denoise_params;
denoise_params.use = use_denoise;
denoise_params.type = denoiser_type;
denoise_params.start_sample = denoise_start_sample;
denoise_params.use_pass_albedo = use_denoise_pass_albedo;
denoise_params.use_pass_normal = use_denoise_pass_normal;
denoise_params.prefilter = denoiser_prefilter;
return denoise_params;
}
CCL_NAMESPACE_END