Files
blender/intern/cycles/kernel/integrator/shade_surface.h

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

602 lines
23 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#pragma once
#include "kernel/film/accumulate.h"
#include "kernel/film/passes.h"
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
#include "kernel/integrator/mnee.h"
#include "kernel/integrator/path_state.h"
#include "kernel/integrator/shader_eval.h"
#include "kernel/integrator/subsurface.h"
#include "kernel/integrator/volume_stack.h"
#include "kernel/light/light.h"
#include "kernel/light/sample.h"
CCL_NAMESPACE_BEGIN
ccl_device_forceinline void integrate_surface_shader_setup(KernelGlobals kg,
ConstIntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *sd)
{
Intersection isect ccl_optional_struct_init;
integrator_state_read_isect(kg, state, &isect);
Ray ray ccl_optional_struct_init;
integrator_state_read_ray(kg, state, &ray);
shader_setup_from_ray(kg, sd, &ray, &isect);
}
#ifdef __HOLDOUT__
ccl_device_forceinline bool integrate_surface_holdout(KernelGlobals kg,
ConstIntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *sd,
ccl_global float *ccl_restrict render_buffer)
{
/* Write holdout transparency to render buffer and stop if fully holdout. */
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
if (((sd->flag & SD_HOLDOUT) || (sd->object_flag & SD_OBJECT_HOLDOUT_MASK)) &&
(path_flag & PATH_RAY_TRANSPARENT_BACKGROUND)) {
const float3 holdout_weight = shader_holdout_apply(kg, sd);
if (kernel_data.background.transparent) {
const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
const float transparent = average(holdout_weight * throughput);
kernel_accum_holdout(kg, state, path_flag, transparent, render_buffer);
}
if (isequal_float3(holdout_weight, one_float3())) {
return false;
}
}
return true;
}
#endif /* __HOLDOUT__ */
#ifdef __EMISSION__
ccl_device_forceinline void integrate_surface_emission(KernelGlobals kg,
ConstIntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const ShaderData *sd,
ccl_global float *ccl_restrict
render_buffer)
{
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
/* Evaluate emissive closure. */
float3 L = shader_emissive_eval(sd);
# ifdef __HAIR__
if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS) &&
(sd->type & PRIMITIVE_TRIANGLE))
# else
if (!(path_flag & PATH_RAY_MIS_SKIP) && (sd->flag & SD_USE_MIS))
# endif
{
const float bsdf_pdf = INTEGRATOR_STATE(state, path, mis_ray_pdf);
const float t = sd->ray_length + INTEGRATOR_STATE(state, path, mis_ray_t);
/* Multiple importance sampling, get triangle light pdf,
* and compute weight with respect to BSDF pdf. */
float pdf = triangle_light_pdf(kg, sd, t);
float mis_weight = light_sample_mis_weight_forward(kg, bsdf_pdf, pdf);
L *= mis_weight;
}
const float3 throughput = INTEGRATOR_STATE(state, path, throughput);
kernel_accum_emission(
kg, state, throughput * L, render_buffer, object_lightgroup(kg, sd->object));
}
#endif /* __EMISSION__ */
#ifdef __EMISSION__
/* Path tracing: sample point on light and evaluate light shader, then
* queue shadow ray to be traced. */
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
template<uint node_feature_mask>
ccl_device_forceinline void integrate_surface_direct_light(KernelGlobals kg,
IntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *sd,
ccl_private const RNGState *rng_state)
{
/* Test if there is a light or BSDF that needs direct light. */
if (!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL))) {
return;
}
/* Sample position on a light. */
LightSample ls ccl_optional_struct_init;
{
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
const uint bounce = INTEGRATOR_STATE(state, path, bounce);
float light_u, light_v;
path_state_rng_2D(kg, rng_state, PRNG_LIGHT_U, &light_u, &light_v);
if (!light_distribution_sample_from_position(
kg, light_u, light_v, sd->time, sd->P, bounce, path_flag, &ls)) {
return;
}
}
kernel_assert(ls.pdf != 0.0f);
/* Evaluate light shader.
*
* TODO: can we reuse sd memory? In theory we can move this after
* integrate_surface_bounce, evaluate the BSDF, and only then evaluate
* the light shader. This could also move to its own kernel, for
* non-constant light sources. */
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
ShaderDataCausticsStorage emission_sd_storage;
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *emission_sd = AS_SHADER_DATA(&emission_sd_storage);
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
Ray ray ccl_optional_struct_init;
BsdfEval bsdf_eval ccl_optional_struct_init;
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
const bool is_transmission = shader_bsdf_is_transmission(sd, ls.D);
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
# ifdef __MNEE__
bool skip_nee = false;
IF_KERNEL_NODES_FEATURE(RAYTRACE)
{
if (ls.lamp != LAMP_NONE) {
/* Is this a caustic light? */
const bool use_caustics = kernel_tex_fetch(__lights, ls.lamp).use_caustics;
if (use_caustics) {
/* Are we on a caustic caster? */
if (is_transmission && (sd->object_flag & SD_OBJECT_CAUSTICS_CASTER))
return;
/* Are we on a caustic receiver? */
if (!is_transmission && (sd->object_flag & SD_OBJECT_CAUSTICS_RECEIVER))
skip_nee = kernel_path_mnee_sample(
kg, state, sd, emission_sd, rng_state, &ls, &bsdf_eval);
}
}
}
if (skip_nee) {
/* Create shadow ray after successful manifold walk:
* emission_sd contains the last interface intersection and
* the light sample ls has been updated */
light_sample_to_surface_shadow_ray(kg, emission_sd, &ls, &ray);
}
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
else
# endif /* __MNEE__ */
{
const float3 light_eval = light_sample_shader_eval(kg, state, emission_sd, &ls, sd->time);
if (is_zero(light_eval)) {
return;
}
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
/* Evaluate BSDF. */
const float bsdf_pdf = shader_bsdf_eval(kg, sd, ls.D, is_transmission, &bsdf_eval, ls.shader);
bsdf_eval_mul3(&bsdf_eval, light_eval / ls.pdf);
if (ls.shader & SHADER_USE_MIS) {
const float mis_weight = light_sample_mis_weight_nee(kg, ls.pdf, bsdf_pdf);
bsdf_eval_mul(&bsdf_eval, mis_weight);
}
/* Path termination. */
const float terminate = path_state_rng_light_termination(kg, rng_state);
if (light_sample_terminate(kg, &ls, &bsdf_eval, terminate)) {
return;
}
/* Create shadow ray. */
light_sample_to_surface_shadow_ray(kg, sd, &ls, &ray);
}
const bool is_light = light_sample_is_light(&ls);
/* Branch off shadow kernel. */
INTEGRATOR_SHADOW_PATH_INIT(
shadow_state, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SHADOW, shadow);
/* Copy volume stack and enter/exit volume. */
integrator_state_copy_volume_stack_to_shadow(kg, shadow_state, state);
if (is_transmission) {
# ifdef __VOLUME__
shadow_volume_stack_enter_exit(kg, shadow_state, sd);
# endif
}
/* Write shadow ray and associated state to global memory. */
integrator_state_write_shadow_ray(kg, shadow_state, &ray);
// Save memory by storing the light and object indices in the shadow_isect
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, object) = ray.self.object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, prim) = ray.self.prim;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, object) = ray.self.light_object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, prim) = ray.self.light_prim;
/* Copy state from main path to shadow path. */
const uint16_t bounce = INTEGRATOR_STATE(state, path, bounce);
const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag);
shadow_flag |= (is_light) ? PATH_RAY_SHADOW_FOR_LIGHT : 0;
const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * bsdf_eval_sum(&bsdf_eval);
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
packed_float3 pass_diffuse_weight;
packed_float3 pass_glossy_weight;
if (shadow_flag & PATH_RAY_ANY_PASS) {
/* Indirect bounce, use weights from earlier surface or volume bounce. */
pass_diffuse_weight = INTEGRATOR_STATE(state, path, pass_diffuse_weight);
pass_glossy_weight = INTEGRATOR_STATE(state, path, pass_glossy_weight);
}
else {
/* Direct light, use BSDFs at this bounce. */
shadow_flag |= PATH_RAY_SURFACE_PASS;
pass_diffuse_weight = packed_float3(bsdf_eval_pass_diffuse_weight(&bsdf_eval));
pass_glossy_weight = packed_float3(bsdf_eval_pass_glossy_weight(&bsdf_eval));
}
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_diffuse_weight) = pass_diffuse_weight;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, pass_glossy_weight) = pass_glossy_weight;
}
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
state, path, render_pixel_index);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_offset) = INTEGRATOR_STATE(
state, path, rng_offset);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_hash) = INTEGRATOR_STATE(
state, path, rng_hash);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, sample) = INTEGRATOR_STATE(
state, path, sample);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, flag) = shadow_flag;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, bounce) = bounce;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transparent_bounce) = transparent_bounce;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, diffuse_bounce) = INTEGRATOR_STATE(
state, path, diffuse_bounce);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, glossy_bounce) = INTEGRATOR_STATE(
state, path, glossy_bounce);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transmission_bounce) = INTEGRATOR_STATE(
state, path, transmission_bounce);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, throughput) = throughput;
if (kernel_data.kernel_features & KERNEL_FEATURE_SHADOW_PASS) {
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, unshadowed_throughput) = throughput;
}
/* Write Lightgroup, +1 as lightgroup is int but we need to encode into a uint8_t. */
INTEGRATOR_STATE_WRITE(
shadow_state, shadow_path, lightgroup) = (ls.type != LIGHT_BACKGROUND) ?
ls.group + 1 :
kernel_data.background.lightgroup + 1;
}
#endif
/* Path tracing: bounce off or through surface with new direction. */
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_device_forceinline int integrate_surface_bsdf_bssrdf_bounce(
KernelGlobals kg,
IntegratorState state,
ccl_private ShaderData *sd,
ccl_private const RNGState *rng_state)
{
/* Sample BSDF or BSSRDF. */
if (!(sd->flag & (SD_BSDF | SD_BSSRDF))) {
return LABEL_NONE;
}
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private const ShaderClosure *sc = shader_bsdf_bssrdf_pick(sd, &bsdf_u);
#ifdef __SUBSURFACE__
/* BSSRDF closure, we schedule subsurface intersection kernel. */
if (CLOSURE_IS_BSSRDF(sc->type)) {
return subsurface_bounce(kg, state, sd, sc);
}
#endif
/* BSDF closure, sample direction. */
float bsdf_pdf;
BsdfEval bsdf_eval ccl_optional_struct_init;
float3 bsdf_omega_in ccl_optional_struct_init;
differential3 bsdf_domega_in ccl_optional_struct_init;
int label;
label = shader_bsdf_sample_closure(
kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval)) {
return LABEL_NONE;
}
/* Setup ray. Note that clipping works through transparent bounces. */
INTEGRATOR_STATE_WRITE(state, ray, P) = sd->P;
INTEGRATOR_STATE_WRITE(state, ray, D) = normalize(bsdf_omega_in);
INTEGRATOR_STATE_WRITE(state, ray, t) = (label & LABEL_TRANSPARENT) ?
INTEGRATOR_STATE(state, ray, t) - sd->ray_length :
FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
INTEGRATOR_STATE_WRITE(state, ray, dP) = differential_make_compact(sd->dP);
INTEGRATOR_STATE_WRITE(state, ray, dD) = differential_make_compact(bsdf_domega_in);
#endif
/* Update throughput. */
float3 throughput = INTEGRATOR_STATE(state, path, throughput);
throughput *= bsdf_eval_sum(&bsdf_eval) / bsdf_pdf;
INTEGRATOR_STATE_WRITE(state, path, throughput) = throughput;
if (kernel_data.kernel_features & KERNEL_FEATURE_LIGHT_PASSES) {
if (INTEGRATOR_STATE(state, path, bounce) == 0) {
INTEGRATOR_STATE_WRITE(state, path, pass_diffuse_weight) = bsdf_eval_pass_diffuse_weight(
&bsdf_eval);
INTEGRATOR_STATE_WRITE(state, path, pass_glossy_weight) = bsdf_eval_pass_glossy_weight(
&bsdf_eval);
}
}
/* Update path state */
if (label & LABEL_TRANSPARENT) {
INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) += sd->ray_length;
}
else {
INTEGRATOR_STATE_WRITE(state, path, mis_ray_pdf) = bsdf_pdf;
INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) = 0.0f;
INTEGRATOR_STATE_WRITE(state, path, min_ray_pdf) = fminf(
bsdf_pdf, INTEGRATOR_STATE(state, path, min_ray_pdf));
}
path_state_next(kg, state, label);
return label;
}
#ifdef __VOLUME__
ccl_device_forceinline bool integrate_surface_volume_only_bounce(IntegratorState state,
Cycles: Kernel address space changes for MSL This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
2021-10-14 13:53:40 +01:00
ccl_private ShaderData *sd)
{
if (!path_state_volume_next(state)) {
return LABEL_NONE;
}
/* Setup ray position, direction stays unchanged. */
INTEGRATOR_STATE_WRITE(state, ray, P) = sd->P;
/* Clipping works through transparent. */
INTEGRATOR_STATE_WRITE(state, ray, t) -= sd->ray_length;
# ifdef __RAY_DIFFERENTIALS__
INTEGRATOR_STATE_WRITE(state, ray, dP) = differential_make_compact(sd->dP);
# endif
INTEGRATOR_STATE_WRITE(state, path, mis_ray_t) += sd->ray_length;
return LABEL_TRANSMIT | LABEL_TRANSPARENT;
}
#endif
#if defined(__AO__)
ccl_device_forceinline void integrate_surface_ao(KernelGlobals kg,
IntegratorState state,
ccl_private const ShaderData *ccl_restrict sd,
ccl_private const RNGState *ccl_restrict
rng_state,
ccl_global float *ccl_restrict render_buffer)
{
if (!(kernel_data.kernel_features & KERNEL_FEATURE_AO_ADDITIVE) &&
!(INTEGRATOR_STATE(state, path, flag) & PATH_RAY_CAMERA)) {
return;
}
float bsdf_u, bsdf_v;
path_state_rng_2D(kg, rng_state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
float3 ao_N;
const float3 ao_weight = shader_bsdf_ao(
kg, sd, kernel_data.integrator.ao_additive_factor, &ao_N);
float3 ao_D;
float ao_pdf;
sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
bool skip_self = true;
Ray ray ccl_optional_struct_init;
ray.P = shadow_ray_offset(kg, sd, ao_D, &skip_self);
ray.D = ao_D;
ray.t = kernel_data.integrator.ao_bounces_distance;
ray.time = sd->time;
ray.self.object = (skip_self) ? sd->object : OBJECT_NONE;
ray.self.prim = (skip_self) ? sd->prim : PRIM_NONE;
ray.self.light_object = OBJECT_NONE;
ray.self.light_prim = PRIM_NONE;
ray.dP = differential_zero_compact();
ray.dD = differential_zero_compact();
/* Branch off shadow kernel. */
INTEGRATOR_SHADOW_PATH_INIT(shadow_state, state, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SHADOW, ao);
/* Copy volume stack and enter/exit volume. */
integrator_state_copy_volume_stack_to_shadow(kg, shadow_state, state);
/* Write shadow ray and associated state to global memory. */
integrator_state_write_shadow_ray(kg, shadow_state, &ray);
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, object) = ray.self.object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 0, prim) = ray.self.prim;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, object) = ray.self.light_object;
INTEGRATOR_STATE_ARRAY_WRITE(shadow_state, shadow_isect, 1, prim) = ray.self.light_prim;
/* Copy state from main path to shadow path. */
const uint16_t bounce = INTEGRATOR_STATE(state, path, bounce);
const uint16_t transparent_bounce = INTEGRATOR_STATE(state, path, transparent_bounce);
uint32_t shadow_flag = INTEGRATOR_STATE(state, path, flag) | PATH_RAY_SHADOW_FOR_AO;
const float3 throughput = INTEGRATOR_STATE(state, path, throughput) * shader_bsdf_alpha(kg, sd);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, render_pixel_index) = INTEGRATOR_STATE(
state, path, render_pixel_index);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_offset) = INTEGRATOR_STATE(
state, path, rng_offset);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, rng_hash) = INTEGRATOR_STATE(
state, path, rng_hash);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, sample) = INTEGRATOR_STATE(
state, path, sample);
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, flag) = shadow_flag;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, bounce) = bounce;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, transparent_bounce) = transparent_bounce;
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, throughput) = throughput;
if (kernel_data.kernel_features & KERNEL_FEATURE_AO_ADDITIVE) {
INTEGRATOR_STATE_WRITE(shadow_state, shadow_path, unshadowed_throughput) = ao_weight;
}
}
#endif /* defined(__AO__) */
template<uint node_feature_mask>
ccl_device bool integrate_surface(KernelGlobals kg,
IntegratorState state,
ccl_global float *ccl_restrict render_buffer)
{
PROFILING_INIT_FOR_SHADER(kg, PROFILING_SHADE_SURFACE_SETUP);
/* Setup shader data. */
ShaderData sd;
integrate_surface_shader_setup(kg, state, &sd);
PROFILING_SHADER(sd.object, sd.shader);
int continue_path_label = 0;
/* Skip most work for volume bounding surface. */
#ifdef __VOLUME__
if (!(sd.flag & SD_HAS_ONLY_VOLUME)) {
#endif
const uint32_t path_flag = INTEGRATOR_STATE(state, path, flag);
#ifdef __SUBSURFACE__
/* Can skip shader evaluation for BSSRDF exit point without bump mapping. */
if (!(path_flag & PATH_RAY_SUBSURFACE) || ((sd.flag & SD_HAS_BSSRDF_BUMP)))
#endif
{
/* Evaluate shader. */
PROFILING_EVENT(PROFILING_SHADE_SURFACE_EVAL);
shader_eval_surface<node_feature_mask>(kg, state, &sd, render_buffer, path_flag);
/* Initialize additional RNG for BSDFs. */
if (sd.flag & SD_BSDF_NEEDS_LCG) {
sd.lcg_state = lcg_state_init(INTEGRATOR_STATE(state, path, rng_hash),
INTEGRATOR_STATE(state, path, rng_offset),
INTEGRATOR_STATE(state, path, sample),
0xb4bc3953);
}
}
#ifdef __SUBSURFACE__
if (path_flag & PATH_RAY_SUBSURFACE) {
/* When coming from inside subsurface scattering, setup a diffuse
* closure to perform lighting at the exit point. */
subsurface_shader_data_setup(kg, state, &sd, path_flag);
INTEGRATOR_STATE_WRITE(state, path, flag) &= ~PATH_RAY_SUBSURFACE;
}
#endif
shader_prepare_surface_closures(kg, state, &sd, path_flag);
#ifdef __HOLDOUT__
/* Evaluate holdout. */
if (!integrate_surface_holdout(kg, state, &sd, render_buffer)) {
return false;
}
#endif
#ifdef __EMISSION__
/* Write emission. */
if (sd.flag & SD_EMISSION) {
integrate_surface_emission(kg, state, &sd, render_buffer);
}
#endif
#ifdef __PASSES__
/* Write render passes. */
PROFILING_EVENT(PROFILING_SHADE_SURFACE_PASSES);
kernel_write_data_passes(kg, state, &sd, render_buffer);
#endif
/* Load random number state. */
RNGState rng_state;
path_state_rng_load(state, &rng_state);
/* Perform path termination. Most paths have already been terminated in
* the intersect_closest kernel, this is just for emission and for dividing
* throughput by the probability at the right moment.
*
* Also ensure we don't do it twice for SSS at both the entry and exit point. */
if (!(path_flag & PATH_RAY_SUBSURFACE)) {
const float probability = (path_flag & PATH_RAY_TERMINATE_ON_NEXT_SURFACE) ?
0.0f :
INTEGRATOR_STATE(state, path, continuation_probability);
if (probability == 0.0f) {
return false;
}
else if (probability != 1.0f) {
INTEGRATOR_STATE_WRITE(state, path, throughput) /= probability;
}
}
#ifdef __DENOISING_FEATURES__
kernel_write_denoising_features_surface(kg, state, &sd, render_buffer);
#endif
/* Direct light. */
PROFILING_EVENT(PROFILING_SHADE_SURFACE_DIRECT_LIGHT);
Cycles: approximate shadow caustics using manifold next event estimation This adds support for selective rendering of caustics in shadows of refractive objects. Example uses are rendering of underwater caustics and eye caustics. This is based on "Manifold Next Event Estimation", a method developed for production rendering. The idea is to selectively enable shadow caustics on a few objects in the scene where they have a big visual impact, without impacting render performance for the rest of the scene. The Shadow Caustic option must be manually enabled on light, caustic receiver and caster objects. For such light paths, the Filter Glossy option will be ignored and replaced by sharp caustics. Currently this method has a various limitations: * Only caustics in shadows of refractive objects work, which means no caustics from reflection or caustics that outside shadows. Only up to 4 refractive caustic bounces are supported. * Caustic caster objects should have smooth normals. * Not currently support for Metal GPU rendering. In the future this method may be extended for more general caustics. TECHNICAL DETAILS This code adds manifold next event estimation through refractive surface(s) as a new sampling technique for direct lighting, i.e. finding the point on the refractive surface(s) along the path to a light sample, which satisfies Fermat's principle for a given microfacet normal and the path's end points. This technique involves walking on the "specular manifold" using a pseudo newton solver. Such a manifold is defined by the specular constraint matrix from the manifold exploration framework [2]. For each refractive interface, this constraint is defined by enforcing that the generalized half-vector projection onto the interface local tangent plane is null. The newton solver guides the walk by linearizing the manifold locally before reprojecting the linear solution onto the refractive surface. See paper [1] for more details about the technique itself and [3] for the half-vector light transport formulation, from which it is derived. [1] Manifold Next Event Estimation Johannes Hanika, Marc Droske, and Luca Fascione. 2015. Comput. Graph. Forum 34, 4 (July 2015), 87–97. https://jo.dreggn.org/home/2015_mnee.pdf [2] Manifold exploration: a Markov Chain Monte Carlo technique for rendering scenes with difficult specular transport Wenzel Jakob and Steve Marschner. 2012. ACM Trans. Graph. 31, 4, Article 58 (July 2012), 13 pages. https://www.cs.cornell.edu/projects/manifolds-sg12/ [3] The Natural-Constraint Representation of the Path Space for Efficient Light Transport Simulation. Anton S. Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. ACM Trans. Graph. 33, 4, Article 102 (July 2014), 13 pages. https://cg.ivd.kit.edu/english/HSLT.php The code for this samping technique was inserted at the light sampling stage (direct lighting). If the walk is successful, it turns off path regularization using a specialized flag in the path state (PATH_MNEE_SUCCESS). This flag tells the integrator not to blur the brdf roughness further down the path (in a child ray created from BSDF sampling). In addition, using a cascading mechanism of flag values, we cull connections to caustic lights for this and children rays, which should be resolved through MNEE. This mechanism also cancels the MIS bsdf counter part at the casutic receiver depth, in essence leaving MNEE as the only sampling technique from receivers through refractive casters to caustic lights. This choice might not be optimal when the light gets large wrt to the receiver, though this is usually not when you want to use MNEE. This connection culling strategy removes a fair amount of fireflies, at the cost of introducing a slight bias. Because of the selective nature of the culling mechanism, reflective caustics still benefit from the native path regularization, which further removes fireflies on other surfaces (bouncing light off casters). Differential Revision: https://developer.blender.org/D13533
2022-04-01 15:44:24 +02:00
integrate_surface_direct_light<node_feature_mask>(kg, state, &sd, &rng_state);
#if defined(__AO__)
/* Ambient occlusion pass. */
if (kernel_data.kernel_features & KERNEL_FEATURE_AO) {
PROFILING_EVENT(PROFILING_SHADE_SURFACE_AO);
integrate_surface_ao(kg, state, &sd, &rng_state, render_buffer);
}
#endif
PROFILING_EVENT(PROFILING_SHADE_SURFACE_INDIRECT_LIGHT);
continue_path_label = integrate_surface_bsdf_bssrdf_bounce(kg, state, &sd, &rng_state);
#ifdef __VOLUME__
}
else {
PROFILING_EVENT(PROFILING_SHADE_SURFACE_INDIRECT_LIGHT);
continue_path_label = integrate_surface_volume_only_bounce(state, &sd);
}
if (continue_path_label & LABEL_TRANSMIT) {
/* Enter/Exit volume. */
volume_stack_enter_exit(kg, state, &sd);
}
#endif
return continue_path_label != 0;
}
template<uint node_feature_mask = KERNEL_FEATURE_NODE_MASK_SURFACE & ~KERNEL_FEATURE_NODE_RAYTRACE,
int current_kernel = DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE>
ccl_device_forceinline void integrator_shade_surface(KernelGlobals kg,
IntegratorState state,
ccl_global float *ccl_restrict render_buffer)
{
if (integrate_surface<node_feature_mask>(kg, state, render_buffer)) {
if (INTEGRATOR_STATE(state, path, flag) & PATH_RAY_SUBSURFACE) {
INTEGRATOR_PATH_NEXT(current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_SUBSURFACE);
}
else {
kernel_assert(INTEGRATOR_STATE(state, ray, t) != 0.0f);
INTEGRATOR_PATH_NEXT(current_kernel, DEVICE_KERNEL_INTEGRATOR_INTERSECT_CLOSEST);
}
}
else {
INTEGRATOR_PATH_TERMINATE(current_kernel);
}
}
ccl_device_forceinline void integrator_shade_surface_raytrace(
KernelGlobals kg, IntegratorState state, ccl_global float *ccl_restrict render_buffer)
{
integrator_shade_surface<KERNEL_FEATURE_NODE_MASK_SURFACE,
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE>(
kg, state, render_buffer);
}
CCL_NAMESPACE_END