Cycles: Split BVH implementations into separate files
This commit is contained in:
@@ -8,6 +8,8 @@ set(INC_SYS
|
||||
|
||||
set(SRC
|
||||
bvh.cpp
|
||||
bvh2.cpp
|
||||
bvh4.cpp
|
||||
bvh_binning.cpp
|
||||
bvh_build.cpp
|
||||
bvh_node.cpp
|
||||
@@ -18,6 +20,8 @@ set(SRC
|
||||
|
||||
set(SRC_HEADERS
|
||||
bvh.h
|
||||
bvh2.h
|
||||
bvh4.h
|
||||
bvh_binning.h
|
||||
bvh_build.h
|
||||
bvh_node.h
|
||||
|
@@ -15,45 +15,32 @@
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "bvh/bvh.h"
|
||||
|
||||
#include "render/mesh.h"
|
||||
#include "render/object.h"
|
||||
#include "render/scene.h"
|
||||
#include "render/curves.h"
|
||||
|
||||
#include "bvh/bvh.h"
|
||||
#include "bvh/bvh2.h"
|
||||
#include "bvh/bvh4.h"
|
||||
#include "bvh/bvh_build.h"
|
||||
#include "bvh/bvh_node.h"
|
||||
#include "bvh/bvh_params.h"
|
||||
#include "bvh/bvh_unaligned.h"
|
||||
|
||||
#include "util/util_debug.h"
|
||||
#include "util/util_foreach.h"
|
||||
#include "util/util_logging.h"
|
||||
#include "util/util_map.h"
|
||||
#include "util/util_progress.h"
|
||||
#include "util/util_system.h"
|
||||
#include "util/util_types.h"
|
||||
#include "util/util_math.h"
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
/* Pack Utility */
|
||||
|
||||
struct BVHStackEntry
|
||||
BVHStackEntry::BVHStackEntry(const BVHNode *n, int i)
|
||||
: node(n), idx(i)
|
||||
{
|
||||
const BVHNode *node;
|
||||
int idx;
|
||||
}
|
||||
|
||||
BVHStackEntry(const BVHNode* n = 0, int i = 0)
|
||||
: node(n), idx(i)
|
||||
{
|
||||
}
|
||||
|
||||
int encodeIdx() const
|
||||
{
|
||||
return (node->is_leaf())? ~idx: idx;
|
||||
}
|
||||
};
|
||||
int BVHStackEntry::encodeIdx() const
|
||||
{
|
||||
return (node->is_leaf())? ~idx: idx;
|
||||
}
|
||||
|
||||
/* BVH */
|
||||
|
||||
@@ -418,832 +405,4 @@ void BVH::pack_instances(size_t nodes_size, size_t leaf_nodes_size)
|
||||
}
|
||||
}
|
||||
|
||||
/* Regular BVH */
|
||||
|
||||
static bool node_bvh_is_unaligned(const BVHNode *node)
|
||||
{
|
||||
const BVHNode *node0 = node->get_child(0),
|
||||
*node1 = node->get_child(1);
|
||||
return node0->is_unaligned || node1->is_unaligned;
|
||||
}
|
||||
|
||||
BVH2::BVH2(const BVHParams& params_, const vector<Object*>& objects_)
|
||||
: BVH(params_, objects_)
|
||||
{
|
||||
}
|
||||
|
||||
void BVH2::pack_leaf(const BVHStackEntry& e,
|
||||
const LeafNode *leaf)
|
||||
{
|
||||
assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
|
||||
float4 data[BVH_NODE_LEAF_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
|
||||
/* object */
|
||||
data[0].x = __int_as_float(~(leaf->lo));
|
||||
data[0].y = __int_as_float(0);
|
||||
}
|
||||
else {
|
||||
/* triangle */
|
||||
data[0].x = __int_as_float(leaf->lo);
|
||||
data[0].y = __int_as_float(leaf->hi);
|
||||
}
|
||||
data[0].z = __uint_as_float(leaf->visibility);
|
||||
if(leaf->num_triangles() != 0) {
|
||||
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
|
||||
}
|
||||
|
||||
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
if(e0.node->is_unaligned || e1.node->is_unaligned) {
|
||||
pack_unaligned_inner(e, e0, e1);
|
||||
} else {
|
||||
pack_aligned_inner(e, e0, e1);
|
||||
}
|
||||
}
|
||||
|
||||
void BVH2::pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
pack_aligned_node(e.idx,
|
||||
e0.node->bounds, e1.node->bounds,
|
||||
e0.encodeIdx(), e1.encodeIdx(),
|
||||
e0.node->visibility, e1.node->visibility);
|
||||
}
|
||||
|
||||
void BVH2::pack_aligned_node(int idx,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1)
|
||||
{
|
||||
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
|
||||
assert(c0 < 0 || c0 < pack.nodes.size());
|
||||
assert(c1 < 0 || c1 < pack.nodes.size());
|
||||
|
||||
int4 data[BVH_NODE_SIZE] = {
|
||||
make_int4(visibility0 & ~PATH_RAY_NODE_UNALIGNED,
|
||||
visibility1 & ~PATH_RAY_NODE_UNALIGNED,
|
||||
c0, c1),
|
||||
make_int4(__float_as_int(b0.min.x),
|
||||
__float_as_int(b1.min.x),
|
||||
__float_as_int(b0.max.x),
|
||||
__float_as_int(b1.max.x)),
|
||||
make_int4(__float_as_int(b0.min.y),
|
||||
__float_as_int(b1.min.y),
|
||||
__float_as_int(b0.max.y),
|
||||
__float_as_int(b1.max.y)),
|
||||
make_int4(__float_as_int(b0.min.z),
|
||||
__float_as_int(b1.min.z),
|
||||
__float_as_int(b0.max.z),
|
||||
__float_as_int(b1.max.z)),
|
||||
};
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(int4)*BVH_NODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
pack_unaligned_node(e.idx,
|
||||
e0.node->get_aligned_space(),
|
||||
e1.node->get_aligned_space(),
|
||||
e0.node->bounds,
|
||||
e1.node->bounds,
|
||||
e0.encodeIdx(), e1.encodeIdx(),
|
||||
e0.node->visibility, e1.node->visibility);
|
||||
}
|
||||
|
||||
void BVH2::pack_unaligned_node(int idx,
|
||||
const Transform& aligned_space0,
|
||||
const Transform& aligned_space1,
|
||||
const BoundBox& bounds0,
|
||||
const BoundBox& bounds1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1)
|
||||
{
|
||||
assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
|
||||
assert(c0 < 0 || c0 < pack.nodes.size());
|
||||
assert(c1 < 0 || c1 < pack.nodes.size());
|
||||
|
||||
float4 data[BVH_UNALIGNED_NODE_SIZE];
|
||||
Transform space0 = BVHUnaligned::compute_node_transform(bounds0,
|
||||
aligned_space0);
|
||||
Transform space1 = BVHUnaligned::compute_node_transform(bounds1,
|
||||
aligned_space1);
|
||||
data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
|
||||
__int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
|
||||
__int_as_float(c0),
|
||||
__int_as_float(c1));
|
||||
|
||||
data[1] = space0.x;
|
||||
data[2] = space0.y;
|
||||
data[3] = space0.z;
|
||||
data[4] = space1.x;
|
||||
data[5] = space1.y;
|
||||
data[6] = space1.z;
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_NODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_nodes(const BVHNode *root)
|
||||
{
|
||||
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
|
||||
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
|
||||
assert(num_leaf_nodes <= num_nodes);
|
||||
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
|
||||
size_t node_size;
|
||||
if(params.use_unaligned_nodes) {
|
||||
const size_t num_unaligned_nodes =
|
||||
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
|
||||
node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
|
||||
(num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
|
||||
}
|
||||
else {
|
||||
node_size = num_inner_nodes * BVH_NODE_SIZE;
|
||||
}
|
||||
/* Resize arrays */
|
||||
pack.nodes.clear();
|
||||
pack.leaf_nodes.clear();
|
||||
/* For top level BVH, first merge existing BVH's so we know the offsets. */
|
||||
if(params.top_level) {
|
||||
pack_instances(node_size, num_leaf_nodes*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
pack.nodes.resize(node_size);
|
||||
pack.leaf_nodes.resize(num_leaf_nodes*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
|
||||
|
||||
vector<BVHStackEntry> stack;
|
||||
stack.reserve(BVHParams::MAX_DEPTH*2);
|
||||
if(root->is_leaf()) {
|
||||
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
|
||||
}
|
||||
else {
|
||||
stack.push_back(BVHStackEntry(root, nextNodeIdx));
|
||||
nextNodeIdx += node_bvh_is_unaligned(root)
|
||||
? BVH_UNALIGNED_NODE_SIZE
|
||||
: BVH_NODE_SIZE;
|
||||
}
|
||||
|
||||
while(stack.size()) {
|
||||
BVHStackEntry e = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
if(e.node->is_leaf()) {
|
||||
/* leaf node */
|
||||
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
|
||||
pack_leaf(e, leaf);
|
||||
}
|
||||
else {
|
||||
/* innner node */
|
||||
int idx[2];
|
||||
for(int i = 0; i < 2; ++i) {
|
||||
if(e.node->get_child(i)->is_leaf()) {
|
||||
idx[i] = nextLeafNodeIdx++;
|
||||
}
|
||||
else {
|
||||
idx[i] = nextNodeIdx;
|
||||
nextNodeIdx += node_bvh_is_unaligned(e.node->get_child(i))
|
||||
? BVH_UNALIGNED_NODE_SIZE
|
||||
: BVH_NODE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
|
||||
stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));
|
||||
|
||||
pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]);
|
||||
}
|
||||
}
|
||||
assert(node_size == nextNodeIdx);
|
||||
/* root index to start traversal at, to handle case of single leaf node */
|
||||
pack.root_index = (root->is_leaf())? -1: 0;
|
||||
}
|
||||
|
||||
void BVH2::refit_nodes()
|
||||
{
|
||||
assert(!params.top_level);
|
||||
|
||||
BoundBox bbox = BoundBox::empty;
|
||||
uint visibility = 0;
|
||||
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
|
||||
}
|
||||
|
||||
void BVH2::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
|
||||
{
|
||||
if(leaf) {
|
||||
assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
|
||||
const int4 *data = &pack.leaf_nodes[idx];
|
||||
const int c0 = data[0].x;
|
||||
const int c1 = data[0].y;
|
||||
/* refit leaf node */
|
||||
for(int prim = c0; prim < c1; prim++) {
|
||||
int pidx = pack.prim_index[prim];
|
||||
int tob = pack.prim_object[prim];
|
||||
Object *ob = objects[tob];
|
||||
|
||||
if(pidx == -1) {
|
||||
/* object instance */
|
||||
bbox.grow(ob->bounds);
|
||||
}
|
||||
else {
|
||||
/* primitives */
|
||||
const Mesh *mesh = ob->mesh;
|
||||
|
||||
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
|
||||
/* curves */
|
||||
int str_offset = (params.top_level)? mesh->curve_offset: 0;
|
||||
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
|
||||
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
|
||||
|
||||
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
|
||||
|
||||
visibility |= PATH_RAY_CURVE;
|
||||
|
||||
/* motion curves */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->curve_keys.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *key_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* triangles */
|
||||
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
|
||||
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
|
||||
const float3 *vpos = &mesh->verts[0];
|
||||
|
||||
triangle.bounds_grow(vpos, bbox);
|
||||
|
||||
/* motion triangles */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->verts.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *vert_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
visibility |= ob->visibility;
|
||||
}
|
||||
|
||||
/* TODO(sergey): De-duplicate with pack_leaf(). */
|
||||
float4 leaf_data[BVH_NODE_LEAF_SIZE];
|
||||
leaf_data[0].x = __int_as_float(c0);
|
||||
leaf_data[0].y = __int_as_float(c1);
|
||||
leaf_data[0].z = __uint_as_float(visibility);
|
||||
leaf_data[0].w = __uint_as_float(data[0].w);
|
||||
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
|
||||
|
||||
const int4 *data = &pack.nodes[idx];
|
||||
const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
|
||||
const int c0 = data[0].z;
|
||||
const int c1 = data[0].w;
|
||||
/* refit inner node, set bbox from children */
|
||||
BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
|
||||
uint visibility0 = 0, visibility1 = 0;
|
||||
|
||||
refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0);
|
||||
refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1);
|
||||
|
||||
if(is_unaligned) {
|
||||
Transform aligned_space = transform_identity();
|
||||
pack_unaligned_node(idx,
|
||||
aligned_space, aligned_space,
|
||||
bbox0, bbox1,
|
||||
c0, c1,
|
||||
visibility0,
|
||||
visibility1);
|
||||
}
|
||||
else {
|
||||
pack_aligned_node(idx,
|
||||
bbox0, bbox1,
|
||||
c0, c1,
|
||||
visibility0,
|
||||
visibility1);
|
||||
}
|
||||
|
||||
bbox.grow(bbox0);
|
||||
bbox.grow(bbox1);
|
||||
visibility = visibility0|visibility1;
|
||||
}
|
||||
}
|
||||
|
||||
/* BVH4 */
|
||||
|
||||
/* Can we avoid this somehow or make more generic?
|
||||
*
|
||||
* Perhaps we can merge nodes in actual tree and make our
|
||||
* life easier all over the place.
|
||||
*/
|
||||
static bool node_qbvh_is_unaligned(const BVHNode *node)
|
||||
{
|
||||
const BVHNode *node0 = node->get_child(0),
|
||||
*node1 = node->get_child(1);
|
||||
bool has_unaligned = false;
|
||||
if(node0->is_leaf()) {
|
||||
has_unaligned |= node0->is_unaligned;
|
||||
}
|
||||
else {
|
||||
has_unaligned |= node0->get_child(0)->is_unaligned;
|
||||
has_unaligned |= node0->get_child(1)->is_unaligned;
|
||||
}
|
||||
if(node1->is_leaf()) {
|
||||
has_unaligned |= node1->is_unaligned;
|
||||
}
|
||||
else {
|
||||
has_unaligned |= node1->get_child(0)->is_unaligned;
|
||||
has_unaligned |= node1->get_child(1)->is_unaligned;
|
||||
}
|
||||
return has_unaligned;
|
||||
}
|
||||
|
||||
BVH4::BVH4(const BVHParams& params_, const vector<Object*>& objects_)
|
||||
: BVH(params_, objects_)
|
||||
{
|
||||
params.use_qbvh = true;
|
||||
}
|
||||
|
||||
void BVH4::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf)
|
||||
{
|
||||
float4 data[BVH_QNODE_LEAF_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
|
||||
/* object */
|
||||
data[0].x = __int_as_float(~(leaf->lo));
|
||||
data[0].y = __int_as_float(0);
|
||||
}
|
||||
else {
|
||||
/* triangle */
|
||||
data[0].x = __int_as_float(leaf->lo);
|
||||
data[0].y = __int_as_float(leaf->hi);
|
||||
}
|
||||
data[0].z = __uint_as_float(leaf->visibility);
|
||||
if(leaf->num_triangles() != 0) {
|
||||
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
|
||||
}
|
||||
|
||||
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
void BVH4::pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
bool has_unaligned = false;
|
||||
/* Check whether we have to create unaligned node or all nodes are aligned
|
||||
* and we can cut some corner here.
|
||||
*/
|
||||
if(params.use_unaligned_nodes) {
|
||||
for(int i = 0; i < num; i++) {
|
||||
if(en[i].node->is_unaligned) {
|
||||
has_unaligned = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(has_unaligned) {
|
||||
/* There's no unaligned children, pack into AABB node. */
|
||||
pack_unaligned_inner(e, en, num);
|
||||
}
|
||||
else {
|
||||
/* Create unaligned node with orientation transform for each of the
|
||||
* children.
|
||||
*/
|
||||
pack_aligned_inner(e, en, num);
|
||||
}
|
||||
}
|
||||
|
||||
void BVH4::pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
BoundBox bounds[4];
|
||||
int child[4];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
bounds[i] = en[i].node->bounds;
|
||||
child[i] = en[i].encodeIdx();
|
||||
}
|
||||
pack_aligned_node(e.idx,
|
||||
bounds,
|
||||
child,
|
||||
e.node->visibility,
|
||||
e.node->time_from,
|
||||
e.node->time_to,
|
||||
num);
|
||||
}
|
||||
|
||||
void BVH4::pack_aligned_node(int idx,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num)
|
||||
{
|
||||
float4 data[BVH_QNODE_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
data[0].x = __uint_as_float(visibility & ~PATH_RAY_NODE_UNALIGNED);
|
||||
data[0].y = time_from;
|
||||
data[0].z = time_to;
|
||||
|
||||
for(int i = 0; i < num; i++) {
|
||||
float3 bb_min = bounds[i].min;
|
||||
float3 bb_max = bounds[i].max;
|
||||
|
||||
data[1][i] = bb_min.x;
|
||||
data[2][i] = bb_max.x;
|
||||
data[3][i] = bb_min.y;
|
||||
data[4][i] = bb_max.y;
|
||||
data[5][i] = bb_min.z;
|
||||
data[6][i] = bb_max.z;
|
||||
|
||||
data[7][i] = __int_as_float(child[i]);
|
||||
}
|
||||
|
||||
for(int i = num; i < 4; i++) {
|
||||
/* We store BB which would never be recorded as intersection
|
||||
* so kernel might safely assume there are always 4 child nodes.
|
||||
*/
|
||||
data[1][i] = FLT_MAX;
|
||||
data[2][i] = -FLT_MAX;
|
||||
|
||||
data[3][i] = FLT_MAX;
|
||||
data[4][i] = -FLT_MAX;
|
||||
|
||||
data[5][i] = FLT_MAX;
|
||||
data[6][i] = -FLT_MAX;
|
||||
|
||||
data[7][i] = __int_as_float(0);
|
||||
}
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_QNODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH4::pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
Transform aligned_space[4];
|
||||
BoundBox bounds[4];
|
||||
int child[4];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
aligned_space[i] = en[i].node->get_aligned_space();
|
||||
bounds[i] = en[i].node->bounds;
|
||||
child[i] = en[i].encodeIdx();
|
||||
}
|
||||
pack_unaligned_node(e.idx,
|
||||
aligned_space,
|
||||
bounds,
|
||||
child,
|
||||
e.node->visibility,
|
||||
e.node->time_from,
|
||||
e.node->time_to,
|
||||
num);
|
||||
}
|
||||
|
||||
void BVH4::pack_unaligned_node(int idx,
|
||||
const Transform *aligned_space,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num)
|
||||
{
|
||||
float4 data[BVH_UNALIGNED_QNODE_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
data[0].x = __uint_as_float(visibility | PATH_RAY_NODE_UNALIGNED);
|
||||
data[0].y = time_from;
|
||||
data[0].z = time_to;
|
||||
|
||||
for(int i = 0; i < num; i++) {
|
||||
Transform space = BVHUnaligned::compute_node_transform(
|
||||
bounds[i],
|
||||
aligned_space[i]);
|
||||
|
||||
data[1][i] = space.x.x;
|
||||
data[2][i] = space.x.y;
|
||||
data[3][i] = space.x.z;
|
||||
|
||||
data[4][i] = space.y.x;
|
||||
data[5][i] = space.y.y;
|
||||
data[6][i] = space.y.z;
|
||||
|
||||
data[7][i] = space.z.x;
|
||||
data[8][i] = space.z.y;
|
||||
data[9][i] = space.z.z;
|
||||
|
||||
data[10][i] = space.x.w;
|
||||
data[11][i] = space.y.w;
|
||||
data[12][i] = space.z.w;
|
||||
|
||||
data[13][i] = __int_as_float(child[i]);
|
||||
}
|
||||
|
||||
for(int i = num; i < 4; i++) {
|
||||
/* We store BB which would never be recorded as intersection
|
||||
* so kernel might safely assume there are always 4 child nodes.
|
||||
*/
|
||||
|
||||
data[1][i] = 1.0f;
|
||||
data[2][i] = 0.0f;
|
||||
data[3][i] = 0.0f;
|
||||
|
||||
data[4][i] = 0.0f;
|
||||
data[5][i] = 0.0f;
|
||||
data[6][i] = 0.0f;
|
||||
|
||||
data[7][i] = 0.0f;
|
||||
data[8][i] = 0.0f;
|
||||
data[9][i] = 0.0f;
|
||||
|
||||
data[10][i] = -FLT_MAX;
|
||||
data[11][i] = -FLT_MAX;
|
||||
data[12][i] = -FLT_MAX;
|
||||
|
||||
data[13][i] = __int_as_float(0);
|
||||
}
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_QNODE_SIZE);
|
||||
}
|
||||
|
||||
/* Quad SIMD Nodes */
|
||||
|
||||
void BVH4::pack_nodes(const BVHNode *root)
|
||||
{
|
||||
/* Calculate size of the arrays required. */
|
||||
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_QNODE_COUNT);
|
||||
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
|
||||
assert(num_leaf_nodes <= num_nodes);
|
||||
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
|
||||
size_t node_size;
|
||||
if(params.use_unaligned_nodes) {
|
||||
const size_t num_unaligned_nodes =
|
||||
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_QNODE_COUNT);
|
||||
node_size = (num_unaligned_nodes * BVH_UNALIGNED_QNODE_SIZE) +
|
||||
(num_inner_nodes - num_unaligned_nodes) * BVH_QNODE_SIZE;
|
||||
}
|
||||
else {
|
||||
node_size = num_inner_nodes * BVH_QNODE_SIZE;
|
||||
}
|
||||
/* Resize arrays. */
|
||||
pack.nodes.clear();
|
||||
pack.leaf_nodes.clear();
|
||||
/* For top level BVH, first merge existing BVH's so we know the offsets. */
|
||||
if(params.top_level) {
|
||||
pack_instances(node_size, num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
pack.nodes.resize(node_size);
|
||||
pack.leaf_nodes.resize(num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
|
||||
|
||||
vector<BVHStackEntry> stack;
|
||||
stack.reserve(BVHParams::MAX_DEPTH*2);
|
||||
if(root->is_leaf()) {
|
||||
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
|
||||
}
|
||||
else {
|
||||
stack.push_back(BVHStackEntry(root, nextNodeIdx));
|
||||
nextNodeIdx += node_qbvh_is_unaligned(root)
|
||||
? BVH_UNALIGNED_QNODE_SIZE
|
||||
: BVH_QNODE_SIZE;
|
||||
}
|
||||
|
||||
while(stack.size()) {
|
||||
BVHStackEntry e = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
if(e.node->is_leaf()) {
|
||||
/* leaf node */
|
||||
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
|
||||
pack_leaf(e, leaf);
|
||||
}
|
||||
else {
|
||||
/* Inner node. */
|
||||
const BVHNode *node = e.node;
|
||||
const BVHNode *node0 = node->get_child(0);
|
||||
const BVHNode *node1 = node->get_child(1);
|
||||
/* Collect nodes. */
|
||||
const BVHNode *nodes[4];
|
||||
int numnodes = 0;
|
||||
if(node0->is_leaf()) {
|
||||
nodes[numnodes++] = node0;
|
||||
}
|
||||
else {
|
||||
nodes[numnodes++] = node0->get_child(0);
|
||||
nodes[numnodes++] = node0->get_child(1);
|
||||
}
|
||||
if(node1->is_leaf()) {
|
||||
nodes[numnodes++] = node1;
|
||||
}
|
||||
else {
|
||||
nodes[numnodes++] = node1->get_child(0);
|
||||
nodes[numnodes++] = node1->get_child(1);
|
||||
}
|
||||
/* Push entries on the stack. */
|
||||
for(int i = 0; i < numnodes; ++i) {
|
||||
int idx;
|
||||
if(nodes[i]->is_leaf()) {
|
||||
idx = nextLeafNodeIdx++;
|
||||
}
|
||||
else {
|
||||
idx = nextNodeIdx;
|
||||
nextNodeIdx += node_qbvh_is_unaligned(nodes[i])
|
||||
? BVH_UNALIGNED_QNODE_SIZE
|
||||
: BVH_QNODE_SIZE;
|
||||
}
|
||||
stack.push_back(BVHStackEntry(nodes[i], idx));
|
||||
}
|
||||
/* Set node. */
|
||||
pack_inner(e, &stack[stack.size()-numnodes], numnodes);
|
||||
}
|
||||
}
|
||||
assert(node_size == nextNodeIdx);
|
||||
/* Root index to start traversal at, to handle case of single leaf node. */
|
||||
pack.root_index = (root->is_leaf())? -1: 0;
|
||||
}
|
||||
|
||||
void BVH4::refit_nodes()
|
||||
{
|
||||
assert(!params.top_level);
|
||||
|
||||
BoundBox bbox = BoundBox::empty;
|
||||
uint visibility = 0;
|
||||
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
|
||||
}
|
||||
|
||||
void BVH4::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
|
||||
{
|
||||
if(leaf) {
|
||||
int4 *data = &pack.leaf_nodes[idx];
|
||||
int4 c = data[0];
|
||||
/* Refit leaf node. */
|
||||
for(int prim = c.x; prim < c.y; prim++) {
|
||||
int pidx = pack.prim_index[prim];
|
||||
int tob = pack.prim_object[prim];
|
||||
Object *ob = objects[tob];
|
||||
|
||||
if(pidx == -1) {
|
||||
/* Object instance. */
|
||||
bbox.grow(ob->bounds);
|
||||
}
|
||||
else {
|
||||
/* Primitives. */
|
||||
const Mesh *mesh = ob->mesh;
|
||||
|
||||
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
|
||||
/* Curves. */
|
||||
int str_offset = (params.top_level)? mesh->curve_offset: 0;
|
||||
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
|
||||
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
|
||||
|
||||
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
|
||||
|
||||
visibility |= PATH_RAY_CURVE;
|
||||
|
||||
/* Motion curves. */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->curve_keys.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *key_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* Triangles. */
|
||||
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
|
||||
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
|
||||
const float3 *vpos = &mesh->verts[0];
|
||||
|
||||
triangle.bounds_grow(vpos, bbox);
|
||||
|
||||
/* Motion triangles. */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->verts.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *vert_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
visibility |= ob->visibility;
|
||||
}
|
||||
|
||||
/* TODO(sergey): This is actually a copy of pack_leaf(),
|
||||
* but this chunk of code only knows actual data and has
|
||||
* no idea about BVHNode.
|
||||
*
|
||||
* Would be nice to de-duplicate code, but trying to make
|
||||
* making code more general ends up in much nastier code
|
||||
* in my opinion so far.
|
||||
*
|
||||
* Same applies to the inner nodes case below.
|
||||
*/
|
||||
float4 leaf_data[BVH_QNODE_LEAF_SIZE];
|
||||
leaf_data[0].x = __int_as_float(c.x);
|
||||
leaf_data[0].y = __int_as_float(c.y);
|
||||
leaf_data[0].z = __uint_as_float(visibility);
|
||||
leaf_data[0].w = __uint_as_float(c.w);
|
||||
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
int4 *data = &pack.nodes[idx];
|
||||
bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
|
||||
int4 c;
|
||||
if(is_unaligned) {
|
||||
c = data[13];
|
||||
}
|
||||
else {
|
||||
c = data[7];
|
||||
}
|
||||
/* Refit inner node, set bbox from children. */
|
||||
BoundBox child_bbox[4] = {BoundBox::empty,
|
||||
BoundBox::empty,
|
||||
BoundBox::empty,
|
||||
BoundBox::empty};
|
||||
uint child_visibility[4] = {0};
|
||||
int num_nodes = 0;
|
||||
|
||||
for(int i = 0; i < 4; ++i) {
|
||||
if(c[i] != 0) {
|
||||
refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0),
|
||||
child_bbox[i], child_visibility[i]);
|
||||
++num_nodes;
|
||||
bbox.grow(child_bbox[i]);
|
||||
visibility |= child_visibility[i];
|
||||
}
|
||||
}
|
||||
|
||||
if(is_unaligned) {
|
||||
Transform aligned_space[4] = {transform_identity(),
|
||||
transform_identity(),
|
||||
transform_identity(),
|
||||
transform_identity()};
|
||||
pack_unaligned_node(idx,
|
||||
aligned_space,
|
||||
child_bbox,
|
||||
&c[0],
|
||||
visibility,
|
||||
0.0f,
|
||||
1.0f,
|
||||
4);
|
||||
}
|
||||
else {
|
||||
pack_aligned_node(idx,
|
||||
child_bbox,
|
||||
&c[0],
|
||||
visibility,
|
||||
0.0f,
|
||||
1.0f,
|
||||
4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CCL_NAMESPACE_END
|
||||
|
@@ -33,15 +33,8 @@ class LeafNode;
|
||||
class Object;
|
||||
class Progress;
|
||||
|
||||
#define BVH_NODE_SIZE 4
|
||||
#define BVH_NODE_LEAF_SIZE 1
|
||||
#define BVH_QNODE_SIZE 8
|
||||
#define BVH_QNODE_LEAF_SIZE 1
|
||||
#define BVH_ALIGN 4096
|
||||
#define TRI_NODE_SIZE 3
|
||||
|
||||
#define BVH_UNALIGNED_NODE_SIZE 7
|
||||
#define BVH_UNALIGNED_QNODE_SIZE 14
|
||||
#define BVH_ALIGN 4096
|
||||
#define TRI_NODE_SIZE 3
|
||||
|
||||
/* Packed BVH
|
||||
*
|
||||
@@ -54,7 +47,7 @@ struct PackedBVH {
|
||||
/* BVH leaf nodes storage. */
|
||||
array<int4> leaf_nodes;
|
||||
/* object index to BVH node index mapping for instances */
|
||||
array<int> object_node;
|
||||
array<int> object_node;
|
||||
/* Mapping from primitive index to index in triangle array. */
|
||||
array<uint> prim_tri_index;
|
||||
/* Continuous storage of triangle vertices. */
|
||||
@@ -110,95 +103,16 @@ protected:
|
||||
virtual void refit_nodes() = 0;
|
||||
};
|
||||
|
||||
/* BVH2
|
||||
*
|
||||
* Typical BVH with each node having two children. */
|
||||
/* Pack Utility */
|
||||
struct BVHStackEntry
|
||||
{
|
||||
const BVHNode *node;
|
||||
int idx;
|
||||
|
||||
class BVH2 : public BVH {
|
||||
protected:
|
||||
/* constructor */
|
||||
friend class BVH;
|
||||
BVH2(const BVHParams& params, const vector<Object*>& objects);
|
||||
|
||||
/* pack */
|
||||
void pack_nodes(const BVHNode *root);
|
||||
|
||||
void pack_leaf(const BVHStackEntry& e,
|
||||
const LeafNode *leaf);
|
||||
void pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
|
||||
void pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
void pack_aligned_node(int idx,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1);
|
||||
|
||||
void pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
void pack_unaligned_node(int idx,
|
||||
const Transform& aligned_space0,
|
||||
const Transform& aligned_space1,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1);
|
||||
|
||||
/* refit */
|
||||
void refit_nodes();
|
||||
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
|
||||
};
|
||||
|
||||
/* BVH4
|
||||
*
|
||||
* Quad BVH, with each node having four children, to use with SIMD instructions. */
|
||||
|
||||
class BVH4 : public BVH {
|
||||
protected:
|
||||
/* constructor */
|
||||
friend class BVH;
|
||||
BVH4(const BVHParams& params, const vector<Object*>& objects);
|
||||
|
||||
/* pack */
|
||||
void pack_nodes(const BVHNode *root);
|
||||
|
||||
void pack_leaf(const BVHStackEntry& e, const LeafNode *leaf);
|
||||
void pack_inner(const BVHStackEntry& e, const BVHStackEntry *en, int num);
|
||||
|
||||
void pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num);
|
||||
void pack_aligned_node(int idx,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num);
|
||||
|
||||
void pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num);
|
||||
void pack_unaligned_node(int idx,
|
||||
const Transform *aligned_space,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num);
|
||||
|
||||
/* refit */
|
||||
void refit_nodes();
|
||||
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
|
||||
BVHStackEntry(const BVHNode *n = 0, int i = 0);
|
||||
int encodeIdx() const;
|
||||
};
|
||||
|
||||
CCL_NAMESPACE_END
|
||||
|
||||
#endif /* __BVH_H__ */
|
||||
|
||||
|
364
intern/cycles/bvh/bvh2.cpp
Normal file
364
intern/cycles/bvh/bvh2.cpp
Normal file
@@ -0,0 +1,364 @@
|
||||
/*
|
||||
* Adapted from code copyright 2009-2010 NVIDIA Corporation
|
||||
* Modifications Copyright 2011, Blender Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "bvh/bvh2.h"
|
||||
|
||||
#include "render/mesh.h"
|
||||
#include "render/object.h"
|
||||
|
||||
#include "bvh/bvh_node.h"
|
||||
#include "bvh/bvh_unaligned.h"
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
static bool node_bvh_is_unaligned(const BVHNode *node)
|
||||
{
|
||||
const BVHNode *node0 = node->get_child(0),
|
||||
*node1 = node->get_child(1);
|
||||
return node0->is_unaligned || node1->is_unaligned;
|
||||
}
|
||||
|
||||
BVH2::BVH2(const BVHParams& params_, const vector<Object*>& objects_)
|
||||
: BVH(params_, objects_)
|
||||
{
|
||||
}
|
||||
|
||||
void BVH2::pack_leaf(const BVHStackEntry& e,
|
||||
const LeafNode *leaf)
|
||||
{
|
||||
assert(e.idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
|
||||
float4 data[BVH_NODE_LEAF_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
|
||||
/* object */
|
||||
data[0].x = __int_as_float(~(leaf->lo));
|
||||
data[0].y = __int_as_float(0);
|
||||
}
|
||||
else {
|
||||
/* triangle */
|
||||
data[0].x = __int_as_float(leaf->lo);
|
||||
data[0].y = __int_as_float(leaf->hi);
|
||||
}
|
||||
data[0].z = __uint_as_float(leaf->visibility);
|
||||
if(leaf->num_triangles() != 0) {
|
||||
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
|
||||
}
|
||||
|
||||
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
if(e0.node->is_unaligned || e1.node->is_unaligned) {
|
||||
pack_unaligned_inner(e, e0, e1);
|
||||
} else {
|
||||
pack_aligned_inner(e, e0, e1);
|
||||
}
|
||||
}
|
||||
|
||||
void BVH2::pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
pack_aligned_node(e.idx,
|
||||
e0.node->bounds, e1.node->bounds,
|
||||
e0.encodeIdx(), e1.encodeIdx(),
|
||||
e0.node->visibility, e1.node->visibility);
|
||||
}
|
||||
|
||||
void BVH2::pack_aligned_node(int idx,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1)
|
||||
{
|
||||
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
|
||||
assert(c0 < 0 || c0 < pack.nodes.size());
|
||||
assert(c1 < 0 || c1 < pack.nodes.size());
|
||||
|
||||
int4 data[BVH_NODE_SIZE] = {
|
||||
make_int4(visibility0 & ~PATH_RAY_NODE_UNALIGNED,
|
||||
visibility1 & ~PATH_RAY_NODE_UNALIGNED,
|
||||
c0, c1),
|
||||
make_int4(__float_as_int(b0.min.x),
|
||||
__float_as_int(b1.min.x),
|
||||
__float_as_int(b0.max.x),
|
||||
__float_as_int(b1.max.x)),
|
||||
make_int4(__float_as_int(b0.min.y),
|
||||
__float_as_int(b1.min.y),
|
||||
__float_as_int(b0.max.y),
|
||||
__float_as_int(b1.max.y)),
|
||||
make_int4(__float_as_int(b0.min.z),
|
||||
__float_as_int(b1.min.z),
|
||||
__float_as_int(b0.max.z),
|
||||
__float_as_int(b1.max.z)),
|
||||
};
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(int4)*BVH_NODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1)
|
||||
{
|
||||
pack_unaligned_node(e.idx,
|
||||
e0.node->get_aligned_space(),
|
||||
e1.node->get_aligned_space(),
|
||||
e0.node->bounds,
|
||||
e1.node->bounds,
|
||||
e0.encodeIdx(), e1.encodeIdx(),
|
||||
e0.node->visibility, e1.node->visibility);
|
||||
}
|
||||
|
||||
void BVH2::pack_unaligned_node(int idx,
|
||||
const Transform& aligned_space0,
|
||||
const Transform& aligned_space1,
|
||||
const BoundBox& bounds0,
|
||||
const BoundBox& bounds1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1)
|
||||
{
|
||||
assert(idx + BVH_UNALIGNED_NODE_SIZE <= pack.nodes.size());
|
||||
assert(c0 < 0 || c0 < pack.nodes.size());
|
||||
assert(c1 < 0 || c1 < pack.nodes.size());
|
||||
|
||||
float4 data[BVH_UNALIGNED_NODE_SIZE];
|
||||
Transform space0 = BVHUnaligned::compute_node_transform(bounds0,
|
||||
aligned_space0);
|
||||
Transform space1 = BVHUnaligned::compute_node_transform(bounds1,
|
||||
aligned_space1);
|
||||
data[0] = make_float4(__int_as_float(visibility0 | PATH_RAY_NODE_UNALIGNED),
|
||||
__int_as_float(visibility1 | PATH_RAY_NODE_UNALIGNED),
|
||||
__int_as_float(c0),
|
||||
__int_as_float(c1));
|
||||
|
||||
data[1] = space0.x;
|
||||
data[2] = space0.y;
|
||||
data[3] = space0.z;
|
||||
data[4] = space1.x;
|
||||
data[5] = space1.y;
|
||||
data[6] = space1.z;
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_NODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH2::pack_nodes(const BVHNode *root)
|
||||
{
|
||||
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_NODE_COUNT);
|
||||
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
|
||||
assert(num_leaf_nodes <= num_nodes);
|
||||
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
|
||||
size_t node_size;
|
||||
if(params.use_unaligned_nodes) {
|
||||
const size_t num_unaligned_nodes =
|
||||
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_COUNT);
|
||||
node_size = (num_unaligned_nodes * BVH_UNALIGNED_NODE_SIZE) +
|
||||
(num_inner_nodes - num_unaligned_nodes) * BVH_NODE_SIZE;
|
||||
}
|
||||
else {
|
||||
node_size = num_inner_nodes * BVH_NODE_SIZE;
|
||||
}
|
||||
/* Resize arrays */
|
||||
pack.nodes.clear();
|
||||
pack.leaf_nodes.clear();
|
||||
/* For top level BVH, first merge existing BVH's so we know the offsets. */
|
||||
if(params.top_level) {
|
||||
pack_instances(node_size, num_leaf_nodes*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
pack.nodes.resize(node_size);
|
||||
pack.leaf_nodes.resize(num_leaf_nodes*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
|
||||
|
||||
vector<BVHStackEntry> stack;
|
||||
stack.reserve(BVHParams::MAX_DEPTH*2);
|
||||
if(root->is_leaf()) {
|
||||
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
|
||||
}
|
||||
else {
|
||||
stack.push_back(BVHStackEntry(root, nextNodeIdx));
|
||||
nextNodeIdx += node_bvh_is_unaligned(root)
|
||||
? BVH_UNALIGNED_NODE_SIZE
|
||||
: BVH_NODE_SIZE;
|
||||
}
|
||||
|
||||
while(stack.size()) {
|
||||
BVHStackEntry e = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
if(e.node->is_leaf()) {
|
||||
/* leaf node */
|
||||
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
|
||||
pack_leaf(e, leaf);
|
||||
}
|
||||
else {
|
||||
/* innner node */
|
||||
int idx[2];
|
||||
for(int i = 0; i < 2; ++i) {
|
||||
if(e.node->get_child(i)->is_leaf()) {
|
||||
idx[i] = nextLeafNodeIdx++;
|
||||
}
|
||||
else {
|
||||
idx[i] = nextNodeIdx;
|
||||
nextNodeIdx += node_bvh_is_unaligned(e.node->get_child(i))
|
||||
? BVH_UNALIGNED_NODE_SIZE
|
||||
: BVH_NODE_SIZE;
|
||||
}
|
||||
}
|
||||
|
||||
stack.push_back(BVHStackEntry(e.node->get_child(0), idx[0]));
|
||||
stack.push_back(BVHStackEntry(e.node->get_child(1), idx[1]));
|
||||
|
||||
pack_inner(e, stack[stack.size()-2], stack[stack.size()-1]);
|
||||
}
|
||||
}
|
||||
assert(node_size == nextNodeIdx);
|
||||
/* root index to start traversal at, to handle case of single leaf node */
|
||||
pack.root_index = (root->is_leaf())? -1: 0;
|
||||
}
|
||||
|
||||
void BVH2::refit_nodes()
|
||||
{
|
||||
assert(!params.top_level);
|
||||
|
||||
BoundBox bbox = BoundBox::empty;
|
||||
uint visibility = 0;
|
||||
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
|
||||
}
|
||||
|
||||
void BVH2::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
|
||||
{
|
||||
if(leaf) {
|
||||
assert(idx + BVH_NODE_LEAF_SIZE <= pack.leaf_nodes.size());
|
||||
const int4 *data = &pack.leaf_nodes[idx];
|
||||
const int c0 = data[0].x;
|
||||
const int c1 = data[0].y;
|
||||
/* refit leaf node */
|
||||
for(int prim = c0; prim < c1; prim++) {
|
||||
int pidx = pack.prim_index[prim];
|
||||
int tob = pack.prim_object[prim];
|
||||
Object *ob = objects[tob];
|
||||
|
||||
if(pidx == -1) {
|
||||
/* object instance */
|
||||
bbox.grow(ob->bounds);
|
||||
}
|
||||
else {
|
||||
/* primitives */
|
||||
const Mesh *mesh = ob->mesh;
|
||||
|
||||
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
|
||||
/* curves */
|
||||
int str_offset = (params.top_level)? mesh->curve_offset: 0;
|
||||
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
|
||||
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
|
||||
|
||||
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
|
||||
|
||||
visibility |= PATH_RAY_CURVE;
|
||||
|
||||
/* motion curves */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->curve_keys.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *key_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* triangles */
|
||||
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
|
||||
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
|
||||
const float3 *vpos = &mesh->verts[0];
|
||||
|
||||
triangle.bounds_grow(vpos, bbox);
|
||||
|
||||
/* motion triangles */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->verts.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *vert_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
visibility |= ob->visibility;
|
||||
}
|
||||
|
||||
/* TODO(sergey): De-duplicate with pack_leaf(). */
|
||||
float4 leaf_data[BVH_NODE_LEAF_SIZE];
|
||||
leaf_data[0].x = __int_as_float(c0);
|
||||
leaf_data[0].y = __int_as_float(c1);
|
||||
leaf_data[0].z = __uint_as_float(visibility);
|
||||
leaf_data[0].w = __uint_as_float(data[0].w);
|
||||
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_NODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
assert(idx + BVH_NODE_SIZE <= pack.nodes.size());
|
||||
|
||||
const int4 *data = &pack.nodes[idx];
|
||||
const bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
|
||||
const int c0 = data[0].z;
|
||||
const int c1 = data[0].w;
|
||||
/* refit inner node, set bbox from children */
|
||||
BoundBox bbox0 = BoundBox::empty, bbox1 = BoundBox::empty;
|
||||
uint visibility0 = 0, visibility1 = 0;
|
||||
|
||||
refit_node((c0 < 0)? -c0-1: c0, (c0 < 0), bbox0, visibility0);
|
||||
refit_node((c1 < 0)? -c1-1: c1, (c1 < 0), bbox1, visibility1);
|
||||
|
||||
if(is_unaligned) {
|
||||
Transform aligned_space = transform_identity();
|
||||
pack_unaligned_node(idx,
|
||||
aligned_space, aligned_space,
|
||||
bbox0, bbox1,
|
||||
c0, c1,
|
||||
visibility0,
|
||||
visibility1);
|
||||
}
|
||||
else {
|
||||
pack_aligned_node(idx,
|
||||
bbox0, bbox1,
|
||||
c0, c1,
|
||||
visibility0,
|
||||
visibility1);
|
||||
}
|
||||
|
||||
bbox.grow(bbox0);
|
||||
bbox.grow(bbox1);
|
||||
visibility = visibility0|visibility1;
|
||||
}
|
||||
}
|
||||
|
||||
CCL_NAMESPACE_END
|
87
intern/cycles/bvh/bvh2.h
Normal file
87
intern/cycles/bvh/bvh2.h
Normal file
@@ -0,0 +1,87 @@
|
||||
/*
|
||||
* Adapted from code copyright 2009-2010 NVIDIA Corporation
|
||||
* Modifications Copyright 2011, Blender Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef __BVH2_H__
|
||||
#define __BVH2_H__
|
||||
|
||||
#include "bvh/bvh.h"
|
||||
#include "bvh/bvh_params.h"
|
||||
|
||||
#include "util/util_types.h"
|
||||
#include "util/util_vector.h"
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
class BVHNode;
|
||||
struct BVHStackEntry;
|
||||
class BVHParams;
|
||||
class BoundBox;
|
||||
class LeafNode;
|
||||
class Object;
|
||||
class Progress;
|
||||
|
||||
#define BVH_NODE_SIZE 4
|
||||
#define BVH_NODE_LEAF_SIZE 1
|
||||
#define BVH_UNALIGNED_NODE_SIZE 7
|
||||
|
||||
/* BVH2
|
||||
*
|
||||
* Typical BVH with each node having two children.
|
||||
*/
|
||||
class BVH2 : public BVH {
|
||||
protected:
|
||||
/* constructor */
|
||||
friend class BVH;
|
||||
BVH2(const BVHParams& params, const vector<Object*>& objects);
|
||||
|
||||
/* pack */
|
||||
void pack_nodes(const BVHNode *root);
|
||||
|
||||
void pack_leaf(const BVHStackEntry& e,
|
||||
const LeafNode *leaf);
|
||||
void pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
|
||||
void pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
void pack_aligned_node(int idx,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1);
|
||||
|
||||
void pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry& e0,
|
||||
const BVHStackEntry& e1);
|
||||
void pack_unaligned_node(int idx,
|
||||
const Transform& aligned_space0,
|
||||
const Transform& aligned_space1,
|
||||
const BoundBox& b0,
|
||||
const BoundBox& b1,
|
||||
int c0, int c1,
|
||||
uint visibility0, uint visibility1);
|
||||
|
||||
/* refit */
|
||||
void refit_nodes();
|
||||
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
|
||||
};
|
||||
|
||||
CCL_NAMESPACE_END
|
||||
|
||||
#endif /* __BVH2_H__ */
|
516
intern/cycles/bvh/bvh4.cpp
Normal file
516
intern/cycles/bvh/bvh4.cpp
Normal file
@@ -0,0 +1,516 @@
|
||||
/*
|
||||
* Adapted from code copyright 2009-2010 NVIDIA Corporation
|
||||
* Modifications Copyright 2011, Blender Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "bvh/bvh4.h"
|
||||
|
||||
#include "render/mesh.h"
|
||||
#include "render/object.h"
|
||||
|
||||
#include "bvh/bvh_node.h"
|
||||
#include "bvh/bvh_unaligned.h"
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
/* Can we avoid this somehow or make more generic?
|
||||
*
|
||||
* Perhaps we can merge nodes in actual tree and make our
|
||||
* life easier all over the place.
|
||||
*/
|
||||
static bool node_qbvh_is_unaligned(const BVHNode *node)
|
||||
{
|
||||
const BVHNode *node0 = node->get_child(0),
|
||||
*node1 = node->get_child(1);
|
||||
bool has_unaligned = false;
|
||||
if(node0->is_leaf()) {
|
||||
has_unaligned |= node0->is_unaligned;
|
||||
}
|
||||
else {
|
||||
has_unaligned |= node0->get_child(0)->is_unaligned;
|
||||
has_unaligned |= node0->get_child(1)->is_unaligned;
|
||||
}
|
||||
if(node1->is_leaf()) {
|
||||
has_unaligned |= node1->is_unaligned;
|
||||
}
|
||||
else {
|
||||
has_unaligned |= node1->get_child(0)->is_unaligned;
|
||||
has_unaligned |= node1->get_child(1)->is_unaligned;
|
||||
}
|
||||
return has_unaligned;
|
||||
}
|
||||
|
||||
BVH4::BVH4(const BVHParams& params_, const vector<Object*>& objects_)
|
||||
: BVH(params_, objects_)
|
||||
{
|
||||
params.use_qbvh = true;
|
||||
}
|
||||
|
||||
void BVH4::pack_leaf(const BVHStackEntry& e, const LeafNode *leaf)
|
||||
{
|
||||
float4 data[BVH_QNODE_LEAF_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
if(leaf->num_triangles() == 1 && pack.prim_index[leaf->lo] == -1) {
|
||||
/* object */
|
||||
data[0].x = __int_as_float(~(leaf->lo));
|
||||
data[0].y = __int_as_float(0);
|
||||
}
|
||||
else {
|
||||
/* triangle */
|
||||
data[0].x = __int_as_float(leaf->lo);
|
||||
data[0].y = __int_as_float(leaf->hi);
|
||||
}
|
||||
data[0].z = __uint_as_float(leaf->visibility);
|
||||
if(leaf->num_triangles() != 0) {
|
||||
data[0].w = __uint_as_float(pack.prim_type[leaf->lo]);
|
||||
}
|
||||
|
||||
memcpy(&pack.leaf_nodes[e.idx], data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
void BVH4::pack_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
bool has_unaligned = false;
|
||||
/* Check whether we have to create unaligned node or all nodes are aligned
|
||||
* and we can cut some corner here.
|
||||
*/
|
||||
if(params.use_unaligned_nodes) {
|
||||
for(int i = 0; i < num; i++) {
|
||||
if(en[i].node->is_unaligned) {
|
||||
has_unaligned = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(has_unaligned) {
|
||||
/* There's no unaligned children, pack into AABB node. */
|
||||
pack_unaligned_inner(e, en, num);
|
||||
}
|
||||
else {
|
||||
/* Create unaligned node with orientation transform for each of the
|
||||
* children.
|
||||
*/
|
||||
pack_aligned_inner(e, en, num);
|
||||
}
|
||||
}
|
||||
|
||||
void BVH4::pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
BoundBox bounds[4];
|
||||
int child[4];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
bounds[i] = en[i].node->bounds;
|
||||
child[i] = en[i].encodeIdx();
|
||||
}
|
||||
pack_aligned_node(e.idx,
|
||||
bounds,
|
||||
child,
|
||||
e.node->visibility,
|
||||
e.node->time_from,
|
||||
e.node->time_to,
|
||||
num);
|
||||
}
|
||||
|
||||
void BVH4::pack_aligned_node(int idx,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num)
|
||||
{
|
||||
float4 data[BVH_QNODE_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
data[0].x = __uint_as_float(visibility & ~PATH_RAY_NODE_UNALIGNED);
|
||||
data[0].y = time_from;
|
||||
data[0].z = time_to;
|
||||
|
||||
for(int i = 0; i < num; i++) {
|
||||
float3 bb_min = bounds[i].min;
|
||||
float3 bb_max = bounds[i].max;
|
||||
|
||||
data[1][i] = bb_min.x;
|
||||
data[2][i] = bb_max.x;
|
||||
data[3][i] = bb_min.y;
|
||||
data[4][i] = bb_max.y;
|
||||
data[5][i] = bb_min.z;
|
||||
data[6][i] = bb_max.z;
|
||||
|
||||
data[7][i] = __int_as_float(child[i]);
|
||||
}
|
||||
|
||||
for(int i = num; i < 4; i++) {
|
||||
/* We store BB which would never be recorded as intersection
|
||||
* so kernel might safely assume there are always 4 child nodes.
|
||||
*/
|
||||
data[1][i] = FLT_MAX;
|
||||
data[2][i] = -FLT_MAX;
|
||||
|
||||
data[3][i] = FLT_MAX;
|
||||
data[4][i] = -FLT_MAX;
|
||||
|
||||
data[5][i] = FLT_MAX;
|
||||
data[6][i] = -FLT_MAX;
|
||||
|
||||
data[7][i] = __int_as_float(0);
|
||||
}
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_QNODE_SIZE);
|
||||
}
|
||||
|
||||
void BVH4::pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num)
|
||||
{
|
||||
Transform aligned_space[4];
|
||||
BoundBox bounds[4];
|
||||
int child[4];
|
||||
for(int i = 0; i < num; ++i) {
|
||||
aligned_space[i] = en[i].node->get_aligned_space();
|
||||
bounds[i] = en[i].node->bounds;
|
||||
child[i] = en[i].encodeIdx();
|
||||
}
|
||||
pack_unaligned_node(e.idx,
|
||||
aligned_space,
|
||||
bounds,
|
||||
child,
|
||||
e.node->visibility,
|
||||
e.node->time_from,
|
||||
e.node->time_to,
|
||||
num);
|
||||
}
|
||||
|
||||
void BVH4::pack_unaligned_node(int idx,
|
||||
const Transform *aligned_space,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num)
|
||||
{
|
||||
float4 data[BVH_UNALIGNED_QNODE_SIZE];
|
||||
memset(data, 0, sizeof(data));
|
||||
|
||||
data[0].x = __uint_as_float(visibility | PATH_RAY_NODE_UNALIGNED);
|
||||
data[0].y = time_from;
|
||||
data[0].z = time_to;
|
||||
|
||||
for(int i = 0; i < num; i++) {
|
||||
Transform space = BVHUnaligned::compute_node_transform(
|
||||
bounds[i],
|
||||
aligned_space[i]);
|
||||
|
||||
data[1][i] = space.x.x;
|
||||
data[2][i] = space.x.y;
|
||||
data[3][i] = space.x.z;
|
||||
|
||||
data[4][i] = space.y.x;
|
||||
data[5][i] = space.y.y;
|
||||
data[6][i] = space.y.z;
|
||||
|
||||
data[7][i] = space.z.x;
|
||||
data[8][i] = space.z.y;
|
||||
data[9][i] = space.z.z;
|
||||
|
||||
data[10][i] = space.x.w;
|
||||
data[11][i] = space.y.w;
|
||||
data[12][i] = space.z.w;
|
||||
|
||||
data[13][i] = __int_as_float(child[i]);
|
||||
}
|
||||
|
||||
for(int i = num; i < 4; i++) {
|
||||
/* We store BB which would never be recorded as intersection
|
||||
* so kernel might safely assume there are always 4 child nodes.
|
||||
*/
|
||||
|
||||
data[1][i] = 1.0f;
|
||||
data[2][i] = 0.0f;
|
||||
data[3][i] = 0.0f;
|
||||
|
||||
data[4][i] = 0.0f;
|
||||
data[5][i] = 0.0f;
|
||||
data[6][i] = 0.0f;
|
||||
|
||||
data[7][i] = 0.0f;
|
||||
data[8][i] = 0.0f;
|
||||
data[9][i] = 0.0f;
|
||||
|
||||
data[10][i] = -FLT_MAX;
|
||||
data[11][i] = -FLT_MAX;
|
||||
data[12][i] = -FLT_MAX;
|
||||
|
||||
data[13][i] = __int_as_float(0);
|
||||
}
|
||||
|
||||
memcpy(&pack.nodes[idx], data, sizeof(float4)*BVH_UNALIGNED_QNODE_SIZE);
|
||||
}
|
||||
|
||||
/* Quad SIMD Nodes */
|
||||
|
||||
void BVH4::pack_nodes(const BVHNode *root)
|
||||
{
|
||||
/* Calculate size of the arrays required. */
|
||||
const size_t num_nodes = root->getSubtreeSize(BVH_STAT_QNODE_COUNT);
|
||||
const size_t num_leaf_nodes = root->getSubtreeSize(BVH_STAT_LEAF_COUNT);
|
||||
assert(num_leaf_nodes <= num_nodes);
|
||||
const size_t num_inner_nodes = num_nodes - num_leaf_nodes;
|
||||
size_t node_size;
|
||||
if(params.use_unaligned_nodes) {
|
||||
const size_t num_unaligned_nodes =
|
||||
root->getSubtreeSize(BVH_STAT_UNALIGNED_INNER_QNODE_COUNT);
|
||||
node_size = (num_unaligned_nodes * BVH_UNALIGNED_QNODE_SIZE) +
|
||||
(num_inner_nodes - num_unaligned_nodes) * BVH_QNODE_SIZE;
|
||||
}
|
||||
else {
|
||||
node_size = num_inner_nodes * BVH_QNODE_SIZE;
|
||||
}
|
||||
/* Resize arrays. */
|
||||
pack.nodes.clear();
|
||||
pack.leaf_nodes.clear();
|
||||
/* For top level BVH, first merge existing BVH's so we know the offsets. */
|
||||
if(params.top_level) {
|
||||
pack_instances(node_size, num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
pack.nodes.resize(node_size);
|
||||
pack.leaf_nodes.resize(num_leaf_nodes*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
|
||||
int nextNodeIdx = 0, nextLeafNodeIdx = 0;
|
||||
|
||||
vector<BVHStackEntry> stack;
|
||||
stack.reserve(BVHParams::MAX_DEPTH*2);
|
||||
if(root->is_leaf()) {
|
||||
stack.push_back(BVHStackEntry(root, nextLeafNodeIdx++));
|
||||
}
|
||||
else {
|
||||
stack.push_back(BVHStackEntry(root, nextNodeIdx));
|
||||
nextNodeIdx += node_qbvh_is_unaligned(root)
|
||||
? BVH_UNALIGNED_QNODE_SIZE
|
||||
: BVH_QNODE_SIZE;
|
||||
}
|
||||
|
||||
while(stack.size()) {
|
||||
BVHStackEntry e = stack.back();
|
||||
stack.pop_back();
|
||||
|
||||
if(e.node->is_leaf()) {
|
||||
/* leaf node */
|
||||
const LeafNode *leaf = reinterpret_cast<const LeafNode*>(e.node);
|
||||
pack_leaf(e, leaf);
|
||||
}
|
||||
else {
|
||||
/* Inner node. */
|
||||
const BVHNode *node = e.node;
|
||||
const BVHNode *node0 = node->get_child(0);
|
||||
const BVHNode *node1 = node->get_child(1);
|
||||
/* Collect nodes. */
|
||||
const BVHNode *nodes[4];
|
||||
int numnodes = 0;
|
||||
if(node0->is_leaf()) {
|
||||
nodes[numnodes++] = node0;
|
||||
}
|
||||
else {
|
||||
nodes[numnodes++] = node0->get_child(0);
|
||||
nodes[numnodes++] = node0->get_child(1);
|
||||
}
|
||||
if(node1->is_leaf()) {
|
||||
nodes[numnodes++] = node1;
|
||||
}
|
||||
else {
|
||||
nodes[numnodes++] = node1->get_child(0);
|
||||
nodes[numnodes++] = node1->get_child(1);
|
||||
}
|
||||
/* Push entries on the stack. */
|
||||
for(int i = 0; i < numnodes; ++i) {
|
||||
int idx;
|
||||
if(nodes[i]->is_leaf()) {
|
||||
idx = nextLeafNodeIdx++;
|
||||
}
|
||||
else {
|
||||
idx = nextNodeIdx;
|
||||
nextNodeIdx += node_qbvh_is_unaligned(nodes[i])
|
||||
? BVH_UNALIGNED_QNODE_SIZE
|
||||
: BVH_QNODE_SIZE;
|
||||
}
|
||||
stack.push_back(BVHStackEntry(nodes[i], idx));
|
||||
}
|
||||
/* Set node. */
|
||||
pack_inner(e, &stack[stack.size()-numnodes], numnodes);
|
||||
}
|
||||
}
|
||||
assert(node_size == nextNodeIdx);
|
||||
/* Root index to start traversal at, to handle case of single leaf node. */
|
||||
pack.root_index = (root->is_leaf())? -1: 0;
|
||||
}
|
||||
|
||||
void BVH4::refit_nodes()
|
||||
{
|
||||
assert(!params.top_level);
|
||||
|
||||
BoundBox bbox = BoundBox::empty;
|
||||
uint visibility = 0;
|
||||
refit_node(0, (pack.root_index == -1)? true: false, bbox, visibility);
|
||||
}
|
||||
|
||||
void BVH4::refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility)
|
||||
{
|
||||
if(leaf) {
|
||||
int4 *data = &pack.leaf_nodes[idx];
|
||||
int4 c = data[0];
|
||||
/* Refit leaf node. */
|
||||
for(int prim = c.x; prim < c.y; prim++) {
|
||||
int pidx = pack.prim_index[prim];
|
||||
int tob = pack.prim_object[prim];
|
||||
Object *ob = objects[tob];
|
||||
|
||||
if(pidx == -1) {
|
||||
/* Object instance. */
|
||||
bbox.grow(ob->bounds);
|
||||
}
|
||||
else {
|
||||
/* Primitives. */
|
||||
const Mesh *mesh = ob->mesh;
|
||||
|
||||
if(pack.prim_type[prim] & PRIMITIVE_ALL_CURVE) {
|
||||
/* Curves. */
|
||||
int str_offset = (params.top_level)? mesh->curve_offset: 0;
|
||||
Mesh::Curve curve = mesh->get_curve(pidx - str_offset);
|
||||
int k = PRIMITIVE_UNPACK_SEGMENT(pack.prim_type[prim]);
|
||||
|
||||
curve.bounds_grow(k, &mesh->curve_keys[0], &mesh->curve_radius[0], bbox);
|
||||
|
||||
visibility |= PATH_RAY_CURVE;
|
||||
|
||||
/* Motion curves. */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->curve_attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->curve_keys.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *key_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
curve.bounds_grow(k, key_steps + i*mesh_size, &mesh->curve_radius[0], bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* Triangles. */
|
||||
int tri_offset = (params.top_level)? mesh->tri_offset: 0;
|
||||
Mesh::Triangle triangle = mesh->get_triangle(pidx - tri_offset);
|
||||
const float3 *vpos = &mesh->verts[0];
|
||||
|
||||
triangle.bounds_grow(vpos, bbox);
|
||||
|
||||
/* Motion triangles. */
|
||||
if(mesh->use_motion_blur) {
|
||||
Attribute *attr = mesh->attributes.find(ATTR_STD_MOTION_VERTEX_POSITION);
|
||||
|
||||
if(attr) {
|
||||
size_t mesh_size = mesh->verts.size();
|
||||
size_t steps = mesh->motion_steps - 1;
|
||||
float3 *vert_steps = attr->data_float3();
|
||||
|
||||
for(size_t i = 0; i < steps; i++)
|
||||
triangle.bounds_grow(vert_steps + i*mesh_size, bbox);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
visibility |= ob->visibility;
|
||||
}
|
||||
|
||||
/* TODO(sergey): This is actually a copy of pack_leaf(),
|
||||
* but this chunk of code only knows actual data and has
|
||||
* no idea about BVHNode.
|
||||
*
|
||||
* Would be nice to de-duplicate code, but trying to make
|
||||
* making code more general ends up in much nastier code
|
||||
* in my opinion so far.
|
||||
*
|
||||
* Same applies to the inner nodes case below.
|
||||
*/
|
||||
float4 leaf_data[BVH_QNODE_LEAF_SIZE];
|
||||
leaf_data[0].x = __int_as_float(c.x);
|
||||
leaf_data[0].y = __int_as_float(c.y);
|
||||
leaf_data[0].z = __uint_as_float(visibility);
|
||||
leaf_data[0].w = __uint_as_float(c.w);
|
||||
memcpy(&pack.leaf_nodes[idx], leaf_data, sizeof(float4)*BVH_QNODE_LEAF_SIZE);
|
||||
}
|
||||
else {
|
||||
int4 *data = &pack.nodes[idx];
|
||||
bool is_unaligned = (data[0].x & PATH_RAY_NODE_UNALIGNED) != 0;
|
||||
int4 c;
|
||||
if(is_unaligned) {
|
||||
c = data[13];
|
||||
}
|
||||
else {
|
||||
c = data[7];
|
||||
}
|
||||
/* Refit inner node, set bbox from children. */
|
||||
BoundBox child_bbox[4] = {BoundBox::empty,
|
||||
BoundBox::empty,
|
||||
BoundBox::empty,
|
||||
BoundBox::empty};
|
||||
uint child_visibility[4] = {0};
|
||||
int num_nodes = 0;
|
||||
|
||||
for(int i = 0; i < 4; ++i) {
|
||||
if(c[i] != 0) {
|
||||
refit_node((c[i] < 0)? -c[i]-1: c[i], (c[i] < 0),
|
||||
child_bbox[i], child_visibility[i]);
|
||||
++num_nodes;
|
||||
bbox.grow(child_bbox[i]);
|
||||
visibility |= child_visibility[i];
|
||||
}
|
||||
}
|
||||
|
||||
if(is_unaligned) {
|
||||
Transform aligned_space[4] = {transform_identity(),
|
||||
transform_identity(),
|
||||
transform_identity(),
|
||||
transform_identity()};
|
||||
pack_unaligned_node(idx,
|
||||
aligned_space,
|
||||
child_bbox,
|
||||
&c[0],
|
||||
visibility,
|
||||
0.0f,
|
||||
1.0f,
|
||||
4);
|
||||
}
|
||||
else {
|
||||
pack_aligned_node(idx,
|
||||
child_bbox,
|
||||
&c[0],
|
||||
visibility,
|
||||
0.0f,
|
||||
1.0f,
|
||||
4);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
CCL_NAMESPACE_END
|
88
intern/cycles/bvh/bvh4.h
Normal file
88
intern/cycles/bvh/bvh4.h
Normal file
@@ -0,0 +1,88 @@
|
||||
/*
|
||||
* Adapted from code copyright 2009-2010 NVIDIA Corporation
|
||||
* Modifications Copyright 2011, Blender Foundation.
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||
* you may not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* http://www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#ifndef __BVH4_H__
|
||||
#define __BVH4_H__
|
||||
|
||||
#include "bvh/bvh.h"
|
||||
#include "bvh/bvh_params.h"
|
||||
|
||||
#include "util/util_types.h"
|
||||
#include "util/util_vector.h"
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
class BVHNode;
|
||||
struct BVHStackEntry;
|
||||
class BVHParams;
|
||||
class BoundBox;
|
||||
class LeafNode;
|
||||
class Object;
|
||||
class Progress;
|
||||
|
||||
#define BVH_QNODE_SIZE 8
|
||||
#define BVH_QNODE_LEAF_SIZE 1
|
||||
#define BVH_UNALIGNED_QNODE_SIZE 14
|
||||
|
||||
/* BVH4
|
||||
*
|
||||
* Quad BVH, with each node having four children, to use with SIMD instructions.
|
||||
*/
|
||||
class BVH4 : public BVH {
|
||||
protected:
|
||||
/* constructor */
|
||||
friend class BVH;
|
||||
BVH4(const BVHParams& params, const vector<Object*>& objects);
|
||||
|
||||
/* pack */
|
||||
void pack_nodes(const BVHNode *root);
|
||||
|
||||
void pack_leaf(const BVHStackEntry& e, const LeafNode *leaf);
|
||||
void pack_inner(const BVHStackEntry& e, const BVHStackEntry *en, int num);
|
||||
|
||||
void pack_aligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num);
|
||||
void pack_aligned_node(int idx,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num);
|
||||
|
||||
void pack_unaligned_inner(const BVHStackEntry& e,
|
||||
const BVHStackEntry *en,
|
||||
int num);
|
||||
void pack_unaligned_node(int idx,
|
||||
const Transform *aligned_space,
|
||||
const BoundBox *bounds,
|
||||
const int *child,
|
||||
const uint visibility,
|
||||
const float time_from,
|
||||
const float time_to,
|
||||
const int num);
|
||||
|
||||
/* refit */
|
||||
void refit_nodes();
|
||||
void refit_node(int idx, bool leaf, BoundBox& bbox, uint& visibility);
|
||||
};
|
||||
|
||||
CCL_NAMESPACE_END
|
||||
|
||||
#endif /* __BVH_H__ */
|
||||
|
Reference in New Issue
Block a user