Files
blender/intern/cycles/kernel/device/gpu/kernel.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

848 lines
31 KiB
C
Raw Normal View History

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Common GPU kernels. */
#include "kernel/device/gpu/parallel_active_index.h"
#include "kernel/device/gpu/parallel_prefix_sum.h"
#include "kernel/device/gpu/parallel_sorted_index.h"
#include "kernel/integrator/integrator_state.h"
#include "kernel/integrator/integrator_state_flow.h"
#include "kernel/integrator/integrator_state_util.h"
#include "kernel/integrator/integrator_init_from_bake.h"
#include "kernel/integrator/integrator_init_from_camera.h"
#include "kernel/integrator/integrator_intersect_closest.h"
#include "kernel/integrator/integrator_intersect_shadow.h"
#include "kernel/integrator/integrator_intersect_subsurface.h"
#include "kernel/integrator/integrator_intersect_volume_stack.h"
#include "kernel/integrator/integrator_shade_background.h"
#include "kernel/integrator/integrator_shade_light.h"
#include "kernel/integrator/integrator_shade_shadow.h"
#include "kernel/integrator/integrator_shade_surface.h"
#include "kernel/integrator/integrator_shade_volume.h"
#include "kernel/kernel_adaptive_sampling.h"
#include "kernel/kernel_bake.h"
#include "kernel/kernel_film.h"
#include "kernel/kernel_work_stealing.h"
/* --------------------------------------------------------------------
* Integrator.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_reset(int num_states)
{
const int state = ccl_gpu_global_id_x();
if (state < num_states) {
INTEGRATOR_STATE_WRITE(state, path, queued_kernel) = 0;
INTEGRATOR_STATE_WRITE(state, shadow_path, queued_kernel) = 0;
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_init_from_camera(KernelWorkTile *tiles,
const int num_tiles,
float *render_buffer,
const int max_tile_work_size)
{
const int work_index = ccl_gpu_global_id_x();
if (work_index >= max_tile_work_size * num_tiles) {
return;
}
const int tile_index = work_index / max_tile_work_size;
const int tile_work_index = work_index - tile_index * max_tile_work_size;
const KernelWorkTile *tile = &tiles[tile_index];
if (tile_work_index >= tile->work_size) {
return;
}
const int state = tile->path_index_offset + tile_work_index;
uint x, y, sample;
get_work_pixel(tile, tile_work_index, &x, &y, &sample);
integrator_init_from_camera(nullptr, state, tile, render_buffer, x, y, sample);
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_init_from_bake(KernelWorkTile *tiles,
const int num_tiles,
float *render_buffer,
const int max_tile_work_size)
{
const int work_index = ccl_gpu_global_id_x();
if (work_index >= max_tile_work_size * num_tiles) {
return;
}
const int tile_index = work_index / max_tile_work_size;
const int tile_work_index = work_index - tile_index * max_tile_work_size;
const KernelWorkTile *tile = &tiles[tile_index];
if (tile_work_index >= tile->work_size) {
return;
}
const int state = tile->path_index_offset + tile_work_index;
uint x, y, sample;
get_work_pixel(tile, tile_work_index, &x, &y, &sample);
integrator_init_from_bake(nullptr, state, tile, render_buffer, x, y, sample);
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_intersect_closest(const int *path_index_array, const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_intersect_closest(NULL, state);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_intersect_shadow(const int *path_index_array, const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_intersect_shadow(NULL, state);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_intersect_subsurface(const int *path_index_array, const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_intersect_subsurface(NULL, state);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_intersect_volume_stack(const int *path_index_array, const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_intersect_volume_stack(NULL, state);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_background(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_background(NULL, state, render_buffer);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_light(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_light(NULL, state, render_buffer);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_shadow(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_shadow(NULL, state, render_buffer);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_surface(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_surface(NULL, state, render_buffer);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_surface_raytrace(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_surface_raytrace(NULL, state, render_buffer);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shade_volume(const int *path_index_array,
float *render_buffer,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int state = (path_index_array) ? path_index_array[global_index] : global_index;
integrator_shade_volume(NULL, state, render_buffer);
}
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_queued_paths_array(int num_states,
int *indices,
int *num_indices,
int kernel)
{
gpu_parallel_active_index_array<GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices, num_indices, [kernel](const int state) {
return (INTEGRATOR_STATE(state, path, queued_kernel) == kernel);
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_queued_shadow_paths_array(int num_states,
int *indices,
int *num_indices,
int kernel)
{
gpu_parallel_active_index_array<GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices, num_indices, [kernel](const int state) {
return (INTEGRATOR_STATE(state, shadow_path, queued_kernel) == kernel);
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_active_paths_array(int num_states, int *indices, int *num_indices)
{
gpu_parallel_active_index_array<GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices, num_indices, [](const int state) {
return (INTEGRATOR_STATE(state, path, queued_kernel) != 0) ||
(INTEGRATOR_STATE(state, shadow_path, queued_kernel) != 0);
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_terminated_paths_array(int num_states,
int *indices,
int *num_indices,
int indices_offset)
{
gpu_parallel_active_index_array<GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices + indices_offset, num_indices, [](const int state) {
return (INTEGRATOR_STATE(state, path, queued_kernel) == 0) &&
(INTEGRATOR_STATE(state, shadow_path, queued_kernel) == 0);
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_sorted_paths_array(
int num_states, int *indices, int *num_indices, int *key_prefix_sum, int kernel)
{
gpu_parallel_sorted_index_array<GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices, num_indices, key_prefix_sum, [kernel](const int state) {
return (INTEGRATOR_STATE(state, path, queued_kernel) == kernel) ?
INTEGRATOR_STATE(state, path, shader_sort_key) :
GPU_PARALLEL_SORTED_INDEX_INACTIVE_KEY;
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_compact_paths_array(int num_states,
int *indices,
int *num_indices,
int num_active_paths)
{
gpu_parallel_active_index_array<GPU_PARALLEL_ACTIVE_INDEX_DEFAULT_BLOCK_SIZE>(
num_states, indices, num_indices, [num_active_paths](const int state) {
return (state >= num_active_paths) &&
((INTEGRATOR_STATE(state, path, queued_kernel) != 0) ||
(INTEGRATOR_STATE(state, shadow_path, queued_kernel) != 0));
});
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_SORTED_INDEX_DEFAULT_BLOCK_SIZE)
kernel_gpu_integrator_compact_states(const int *active_terminated_states,
const int active_states_offset,
const int terminated_states_offset,
const int work_size)
{
const int global_index = ccl_gpu_global_id_x();
if (global_index < work_size) {
const int from_state = active_terminated_states[active_states_offset + global_index];
const int to_state = active_terminated_states[terminated_states_offset + global_index];
integrator_state_move(to_state, from_state);
}
}
extern "C" __global__ void __launch_bounds__(GPU_PARALLEL_PREFIX_SUM_DEFAULT_BLOCK_SIZE)
kernel_gpu_prefix_sum(int *values, int num_values)
{
gpu_parallel_prefix_sum<GPU_PARALLEL_PREFIX_SUM_DEFAULT_BLOCK_SIZE>(values, num_values);
}
/* --------------------------------------------------------------------
* Adaptive sampling.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_adaptive_sampling_convergence_check(float *render_buffer,
int sx,
int sy,
int sw,
int sh,
float threshold,
bool reset,
int offset,
int stride,
uint *num_active_pixels)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / sw;
const int x = work_index - y * sw;
bool converged = true;
if (x < sw && y < sh) {
converged = kernel_adaptive_sampling_convergence_check(
nullptr, render_buffer, sx + x, sy + y, threshold, reset, offset, stride);
}
/* NOTE: All threads specified in the mask must execute the intrinsic. */
const uint num_active_pixels_mask = ccl_gpu_ballot(!converged);
const int lane_id = ccl_gpu_thread_idx_x % ccl_gpu_warp_size;
if (lane_id == 0) {
atomic_fetch_and_add_uint32(num_active_pixels, __popc(num_active_pixels_mask));
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_adaptive_sampling_filter_x(
float *render_buffer, int sx, int sy, int sw, int sh, int offset, int stride)
{
const int y = ccl_gpu_global_id_x();
if (y < sh) {
kernel_adaptive_sampling_filter_x(NULL, render_buffer, sy + y, sx, sw, offset, stride);
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_adaptive_sampling_filter_y(
float *render_buffer, int sx, int sy, int sw, int sh, int offset, int stride)
{
const int x = ccl_gpu_global_id_x();
if (x < sw) {
kernel_adaptive_sampling_filter_y(NULL, render_buffer, sx + x, sy, sh, offset, stride);
}
}
/* --------------------------------------------------------------------
* Cryptomatte.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_cryptomatte_postprocess(float *render_buffer, int num_pixels)
{
const int pixel_index = ccl_gpu_global_id_x();
if (pixel_index < num_pixels) {
kernel_cryptomatte_post(nullptr, render_buffer, pixel_index);
}
}
/* --------------------------------------------------------------------
* Film.
*/
/* Common implementation for float destination. */
template<typename Processor>
ccl_device_inline void kernel_gpu_film_convert_common(const KernelFilmConvert *kfilm_convert,
float *pixels,
float *render_buffer,
int num_pixels,
int width,
int offset,
int stride,
int dst_offset,
int dst_stride,
const Processor &processor)
{
const int render_pixel_index = ccl_gpu_global_id_x();
if (render_pixel_index >= num_pixels) {
return;
}
const int x = render_pixel_index % width;
const int y = render_pixel_index / width;
ccl_global const float *buffer = render_buffer + offset + x * kfilm_convert->pass_stride +
y * stride * kfilm_convert->pass_stride;
ccl_global float *pixel = pixels +
(render_pixel_index + dst_offset) * kfilm_convert->pixel_stride;
processor(kfilm_convert, buffer, pixel);
}
/* Common implementation for half4 destination and 4-channel input pass. */
template<typename Processor>
ccl_device_inline void kernel_gpu_film_convert_half_rgba_common_rgba(
const KernelFilmConvert *kfilm_convert,
uchar4 *rgba,
float *render_buffer,
int num_pixels,
int width,
int offset,
int stride,
int rgba_offset,
int rgba_stride,
const Processor &processor)
{
const int render_pixel_index = ccl_gpu_global_id_x();
if (render_pixel_index >= num_pixels) {
return;
}
const int x = render_pixel_index % width;
const int y = render_pixel_index / width;
ccl_global const float *buffer = render_buffer + offset + x * kfilm_convert->pass_stride +
y * stride * kfilm_convert->pass_stride;
float pixel[4];
processor(kfilm_convert, buffer, pixel);
film_apply_pass_pixel_overlays_rgba(kfilm_convert, buffer, pixel);
ccl_global half4 *out = ((ccl_global half4 *)rgba) + rgba_offset + y * rgba_stride + x;
float4_store_half((ccl_global half *)out, make_float4(pixel[0], pixel[1], pixel[2], pixel[3]));
}
/* Common implementation for half4 destination and 3-channel input pass. */
template<typename Processor>
ccl_device_inline void kernel_gpu_film_convert_half_rgba_common_rgb(
const KernelFilmConvert *kfilm_convert,
uchar4 *rgba,
float *render_buffer,
int num_pixels,
int width,
int offset,
int stride,
int rgba_offset,
int rgba_stride,
const Processor &processor)
{
kernel_gpu_film_convert_half_rgba_common_rgba(
kfilm_convert,
rgba,
render_buffer,
num_pixels,
width,
offset,
stride,
rgba_offset,
rgba_stride,
[&processor](const KernelFilmConvert *kfilm_convert,
ccl_global const float *buffer,
float *pixel_rgba) {
processor(kfilm_convert, buffer, pixel_rgba);
pixel_rgba[3] = 1.0f;
});
}
/* Common implementation for half4 destination and single channel input pass. */
template<typename Processor>
ccl_device_inline void kernel_gpu_film_convert_half_rgba_common_value(
const KernelFilmConvert *kfilm_convert,
uchar4 *rgba,
float *render_buffer,
int num_pixels,
int width,
int offset,
int stride,
int rgba_offset,
int rgba_stride,
const Processor &processor)
{
kernel_gpu_film_convert_half_rgba_common_rgba(
kfilm_convert,
rgba,
render_buffer,
num_pixels,
width,
offset,
stride,
rgba_offset,
rgba_stride,
[&processor](const KernelFilmConvert *kfilm_convert,
ccl_global const float *buffer,
float *pixel_rgba) {
float value;
processor(kfilm_convert, buffer, &value);
pixel_rgba[0] = value;
pixel_rgba[1] = value;
pixel_rgba[2] = value;
pixel_rgba[3] = 1.0f;
});
}
#define KERNEL_FILM_CONVERT_PROC(name) \
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS) name
#define KERNEL_FILM_CONVERT_DEFINE(variant, channels) \
KERNEL_FILM_CONVERT_PROC(kernel_gpu_film_convert_##variant) \
(const KernelFilmConvert kfilm_convert, \
float *pixels, \
float *render_buffer, \
int num_pixels, \
int width, \
int offset, \
int stride, \
int rgba_offset, \
int rgba_stride) \
{ \
kernel_gpu_film_convert_common(&kfilm_convert, \
pixels, \
render_buffer, \
num_pixels, \
width, \
offset, \
stride, \
rgba_offset, \
rgba_stride, \
film_get_pass_pixel_##variant); \
} \
KERNEL_FILM_CONVERT_PROC(kernel_gpu_film_convert_##variant##_half_rgba) \
(const KernelFilmConvert kfilm_convert, \
uchar4 *rgba, \
float *render_buffer, \
int num_pixels, \
int width, \
int offset, \
int stride, \
int rgba_offset, \
int rgba_stride) \
{ \
kernel_gpu_film_convert_half_rgba_common_##channels(&kfilm_convert, \
rgba, \
render_buffer, \
num_pixels, \
width, \
offset, \
stride, \
rgba_offset, \
rgba_stride, \
film_get_pass_pixel_##variant); \
}
KERNEL_FILM_CONVERT_DEFINE(depth, value)
KERNEL_FILM_CONVERT_DEFINE(mist, value)
KERNEL_FILM_CONVERT_DEFINE(sample_count, value)
KERNEL_FILM_CONVERT_DEFINE(float, value)
KERNEL_FILM_CONVERT_DEFINE(light_path, rgb)
KERNEL_FILM_CONVERT_DEFINE(float3, rgb)
KERNEL_FILM_CONVERT_DEFINE(motion, rgba)
KERNEL_FILM_CONVERT_DEFINE(cryptomatte, rgba)
KERNEL_FILM_CONVERT_DEFINE(shadow_catcher, rgba)
KERNEL_FILM_CONVERT_DEFINE(shadow_catcher_matte_with_shadow, rgba)
KERNEL_FILM_CONVERT_DEFINE(combined, rgba)
KERNEL_FILM_CONVERT_DEFINE(float4, rgba)
#undef KERNEL_FILM_CONVERT_DEFINE
#undef KERNEL_FILM_CONVERT_HALF_RGBA_DEFINE
#undef KERNEL_FILM_CONVERT_PROC
/* --------------------------------------------------------------------
* Shader evaluation.
*/
/* Displacement */
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_shader_eval_displace(KernelShaderEvalInput *input,
float *output,
const int offset,
const int work_size)
{
int i = ccl_gpu_global_id_x();
if (i < work_size) {
kernel_displace_evaluate(NULL, input, output, offset + i);
}
}
/* Background Shader Evaluation */
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_shader_eval_background(KernelShaderEvalInput *input,
float *output,
const int offset,
const int work_size)
{
int i = ccl_gpu_global_id_x();
if (i < work_size) {
kernel_background_evaluate(NULL, input, output, offset + i);
}
}
/* --------------------------------------------------------------------
* Denoising.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_filter_color_preprocess(float *render_buffer,
int full_x,
int full_y,
int width,
int height,
int offset,
int stride,
int pass_stride,
int pass_denoised)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t render_pixel_index = offset + (x + full_x) + (y + full_y) * stride;
float *buffer = render_buffer + render_pixel_index * pass_stride;
float *color_out = buffer + pass_denoised;
color_out[0] = clamp(color_out[0], 0.0f, 10000.0f);
color_out[1] = clamp(color_out[1], 0.0f, 10000.0f);
color_out[2] = clamp(color_out[2], 0.0f, 10000.0f);
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_filter_guiding_preprocess(float *guiding_buffer,
int guiding_pass_stride,
int guiding_pass_albedo,
int guiding_pass_normal,
const float *render_buffer,
int render_offset,
int render_stride,
int render_pass_stride,
int render_pass_sample_count,
int render_pass_denoising_albedo,
int render_pass_denoising_normal,
int full_x,
int full_y,
int width,
int height,
int num_samples)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t guiding_pixel_index = x + y * width;
float *guiding_pixel = guiding_buffer + guiding_pixel_index * guiding_pass_stride;
const uint64_t render_pixel_index = render_offset + (x + full_x) + (y + full_y) * render_stride;
const float *buffer = render_buffer + render_pixel_index * render_pass_stride;
float pixel_scale;
if (render_pass_sample_count == PASS_UNUSED) {
pixel_scale = 1.0f / num_samples;
}
else {
pixel_scale = 1.0f / __float_as_uint(buffer[render_pass_sample_count]);
}
/* Albedo pass. */
if (guiding_pass_albedo != PASS_UNUSED) {
kernel_assert(render_pass_denoising_albedo != PASS_UNUSED);
const float *aledo_in = buffer + render_pass_denoising_albedo;
float *albedo_out = guiding_pixel + guiding_pass_albedo;
albedo_out[0] = aledo_in[0] * pixel_scale;
albedo_out[1] = aledo_in[1] * pixel_scale;
albedo_out[2] = aledo_in[2] * pixel_scale;
}
/* Normal pass. */
if (render_pass_denoising_normal != PASS_UNUSED) {
kernel_assert(render_pass_denoising_normal != PASS_UNUSED);
const float *normal_in = buffer + render_pass_denoising_normal;
float *normal_out = guiding_pixel + guiding_pass_normal;
normal_out[0] = normal_in[0] * pixel_scale;
normal_out[1] = normal_in[1] * pixel_scale;
normal_out[2] = normal_in[2] * pixel_scale;
}
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_filter_guiding_set_fake_albedo(float *guiding_buffer,
int guiding_pass_stride,
int guiding_pass_albedo,
int width,
int height)
{
kernel_assert(guiding_pass_albedo != PASS_UNUSED);
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t guiding_pixel_index = x + y * width;
float *guiding_pixel = guiding_buffer + guiding_pixel_index * guiding_pass_stride;
float *albedo_out = guiding_pixel + guiding_pass_albedo;
albedo_out[0] = 0.5f;
albedo_out[1] = 0.5f;
albedo_out[2] = 0.5f;
}
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_filter_color_postprocess(float *render_buffer,
int full_x,
int full_y,
int width,
int height,
int offset,
int stride,
int pass_stride,
int num_samples,
int pass_noisy,
int pass_denoised,
int pass_sample_count,
int num_components,
bool use_compositing)
{
const int work_index = ccl_gpu_global_id_x();
const int y = work_index / width;
const int x = work_index - y * width;
if (x >= width || y >= height) {
return;
}
const uint64_t render_pixel_index = offset + (x + full_x) + (y + full_y) * stride;
float *buffer = render_buffer + render_pixel_index * pass_stride;
float pixel_scale;
if (pass_sample_count == PASS_UNUSED) {
pixel_scale = num_samples;
}
else {
pixel_scale = __float_as_uint(buffer[pass_sample_count]);
}
float *denoised_pixel = buffer + pass_denoised;
denoised_pixel[0] *= pixel_scale;
denoised_pixel[1] *= pixel_scale;
denoised_pixel[2] *= pixel_scale;
if (num_components == 3) {
/* Pass without alpha channel. */
}
else if (!use_compositing) {
/* Currently compositing passes are either 3-component (derived by dividing light passes)
* or do not have transparency (shadow catcher). Implicitly rely on this logic, as it
* simplifies logic and avoids extra memory allocation. */
const float *noisy_pixel = buffer + pass_noisy;
denoised_pixel[3] = noisy_pixel[3];
}
else {
/* Assigning to zero since this is a default alpha value for 3-component passes, and it
* is an opaque pixel for 4 component passes. */
denoised_pixel[3] = 0;
}
}
/* --------------------------------------------------------------------
* Shadow catcher.
*/
ccl_gpu_kernel(GPU_KERNEL_BLOCK_NUM_THREADS, GPU_KERNEL_MAX_REGISTERS)
kernel_gpu_integrator_shadow_catcher_count_possible_splits(int num_states,
uint *num_possible_splits)
{
const int state = ccl_gpu_global_id_x();
bool can_split = false;
if (state < num_states) {
can_split = kernel_shadow_catcher_path_can_split(nullptr, state);
}
/* NOTE: All threads specified in the mask must execute the intrinsic. */
const uint can_split_mask = ccl_gpu_ballot(can_split);
const int lane_id = ccl_gpu_thread_idx_x % ccl_gpu_warp_size;
if (lane_id == 0) {
atomic_fetch_and_add_uint32(num_possible_splits, __popc(can_split_mask));
}
}