Cycles: Split BVH implementations into separate files

This commit is contained in:
Sergey Sharybin
2017-04-13 10:55:46 +02:00
parent c8548871ac
commit 0097f9b298
7 changed files with 1080 additions and 948 deletions

View File

@@ -8,6 +8,8 @@ set(INC_SYS
set(SRC
bvh.cpp
bvh2.cpp
bvh4.cpp
bvh_binning.cpp
bvh_build.cpp
bvh_node.cpp
@@ -18,6 +20,8 @@ set(SRC
set(SRC_HEADERS
bvh.h
bvh2.h
bvh4.h
bvh_binning.h
bvh_build.h
bvh_node.h

View File

@@ -15,45 +15,32 @@
* limitations under the License.
*/
#include "bvh/bvh.h"
#include "render/mesh.h"
#include "render/object.h"
#include "render/scene.h"
#include "render/curves.h"
#include "bvh/bvh.h"
#include "bvh/bvh2.h"
#include "bvh/bvh4.h"
#include "bvh/bvh_build.h"
#include "bvh/bvh_node.h"
#include "bvh/bvh_params.h"
#include "bvh/bvh_unaligned.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_map.h"
#include "util/util_progress.h"
#include "util/util_system.h"
#include "util/util_types.h"
#include "util/util_math.h"
CCL_NAMESPACE_BEGIN
/* Pack Utility */
struct BVHStackEntry
BVHStackEntry::BVHStackEntry(const BVHNode *n, int i)
: node(n), idx(i)
{
const BVHNode *node;
int idx;
}
BVHStackEntry(const BVHNode* n = 0, int i = 0)
: node(n), idx(i)
{
}
int encodeIdx() const
{
return (node->is_leaf())? ~idx: idx;
}
};
int BVHStackEntry::encodeIdx() const
{
return (node->is_leaf())? ~idx: idx;
}
/* BVH */
@@ -418,832 +405,4 @@ void BVH::pack_instances(size_t nodes_size, size_t leaf_nodes_size)
}
}
/* Regular BVH */
static bool node_bvh_is_unaligned(const BVHNode *node)
{
const BVHNode *node0 = node->get_child(0),
*node1 = node->get_child(1);
return node0->is_unaligned || node1->is_unaligned;
}
BVH2::BVH2(const BVHParams& params_, const vector<Object*>& objects_)
: BVH(params_, objects_)
{
}
void BVH2::pack_leaf(const BVHStackEntry& e,
const LeafNode *leaf)
{
assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
float4 data[BVH_NODE_LEAF_SIZE];
memset(data, 0, sizeof(data));
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
/* object */
data[0].x = __int_as_float(~(leaf->lo));
data[0].y = __int_as_float(0);
}
else {
/* triangle */
data[0].x = __int_as_float(leaf->lo);
data[0].y = __int_as_float(leaf->hi);
}
data[0].z = __uint_as_float(leaf->visibility);
if(leaf->num_triangles() != 0) {
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
}
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
}
void BVH2::pack_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
if(e0.node->is_unaligned || e1.node->is_unaligned) {
pack_unaligned_inner(e, e0, e1);
} else {
pack_aligned_inner(e, e0, e1);
}
}
void BVH2::pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
pack_aligned_node(e.idx,
e0.node->bounds, e1.node->bounds,
e0.encodeIdx(), e1.encodeIdx(),
e0.node->visibility, e1.node->visibility);
}
void BVH2::pack_aligned_node(int idx,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1)
{
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
assert(c0 < 0 || c0 < pack.nodes.size());
assert(c1 < 0 || c1 < pack.nodes.size());
int4 data[BVH_NODE_SIZE] = {
make_int4(visibility0 & ~PATH_RAY_NODE_UNALIGNED,
visibility1 & ~PATH_RAY_NODE_UNALIGNED,
c0, c1),
make_int4(__float_as_int(b0.min.x),
__float_as_int(b1.min.x),
__float_as_int(b0.max.x),
__float_as_int(b1.max.x)),
make_int4(__float_as_int(b0.min.y),
__float_as_int(b1.min.y),
__float_as_int(b0.max.y),
__float_as_int(b1.max.y)),
make_int4(__float_as_int(b0.min.z),
__float_as_int(b1.min.z),
__float_as_int(b0.max.z),
__float_as_int(b1.max.z)),
};
memcpy(&pack.nodes[idx], data, sizeof(int4)*BVH_NODE_SIZE);
}
void BVH2::pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
pack_unaligned_node(e.idx,
e0.node->get_aligned_space(),
e1.node->get_aligned_space(),
e0.node->bounds,
e1.node->bounds,
e0.encodeIdx(), e1.encodeIdx(),
e0.node->visibility, e1.node->visibility);
}
void BVH2::pack_unaligned_node(int idx,
const Transform& aligned_space0,
const Transform& aligned_space1,
const BoundBox& bounds0,
const BoundBox& bounds1,
int c0, int c1,
uint visibility0, uint visibility1)
{
assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
assert(c0 < 0 || c0 < pack.nodes.size());
assert(c1 < 0 || c1 < pack.nodes.size());
float4 data[BVH_UNALIGNED_NODE_SIZE];
Transform space0 = BVHUnaligned::compute_node_transform(bounds0,
aligned_space0);
Transform space1 = BVHUnaligned::compute_node_transform(bounds1,
aligned_space1);
data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
__int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
__int_as_float(c0),
__int_as_float(c1));
data[1] = space0.x;
data[2] = space0.y;
data[3] = space0.z;
data[4] = space1.x;
data[5] = space1.y;
data[6] = space1.z;
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_NODE_SIZE);
}
void BVH2::pack_nodes(const BVHNode *root)
{
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
assert(num_leaf_nodes <= num_nodes);
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
size_t node_size;
if(params.use_unaligned_nodes) {
const size_t num_unaligned_nodes =
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
(num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
}
else {
node_size = num_inner_nodes * BVH_NODE_SIZE;
}
/* Resize arrays */
pack.nodes.clear();
pack.leaf_nodes.clear();
/* For top level BVH, first merge existing BVH's so we know the offsets. */
if(params.top_level) {
pack_instances(node_size, num_leaf_nodes*BVH_NODE_LEAF_SIZE);
}
else {
pack.nodes.resize(node_size);
pack.leaf_nodes.resize(num_leaf_nodes*BVH_NODE_LEAF_SIZE);
}
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
vector<BVHStackEntry> stack;
stack.reserve(BVHParams::MAX_DEPTH*2);
if(root->is_leaf()) {
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
}
else {
stack.push_back(BVHStackEntry(root, nextNodeIdx));
nextNodeIdx += node_bvh_is_unaligned(root)
? BVH_UNALIGNED_NODE_SIZE
: BVH_NODE_SIZE;
}
while(stack.size()) {
BVHStackEntry e = stack.back();
stack.pop_back();
if(e.node->is_leaf()) {
/* leaf node */
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
pack_leaf(e, leaf);
}
else {
/* innner node */
int idx[2];
for(int i = 0; i < 2; ++i) {
if(e.node->get_child(i)->is_leaf()) {
idx[i] = nextLeafNodeIdx++;
}
else {
idx[i] = nextNodeIdx;
nextNodeIdx += node_bvh_is_unaligned(e.node->get_child(i))
? BVH_UNALIGNED_NODE_SIZE
: BVH_NODE_SIZE;
}
}
stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));
pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]);
}
}
assert(node_size == nextNodeIdx);
/* root index to start traversal at, to handle case of single leaf node */
pack.root_index = (root->is_leaf())? -1: 0;
}
void BVH2::refit_nodes()
{
assert(!params.top_level);
BoundBox bbox = BoundBox::empty;
uint visibility = 0;
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
}
void BVH2::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
{
if(leaf) {
assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
const int4 *data = &pack.leaf_nodes[idx];
const int c0 = data[0].x;
const int c1 = data[0].y;
/* refit leaf node */
for(int prim = c0; prim < c1; prim++) {
int pidx = pack.prim_index[prim];
int tob = pack.prim_object[prim];
Object *ob = objects[tob];
if(pidx == -1) {
/* object instance */
bbox.grow(ob->bounds);
}
else {
/* primitives */
const Mesh *mesh = ob->mesh;
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
/* curves */
int str_offset = (params.top_level)? mesh->curve_offset: 0;
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
visibility |= PATH_RAY_CURVE;
/* motion curves */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->curve_keys.size();
size_t steps = mesh->motion_steps - 1;
float3 *key_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
}
}
}
else {
/* triangles */
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
const float3 *vpos = &mesh->verts[0];
triangle.bounds_grow(vpos, bbox);
/* motion triangles */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->verts.size();
size_t steps = mesh->motion_steps - 1;
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
}
}
}
}
visibility |= ob->visibility;
}
/* TODO(sergey): De-duplicate with pack_leaf(). */
float4 leaf_data[BVH_NODE_LEAF_SIZE];
leaf_data[0].x = __int_as_float(c0);
leaf_data[0].y = __int_as_float(c1);
leaf_data[0].z = __uint_as_float(visibility);
leaf_data[0].w = __uint_as_float(data[0].w);
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
}
else {
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
const int4 *data = &pack.nodes[idx];
const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
const int c0 = data[0].z;
const int c1 = data[0].w;
/* refit inner node, set bbox from children */
BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
uint visibility0 = 0, visibility1 = 0;
refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0);
refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1);
if(is_unaligned) {
Transform aligned_space = transform_identity();
pack_unaligned_node(idx,
aligned_space, aligned_space,
bbox0, bbox1,
c0, c1,
visibility0,
visibility1);
}
else {
pack_aligned_node(idx,
bbox0, bbox1,
c0, c1,
visibility0,
visibility1);
}
bbox.grow(bbox0);
bbox.grow(bbox1);
visibility = visibility0|visibility1;
}
}
/* BVH4 */
/* Can we avoid this somehow or make more generic?
*
* Perhaps we can merge nodes in actual tree and make our
* life easier all over the place.
*/
static bool node_qbvh_is_unaligned(const BVHNode *node)
{
const BVHNode *node0 = node->get_child(0),
*node1 = node->get_child(1);
bool has_unaligned = false;
if(node0->is_leaf()) {
has_unaligned |= node0->is_unaligned;
}
else {
has_unaligned |= node0->get_child(0)->is_unaligned;
has_unaligned |= node0->get_child(1)->is_unaligned;
}
if(node1->is_leaf()) {
has_unaligned |= node1->is_unaligned;
}
else {
has_unaligned |= node1->get_child(0)->is_unaligned;
has_unaligned |= node1->get_child(1)->is_unaligned;
}
return has_unaligned;
}
BVH4::BVH4(const BVHParams& params_, const vector<Object*>& objects_)
: BVH(params_, objects_)
{
params.use_qbvh = true;
}
void BVH4::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf)
{
float4 data[BVH_QNODE_LEAF_SIZE];
memset(data, 0, sizeof(data));
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
/* object */
data[0].x = __int_as_float(~(leaf->lo));
data[0].y = __int_as_float(0);
}
else {
/* triangle */
data[0].x = __int_as_float(leaf->lo);
data[0].y = __int_as_float(leaf->hi);
}
data[0].z = __uint_as_float(leaf->visibility);
if(leaf->num_triangles() != 0) {
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
}
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
}
void BVH4::pack_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
bool has_unaligned = false;
/* Check whether we have to create unaligned node or all nodes are aligned
* and we can cut some corner here.
*/
if(params.use_unaligned_nodes) {
for(int i = 0; i < num; i++) {
if(en[i].node->is_unaligned) {
has_unaligned = true;
break;
}
}
}
if(has_unaligned) {
/* There's no unaligned children, pack into AABB node. */
pack_unaligned_inner(e, en, num);
}
else {
/* Create unaligned node with orientation transform for each of the
* children.
*/
pack_aligned_inner(e, en, num);
}
}
void BVH4::pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
BoundBox bounds[4];
int child[4];
for(int i = 0; i < num; ++i) {
bounds[i] = en[i].node->bounds;
child[i] = en[i].encodeIdx();
}
pack_aligned_node(e.idx,
bounds,
child,
e.node->visibility,
e.node->time_from,
e.node->time_to,
num);
}
void BVH4::pack_aligned_node(int idx,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num)
{
float4 data[BVH_QNODE_SIZE];
memset(data, 0, sizeof(data));
data[0].x = __uint_as_float(visibility & ~PATH_RAY_NODE_UNALIGNED);
data[0].y = time_from;
data[0].z = time_to;
for(int i = 0; i < num; i++) {
float3 bb_min = bounds[i].min;
float3 bb_max = bounds[i].max;
data[1][i] = bb_min.x;
data[2][i] = bb_max.x;
data[3][i] = bb_min.y;
data[4][i] = bb_max.y;
data[5][i] = bb_min.z;
data[6][i] = bb_max.z;
data[7][i] = __int_as_float(child[i]);
}
for(int i = num; i < 4; i++) {
/* We store BB which would never be recorded as intersection
* so kernel might safely assume there are always 4 child nodes.
*/
data[1][i] = FLT_MAX;
data[2][i] = -FLT_MAX;
data[3][i] = FLT_MAX;
data[4][i] = -FLT_MAX;
data[5][i] = FLT_MAX;
data[6][i] = -FLT_MAX;
data[7][i] = __int_as_float(0);
}
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_QNODE_SIZE);
}
void BVH4::pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
Transform aligned_space[4];
BoundBox bounds[4];
int child[4];
for(int i = 0; i < num; ++i) {
aligned_space[i] = en[i].node->get_aligned_space();
bounds[i] = en[i].node->bounds;
child[i] = en[i].encodeIdx();
}
pack_unaligned_node(e.idx,
aligned_space,
bounds,
child,
e.node->visibility,
e.node->time_from,
e.node->time_to,
num);
}
void BVH4::pack_unaligned_node(int idx,
const Transform *aligned_space,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num)
{
float4 data[BVH_UNALIGNED_QNODE_SIZE];
memset(data, 0, sizeof(data));
data[0].x = __uint_as_float(visibility | PATH_RAY_NODE_UNALIGNED);
data[0].y = time_from;
data[0].z = time_to;
for(int i = 0; i < num; i++) {
Transform space = BVHUnaligned::compute_node_transform(
bounds[i],
aligned_space[i]);
data[1][i] = space.x.x;
data[2][i] = space.x.y;
data[3][i] = space.x.z;
data[4][i] = space.y.x;
data[5][i] = space.y.y;
data[6][i] = space.y.z;
data[7][i] = space.z.x;
data[8][i] = space.z.y;
data[9][i] = space.z.z;
data[10][i] = space.x.w;
data[11][i] = space.y.w;
data[12][i] = space.z.w;
data[13][i] = __int_as_float(child[i]);
}
for(int i = num; i < 4; i++) {
/* We store BB which would never be recorded as intersection
* so kernel might safely assume there are always 4 child nodes.
*/
data[1][i] = 1.0f;
data[2][i] = 0.0f;
data[3][i] = 0.0f;
data[4][i] = 0.0f;
data[5][i] = 0.0f;
data[6][i] = 0.0f;
data[7][i] = 0.0f;
data[8][i] = 0.0f;
data[9][i] = 0.0f;
data[10][i] = -FLT_MAX;
data[11][i] = -FLT_MAX;
data[12][i] = -FLT_MAX;
data[13][i] = __int_as_float(0);
}
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_QNODE_SIZE);
}
/* Quad SIMD Nodes */
void BVH4::pack_nodes(const BVHNode *root)
{
/* Calculate size of the arrays required. */
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_QNODE_COUNT);
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
assert(num_leaf_nodes <= num_nodes);
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
size_t node_size;
if(params.use_unaligned_nodes) {
const size_t num_unaligned_nodes =
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_QNODE_COUNT);
node_size = (num_unaligned_nodes * BVH_UNALIGNED_QNODE_SIZE) +
(num_inner_nodes - num_unaligned_nodes) * BVH_QNODE_SIZE;
}
else {
node_size = num_inner_nodes * BVH_QNODE_SIZE;
}
/* Resize arrays. */
pack.nodes.clear();
pack.leaf_nodes.clear();
/* For top level BVH, first merge existing BVH's so we know the offsets. */
if(params.top_level) {
pack_instances(node_size, num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
}
else {
pack.nodes.resize(node_size);
pack.leaf_nodes.resize(num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
}
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
vector<BVHStackEntry> stack;
stack.reserve(BVHParams::MAX_DEPTH*2);
if(root->is_leaf()) {
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
}
else {
stack.push_back(BVHStackEntry(root, nextNodeIdx));
nextNodeIdx += node_qbvh_is_unaligned(root)
? BVH_UNALIGNED_QNODE_SIZE
: BVH_QNODE_SIZE;
}
while(stack.size()) {
BVHStackEntry e = stack.back();
stack.pop_back();
if(e.node->is_leaf()) {
/* leaf node */
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
pack_leaf(e, leaf);
}
else {
/* Inner node. */
const BVHNode *node = e.node;
const BVHNode *node0 = node->get_child(0);
const BVHNode *node1 = node->get_child(1);
/* Collect nodes. */
const BVHNode *nodes[4];
int numnodes = 0;
if(node0->is_leaf()) {
nodes[numnodes++] = node0;
}
else {
nodes[numnodes++] = node0->get_child(0);
nodes[numnodes++] = node0->get_child(1);
}
if(node1->is_leaf()) {
nodes[numnodes++] = node1;
}
else {
nodes[numnodes++] = node1->get_child(0);
nodes[numnodes++] = node1->get_child(1);
}
/* Push entries on the stack. */
for(int i = 0; i < numnodes; ++i) {
int idx;
if(nodes[i]->is_leaf()) {
idx = nextLeafNodeIdx++;
}
else {
idx = nextNodeIdx;
nextNodeIdx += node_qbvh_is_unaligned(nodes[i])
? BVH_UNALIGNED_QNODE_SIZE
: BVH_QNODE_SIZE;
}
stack.push_back(BVHStackEntry(nodes[i], idx));
}
/* Set node. */
pack_inner(e, &stack[stack.size()-numnodes], numnodes);
}
}
assert(node_size == nextNodeIdx);
/* Root index to start traversal at, to handle case of single leaf node. */
pack.root_index = (root->is_leaf())? -1: 0;
}
void BVH4::refit_nodes()
{
assert(!params.top_level);
BoundBox bbox = BoundBox::empty;
uint visibility = 0;
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
}
void BVH4::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
{
if(leaf) {
int4 *data = &pack.leaf_nodes[idx];
int4 c = data[0];
/* Refit leaf node. */
for(int prim = c.x; prim < c.y; prim++) {
int pidx = pack.prim_index[prim];
int tob = pack.prim_object[prim];
Object *ob = objects[tob];
if(pidx == -1) {
/* Object instance. */
bbox.grow(ob->bounds);
}
else {
/* Primitives. */
const Mesh *mesh = ob->mesh;
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
/* Curves. */
int str_offset = (params.top_level)? mesh->curve_offset: 0;
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
visibility |= PATH_RAY_CURVE;
/* Motion curves. */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->curve_keys.size();
size_t steps = mesh->motion_steps - 1;
float3 *key_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
}
}
}
else {
/* Triangles. */
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
const float3 *vpos = &mesh->verts[0];
triangle.bounds_grow(vpos, bbox);
/* Motion triangles. */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->verts.size();
size_t steps = mesh->motion_steps - 1;
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
}
}
}
}
visibility |= ob->visibility;
}
/* TODO(sergey): This is actually a copy of pack_leaf(),
* but this chunk of code only knows actual data and has
* no idea about BVHNode.
*
* Would be nice to de-duplicate code, but trying to make
* making code more general ends up in much nastier code
* in my opinion so far.
*
* Same applies to the inner nodes case below.
*/
float4 leaf_data[BVH_QNODE_LEAF_SIZE];
leaf_data[0].x = __int_as_float(c.x);
leaf_data[0].y = __int_as_float(c.y);
leaf_data[0].z = __uint_as_float(visibility);
leaf_data[0].w = __uint_as_float(c.w);
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
}
else {
int4 *data = &pack.nodes[idx];
bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
int4 c;
if(is_unaligned) {
c = data[13];
}
else {
c = data[7];
}
/* Refit inner node, set bbox from children. */
BoundBox child_bbox[4] = {BoundBox::empty,
BoundBox::empty,
BoundBox::empty,
BoundBox::empty};
uint child_visibility[4] = {0};
int num_nodes = 0;
for(int i = 0; i < 4; ++i) {
if(c[i] != 0) {
refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0),
child_bbox[i], child_visibility[i]);
++num_nodes;
bbox.grow(child_bbox[i]);
visibility |= child_visibility[i];
}
}
if(is_unaligned) {
Transform aligned_space[4] = {transform_identity(),
transform_identity(),
transform_identity(),
transform_identity()};
pack_unaligned_node(idx,
aligned_space,
child_bbox,
&c[0],
visibility,
0.0f,
1.0f,
4);
}
else {
pack_aligned_node(idx,
child_bbox,
&c[0],
visibility,
0.0f,
1.0f,
4);
}
}
}
CCL_NAMESPACE_END

View File

@@ -33,15 +33,8 @@ class LeafNode;
class Object;
class Progress;
#define BVH_NODE_SIZE 4
#define BVH_NODE_LEAF_SIZE 1
#define BVH_QNODE_SIZE 8
#define BVH_QNODE_LEAF_SIZE 1
#define BVH_ALIGN 4096
#define TRI_NODE_SIZE 3
#define BVH_UNALIGNED_NODE_SIZE 7
#define BVH_UNALIGNED_QNODE_SIZE 14
#define BVH_ALIGN 4096
#define TRI_NODE_SIZE 3
/* Packed BVH
*
@@ -54,7 +47,7 @@ struct PackedBVH {
/* BVH leaf nodes storage. */
array<int4> leaf_nodes;
/* object index to BVH node index mapping for instances */
array<int> object_node;
array<int> object_node;
/* Mapping from primitive index to index in triangle array. */
array<uint> prim_tri_index;
/* Continuous storage of triangle vertices. */
@@ -110,95 +103,16 @@ protected:
virtual void refit_nodes() = 0;
};
/* BVH2
*
* Typical BVH with each node having two children. */
/* Pack Utility */
struct BVHStackEntry
{
const BVHNode *node;
int idx;
class BVH2 : public BVH {
protected:
/* constructor */
friend class BVH;
BVH2(const BVHParams& params, const vector<Object*>& objects);
/* pack */
void pack_nodes(const BVHNode *root);
void pack_leaf(const BVHStackEntry& e,
const LeafNode *leaf);
void pack_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_aligned_node(int idx,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1);
void pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_unaligned_node(int idx,
const Transform& aligned_space0,
const Transform& aligned_space1,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1);
/* refit */
void refit_nodes();
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
};
/* BVH4
*
* Quad BVH, with each node having four children, to use with SIMD instructions. */
class BVH4 : public BVH {
protected:
/* constructor */
friend class BVH;
BVH4(const BVHParams& params, const vector<Object*>& objects);
/* pack */
void pack_nodes(const BVHNode *root);
void pack_leaf(const BVHStackEntry& e, const LeafNode *leaf);
void pack_inner(const BVHStackEntry& e, const BVHStackEntry *en, int num);
void pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num);
void pack_aligned_node(int idx,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num);
void pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num);
void pack_unaligned_node(int idx,
const Transform *aligned_space,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num);
/* refit */
void refit_nodes();
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
BVHStackEntry(const BVHNode *n = 0, int i = 0);
int encodeIdx() const;
};
CCL_NAMESPACE_END
#endif /* __BVH_H__ */

364
intern/cycles/bvh/bvh2.cpp Normal file
View File

@@ -0,0 +1,364 @@
/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh2.h"
#include "render/mesh.h"
#include "render/object.h"
#include "bvh/bvh_node.h"
#include "bvh/bvh_unaligned.h"
CCL_NAMESPACE_BEGIN
static bool node_bvh_is_unaligned(const BVHNode *node)
{
const BVHNode *node0 = node->get_child(0),
*node1 = node->get_child(1);
return node0->is_unaligned || node1->is_unaligned;
}
BVH2::BVH2(const BVHParams& params_, const vector<Object*>& objects_)
: BVH(params_, objects_)
{
}
void BVH2::pack_leaf(const BVHStackEntry& e,
const LeafNode *leaf)
{
assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
float4 data[BVH_NODE_LEAF_SIZE];
memset(data, 0, sizeof(data));
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
/* object */
data[0].x = __int_as_float(~(leaf->lo));
data[0].y = __int_as_float(0);
}
else {
/* triangle */
data[0].x = __int_as_float(leaf->lo);
data[0].y = __int_as_float(leaf->hi);
}
data[0].z = __uint_as_float(leaf->visibility);
if(leaf->num_triangles() != 0) {
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
}
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
}
void BVH2::pack_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
if(e0.node->is_unaligned || e1.node->is_unaligned) {
pack_unaligned_inner(e, e0, e1);
} else {
pack_aligned_inner(e, e0, e1);
}
}
void BVH2::pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
pack_aligned_node(e.idx,
e0.node->bounds, e1.node->bounds,
e0.encodeIdx(), e1.encodeIdx(),
e0.node->visibility, e1.node->visibility);
}
void BVH2::pack_aligned_node(int idx,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1)
{
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
assert(c0 < 0 || c0 < pack.nodes.size());
assert(c1 < 0 || c1 < pack.nodes.size());
int4 data[BVH_NODE_SIZE] = {
make_int4(visibility0 & ~PATH_RAY_NODE_UNALIGNED,
visibility1 & ~PATH_RAY_NODE_UNALIGNED,
c0, c1),
make_int4(__float_as_int(b0.min.x),
__float_as_int(b1.min.x),
__float_as_int(b0.max.x),
__float_as_int(b1.max.x)),
make_int4(__float_as_int(b0.min.y),
__float_as_int(b1.min.y),
__float_as_int(b0.max.y),
__float_as_int(b1.max.y)),
make_int4(__float_as_int(b0.min.z),
__float_as_int(b1.min.z),
__float_as_int(b0.max.z),
__float_as_int(b1.max.z)),
};
memcpy(&pack.nodes[idx], data, sizeof(int4)*BVH_NODE_SIZE);
}
void BVH2::pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1)
{
pack_unaligned_node(e.idx,
e0.node->get_aligned_space(),
e1.node->get_aligned_space(),
e0.node->bounds,
e1.node->bounds,
e0.encodeIdx(), e1.encodeIdx(),
e0.node->visibility, e1.node->visibility);
}
void BVH2::pack_unaligned_node(int idx,
const Transform& aligned_space0,
const Transform& aligned_space1,
const BoundBox& bounds0,
const BoundBox& bounds1,
int c0, int c1,
uint visibility0, uint visibility1)
{
assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
assert(c0 < 0 || c0 < pack.nodes.size());
assert(c1 < 0 || c1 < pack.nodes.size());
float4 data[BVH_UNALIGNED_NODE_SIZE];
Transform space0 = BVHUnaligned::compute_node_transform(bounds0,
aligned_space0);
Transform space1 = BVHUnaligned::compute_node_transform(bounds1,
aligned_space1);
data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
__int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
__int_as_float(c0),
__int_as_float(c1));
data[1] = space0.x;
data[2] = space0.y;
data[3] = space0.z;
data[4] = space1.x;
data[5] = space1.y;
data[6] = space1.z;
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_NODE_SIZE);
}
void BVH2::pack_nodes(const BVHNode *root)
{
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
assert(num_leaf_nodes <= num_nodes);
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
size_t node_size;
if(params.use_unaligned_nodes) {
const size_t num_unaligned_nodes =
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
(num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
}
else {
node_size = num_inner_nodes * BVH_NODE_SIZE;
}
/* Resize arrays */
pack.nodes.clear();
pack.leaf_nodes.clear();
/* For top level BVH, first merge existing BVH's so we know the offsets. */
if(params.top_level) {
pack_instances(node_size, num_leaf_nodes*BVH_NODE_LEAF_SIZE);
}
else {
pack.nodes.resize(node_size);
pack.leaf_nodes.resize(num_leaf_nodes*BVH_NODE_LEAF_SIZE);
}
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
vector<BVHStackEntry> stack;
stack.reserve(BVHParams::MAX_DEPTH*2);
if(root->is_leaf()) {
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
}
else {
stack.push_back(BVHStackEntry(root, nextNodeIdx));
nextNodeIdx += node_bvh_is_unaligned(root)
? BVH_UNALIGNED_NODE_SIZE
: BVH_NODE_SIZE;
}
while(stack.size()) {
BVHStackEntry e = stack.back();
stack.pop_back();
if(e.node->is_leaf()) {
/* leaf node */
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
pack_leaf(e, leaf);
}
else {
/* innner node */
int idx[2];
for(int i = 0; i < 2; ++i) {
if(e.node->get_child(i)->is_leaf()) {
idx[i] = nextLeafNodeIdx++;
}
else {
idx[i] = nextNodeIdx;
nextNodeIdx += node_bvh_is_unaligned(e.node->get_child(i))
? BVH_UNALIGNED_NODE_SIZE
: BVH_NODE_SIZE;
}
}
stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));
pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]);
}
}
assert(node_size == nextNodeIdx);
/* root index to start traversal at, to handle case of single leaf node */
pack.root_index = (root->is_leaf())? -1: 0;
}
void BVH2::refit_nodes()
{
assert(!params.top_level);
BoundBox bbox = BoundBox::empty;
uint visibility = 0;
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
}
void BVH2::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
{
if(leaf) {
assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
const int4 *data = &pack.leaf_nodes[idx];
const int c0 = data[0].x;
const int c1 = data[0].y;
/* refit leaf node */
for(int prim = c0; prim < c1; prim++) {
int pidx = pack.prim_index[prim];
int tob = pack.prim_object[prim];
Object *ob = objects[tob];
if(pidx == -1) {
/* object instance */
bbox.grow(ob->bounds);
}
else {
/* primitives */
const Mesh *mesh = ob->mesh;
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
/* curves */
int str_offset = (params.top_level)? mesh->curve_offset: 0;
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
visibility |= PATH_RAY_CURVE;
/* motion curves */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->curve_keys.size();
size_t steps = mesh->motion_steps - 1;
float3 *key_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
}
}
}
else {
/* triangles */
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
const float3 *vpos = &mesh->verts[0];
triangle.bounds_grow(vpos, bbox);
/* motion triangles */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->verts.size();
size_t steps = mesh->motion_steps - 1;
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
}
}
}
}
visibility |= ob->visibility;
}
/* TODO(sergey): De-duplicate with pack_leaf(). */
float4 leaf_data[BVH_NODE_LEAF_SIZE];
leaf_data[0].x = __int_as_float(c0);
leaf_data[0].y = __int_as_float(c1);
leaf_data[0].z = __uint_as_float(visibility);
leaf_data[0].w = __uint_as_float(data[0].w);
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
}
else {
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
const int4 *data = &pack.nodes[idx];
const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
const int c0 = data[0].z;
const int c1 = data[0].w;
/* refit inner node, set bbox from children */
BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
uint visibility0 = 0, visibility1 = 0;
refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0);
refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1);
if(is_unaligned) {
Transform aligned_space = transform_identity();
pack_unaligned_node(idx,
aligned_space, aligned_space,
bbox0, bbox1,
c0, c1,
visibility0,
visibility1);
}
else {
pack_aligned_node(idx,
bbox0, bbox1,
c0, c1,
visibility0,
visibility1);
}
bbox.grow(bbox0);
bbox.grow(bbox1);
visibility = visibility0|visibility1;
}
}
CCL_NAMESPACE_END

87
intern/cycles/bvh/bvh2.h Normal file
View File

@@ -0,0 +1,87 @@
/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BVH2_H__
#define __BVH2_H__
#include "bvh/bvh.h"
#include "bvh/bvh_params.h"
#include "util/util_types.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
class BVHNode;
struct BVHStackEntry;
class BVHParams;
class BoundBox;
class LeafNode;
class Object;
class Progress;
#define BVH_NODE_SIZE 4
#define BVH_NODE_LEAF_SIZE 1
#define BVH_UNALIGNED_NODE_SIZE 7
/* BVH2
*
* Typical BVH with each node having two children.
*/
class BVH2 : public BVH {
protected:
/* constructor */
friend class BVH;
BVH2(const BVHParams& params, const vector<Object*>& objects);
/* pack */
void pack_nodes(const BVHNode *root);
void pack_leaf(const BVHStackEntry& e,
const LeafNode *leaf);
void pack_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_aligned_node(int idx,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1);
void pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry& e0,
const BVHStackEntry& e1);
void pack_unaligned_node(int idx,
const Transform& aligned_space0,
const Transform& aligned_space1,
const BoundBox& b0,
const BoundBox& b1,
int c0, int c1,
uint visibility0, uint visibility1);
/* refit */
void refit_nodes();
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
};
CCL_NAMESPACE_END
#endif /* __BVH2_H__ */

516
intern/cycles/bvh/bvh4.cpp Normal file
View File

@@ -0,0 +1,516 @@
/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "bvh/bvh4.h"
#include "render/mesh.h"
#include "render/object.h"
#include "bvh/bvh_node.h"
#include "bvh/bvh_unaligned.h"
CCL_NAMESPACE_BEGIN
/* Can we avoid this somehow or make more generic?
*
* Perhaps we can merge nodes in actual tree and make our
* life easier all over the place.
*/
static bool node_qbvh_is_unaligned(const BVHNode *node)
{
const BVHNode *node0 = node->get_child(0),
*node1 = node->get_child(1);
bool has_unaligned = false;
if(node0->is_leaf()) {
has_unaligned |= node0->is_unaligned;
}
else {
has_unaligned |= node0->get_child(0)->is_unaligned;
has_unaligned |= node0->get_child(1)->is_unaligned;
}
if(node1->is_leaf()) {
has_unaligned |= node1->is_unaligned;
}
else {
has_unaligned |= node1->get_child(0)->is_unaligned;
has_unaligned |= node1->get_child(1)->is_unaligned;
}
return has_unaligned;
}
BVH4::BVH4(const BVHParams& params_, const vector<Object*>& objects_)
: BVH(params_, objects_)
{
params.use_qbvh = true;
}
void BVH4::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf)
{
float4 data[BVH_QNODE_LEAF_SIZE];
memset(data, 0, sizeof(data));
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
/* object */
data[0].x = __int_as_float(~(leaf->lo));
data[0].y = __int_as_float(0);
}
else {
/* triangle */
data[0].x = __int_as_float(leaf->lo);
data[0].y = __int_as_float(leaf->hi);
}
data[0].z = __uint_as_float(leaf->visibility);
if(leaf->num_triangles() != 0) {
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
}
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
}
void BVH4::pack_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
bool has_unaligned = false;
/* Check whether we have to create unaligned node or all nodes are aligned
* and we can cut some corner here.
*/
if(params.use_unaligned_nodes) {
for(int i = 0; i < num; i++) {
if(en[i].node->is_unaligned) {
has_unaligned = true;
break;
}
}
}
if(has_unaligned) {
/* There's no unaligned children, pack into AABB node. */
pack_unaligned_inner(e, en, num);
}
else {
/* Create unaligned node with orientation transform for each of the
* children.
*/
pack_aligned_inner(e, en, num);
}
}
void BVH4::pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
BoundBox bounds[4];
int child[4];
for(int i = 0; i < num; ++i) {
bounds[i] = en[i].node->bounds;
child[i] = en[i].encodeIdx();
}
pack_aligned_node(e.idx,
bounds,
child,
e.node->visibility,
e.node->time_from,
e.node->time_to,
num);
}
void BVH4::pack_aligned_node(int idx,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num)
{
float4 data[BVH_QNODE_SIZE];
memset(data, 0, sizeof(data));
data[0].x = __uint_as_float(visibility & ~PATH_RAY_NODE_UNALIGNED);
data[0].y = time_from;
data[0].z = time_to;
for(int i = 0; i < num; i++) {
float3 bb_min = bounds[i].min;
float3 bb_max = bounds[i].max;
data[1][i] = bb_min.x;
data[2][i] = bb_max.x;
data[3][i] = bb_min.y;
data[4][i] = bb_max.y;
data[5][i] = bb_min.z;
data[6][i] = bb_max.z;
data[7][i] = __int_as_float(child[i]);
}
for(int i = num; i < 4; i++) {
/* We store BB which would never be recorded as intersection
* so kernel might safely assume there are always 4 child nodes.
*/
data[1][i] = FLT_MAX;
data[2][i] = -FLT_MAX;
data[3][i] = FLT_MAX;
data[4][i] = -FLT_MAX;
data[5][i] = FLT_MAX;
data[6][i] = -FLT_MAX;
data[7][i] = __int_as_float(0);
}
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_QNODE_SIZE);
}
void BVH4::pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num)
{
Transform aligned_space[4];
BoundBox bounds[4];
int child[4];
for(int i = 0; i < num; ++i) {
aligned_space[i] = en[i].node->get_aligned_space();
bounds[i] = en[i].node->bounds;
child[i] = en[i].encodeIdx();
}
pack_unaligned_node(e.idx,
aligned_space,
bounds,
child,
e.node->visibility,
e.node->time_from,
e.node->time_to,
num);
}
void BVH4::pack_unaligned_node(int idx,
const Transform *aligned_space,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num)
{
float4 data[BVH_UNALIGNED_QNODE_SIZE];
memset(data, 0, sizeof(data));
data[0].x = __uint_as_float(visibility | PATH_RAY_NODE_UNALIGNED);
data[0].y = time_from;
data[0].z = time_to;
for(int i = 0; i < num; i++) {
Transform space = BVHUnaligned::compute_node_transform(
bounds[i],
aligned_space[i]);
data[1][i] = space.x.x;
data[2][i] = space.x.y;
data[3][i] = space.x.z;
data[4][i] = space.y.x;
data[5][i] = space.y.y;
data[6][i] = space.y.z;
data[7][i] = space.z.x;
data[8][i] = space.z.y;
data[9][i] = space.z.z;
data[10][i] = space.x.w;
data[11][i] = space.y.w;
data[12][i] = space.z.w;
data[13][i] = __int_as_float(child[i]);
}
for(int i = num; i < 4; i++) {
/* We store BB which would never be recorded as intersection
* so kernel might safely assume there are always 4 child nodes.
*/
data[1][i] = 1.0f;
data[2][i] = 0.0f;
data[3][i] = 0.0f;
data[4][i] = 0.0f;
data[5][i] = 0.0f;
data[6][i] = 0.0f;
data[7][i] = 0.0f;
data[8][i] = 0.0f;
data[9][i] = 0.0f;
data[10][i] = -FLT_MAX;
data[11][i] = -FLT_MAX;
data[12][i] = -FLT_MAX;
data[13][i] = __int_as_float(0);
}
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_QNODE_SIZE);
}
/* Quad SIMD Nodes */
void BVH4::pack_nodes(const BVHNode *root)
{
/* Calculate size of the arrays required. */
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_QNODE_COUNT);
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
assert(num_leaf_nodes <= num_nodes);
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
size_t node_size;
if(params.use_unaligned_nodes) {
const size_t num_unaligned_nodes =
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_QNODE_COUNT);
node_size = (num_unaligned_nodes * BVH_UNALIGNED_QNODE_SIZE) +
(num_inner_nodes - num_unaligned_nodes) * BVH_QNODE_SIZE;
}
else {
node_size = num_inner_nodes * BVH_QNODE_SIZE;
}
/* Resize arrays. */
pack.nodes.clear();
pack.leaf_nodes.clear();
/* For top level BVH, first merge existing BVH's so we know the offsets. */
if(params.top_level) {
pack_instances(node_size, num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
}
else {
pack.nodes.resize(node_size);
pack.leaf_nodes.resize(num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
}
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
vector<BVHStackEntry> stack;
stack.reserve(BVHParams::MAX_DEPTH*2);
if(root->is_leaf()) {
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
}
else {
stack.push_back(BVHStackEntry(root, nextNodeIdx));
nextNodeIdx += node_qbvh_is_unaligned(root)
? BVH_UNALIGNED_QNODE_SIZE
: BVH_QNODE_SIZE;
}
while(stack.size()) {
BVHStackEntry e = stack.back();
stack.pop_back();
if(e.node->is_leaf()) {
/* leaf node */
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
pack_leaf(e, leaf);
}
else {
/* Inner node. */
const BVHNode *node = e.node;
const BVHNode *node0 = node->get_child(0);
const BVHNode *node1 = node->get_child(1);
/* Collect nodes. */
const BVHNode *nodes[4];
int numnodes = 0;
if(node0->is_leaf()) {
nodes[numnodes++] = node0;
}
else {
nodes[numnodes++] = node0->get_child(0);
nodes[numnodes++] = node0->get_child(1);
}
if(node1->is_leaf()) {
nodes[numnodes++] = node1;
}
else {
nodes[numnodes++] = node1->get_child(0);
nodes[numnodes++] = node1->get_child(1);
}
/* Push entries on the stack. */
for(int i = 0; i < numnodes; ++i) {
int idx;
if(nodes[i]->is_leaf()) {
idx = nextLeafNodeIdx++;
}
else {
idx = nextNodeIdx;
nextNodeIdx += node_qbvh_is_unaligned(nodes[i])
? BVH_UNALIGNED_QNODE_SIZE
: BVH_QNODE_SIZE;
}
stack.push_back(BVHStackEntry(nodes[i], idx));
}
/* Set node. */
pack_inner(e, &stack[stack.size()-numnodes], numnodes);
}
}
assert(node_size == nextNodeIdx);
/* Root index to start traversal at, to handle case of single leaf node. */
pack.root_index = (root->is_leaf())? -1: 0;
}
void BVH4::refit_nodes()
{
assert(!params.top_level);
BoundBox bbox = BoundBox::empty;
uint visibility = 0;
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
}
void BVH4::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
{
if(leaf) {
int4 *data = &pack.leaf_nodes[idx];
int4 c = data[0];
/* Refit leaf node. */
for(int prim = c.x; prim < c.y; prim++) {
int pidx = pack.prim_index[prim];
int tob = pack.prim_object[prim];
Object *ob = objects[tob];
if(pidx == -1) {
/* Object instance. */
bbox.grow(ob->bounds);
}
else {
/* Primitives. */
const Mesh *mesh = ob->mesh;
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
/* Curves. */
int str_offset = (params.top_level)? mesh->curve_offset: 0;
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
visibility |= PATH_RAY_CURVE;
/* Motion curves. */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->curve_keys.size();
size_t steps = mesh->motion_steps - 1;
float3 *key_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
}
}
}
else {
/* Triangles. */
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
const float3 *vpos = &mesh->verts[0];
triangle.bounds_grow(vpos, bbox);
/* Motion triangles. */
if(mesh->use_motion_blur) {
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
if(attr) {
size_t mesh_size = mesh->verts.size();
size_t steps = mesh->motion_steps - 1;
float3 *vert_steps = attr->data_float3();
for(size_t i = 0; i < steps; i++)
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
}
}
}
}
visibility |= ob->visibility;
}
/* TODO(sergey): This is actually a copy of pack_leaf(),
* but this chunk of code only knows actual data and has
* no idea about BVHNode.
*
* Would be nice to de-duplicate code, but trying to make
* making code more general ends up in much nastier code
* in my opinion so far.
*
* Same applies to the inner nodes case below.
*/
float4 leaf_data[BVH_QNODE_LEAF_SIZE];
leaf_data[0].x = __int_as_float(c.x);
leaf_data[0].y = __int_as_float(c.y);
leaf_data[0].z = __uint_as_float(visibility);
leaf_data[0].w = __uint_as_float(c.w);
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
}
else {
int4 *data = &pack.nodes[idx];
bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
int4 c;
if(is_unaligned) {
c = data[13];
}
else {
c = data[7];
}
/* Refit inner node, set bbox from children. */
BoundBox child_bbox[4] = {BoundBox::empty,
BoundBox::empty,
BoundBox::empty,
BoundBox::empty};
uint child_visibility[4] = {0};
int num_nodes = 0;
for(int i = 0; i < 4; ++i) {
if(c[i] != 0) {
refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0),
child_bbox[i], child_visibility[i]);
++num_nodes;
bbox.grow(child_bbox[i]);
visibility |= child_visibility[i];
}
}
if(is_unaligned) {
Transform aligned_space[4] = {transform_identity(),
transform_identity(),
transform_identity(),
transform_identity()};
pack_unaligned_node(idx,
aligned_space,
child_bbox,
&c[0],
visibility,
0.0f,
1.0f,
4);
}
else {
pack_aligned_node(idx,
child_bbox,
&c[0],
visibility,
0.0f,
1.0f,
4);
}
}
}
CCL_NAMESPACE_END

88
intern/cycles/bvh/bvh4.h Normal file
View File

@@ -0,0 +1,88 @@
/*
* Adapted from code copyright 2009-2010 NVIDIA Corporation
* Modifications Copyright 2011, Blender Foundation.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __BVH4_H__
#define __BVH4_H__
#include "bvh/bvh.h"
#include "bvh/bvh_params.h"
#include "util/util_types.h"
#include "util/util_vector.h"
CCL_NAMESPACE_BEGIN
class BVHNode;
struct BVHStackEntry;
class BVHParams;
class BoundBox;
class LeafNode;
class Object;
class Progress;
#define BVH_QNODE_SIZE 8
#define BVH_QNODE_LEAF_SIZE 1
#define BVH_UNALIGNED_QNODE_SIZE 14
/* BVH4
*
* Quad BVH, with each node having four children, to use with SIMD instructions.
*/
class BVH4 : public BVH {
protected:
/* constructor */
friend class BVH;
BVH4(const BVHParams& params, const vector<Object*>& objects);
/* pack */
void pack_nodes(const BVHNode *root);
void pack_leaf(const BVHStackEntry& e, const LeafNode *leaf);
void pack_inner(const BVHStackEntry& e, const BVHStackEntry *en, int num);
void pack_aligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num);
void pack_aligned_node(int idx,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num);
void pack_unaligned_inner(const BVHStackEntry& e,
const BVHStackEntry *en,
int num);
void pack_unaligned_node(int idx,
const Transform *aligned_space,
const BoundBox *bounds,
const int *child,
const uint visibility,
const float time_from,
const float time_to,
const int num);
/* refit */
void refit_nodes();
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
};
CCL_NAMESPACE_END
#endif /* __BVH_H__ */