Update Recast version to 1.5.0

The version of Recast that Blender ships with is from 2009.  This patch updates the Recast version to the latest version, 1.5.0.  The Detour version remains untouched.

Reviewers: campbellbarton, moguri

Reviewed By: moguri

Projects: #bf_blender

Differential Revision: https://developer.blender.org/D1747
This commit is contained in:
Reinier de Blois
2016-04-05 20:34:00 +02:00
committed by Porteries Tristan
parent 214e384fc4
commit 176538f613
21 changed files with 2691 additions and 1403 deletions

File diff suppressed because it is too large Load Diff

View File

@@ -19,6 +19,8 @@
#ifndef RECASTALLOC_H
#define RECASTALLOC_H
#include <stddef.h>
/// Provides hint values to the memory allocator on how long the
/// memory is expected to be used.
enum rcAllocHint
@@ -28,30 +30,32 @@ enum rcAllocHint
};
/// A memory allocation function.
// @param[in] size The size, in bytes of memory, to allocate.
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
// @param[in] size The size, in bytes of memory, to allocate.
// @param[in] rcAllocHint A hint to the allocator on how long the memory is expected to be in use.
// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
/// @see rcAllocSetCustom
typedef void* (rcAllocFunc)(int size, rcAllocHint hint);
typedef void* (rcAllocFunc)(size_t size, rcAllocHint hint);
/// A memory deallocation function.
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAllocFunc.
/// @see rcAllocSetCustom
// @param[in] ptr
typedef void (rcFreeFunc)(void* ptr);
/// Sets the base custom allocation functions to be used by Recast.
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
/// @param[in] allocFunc The memory allocation function to be used by #rcAlloc
/// @param[in] freeFunc The memory de-allocation function to be used by #rcFree
void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc);
/// Allocates a memory block.
/// @param[in] size The size, in bytes of memory, to allocate.
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
/// @param[in] size The size, in bytes of memory, to allocate.
/// @param[in] hint A hint to the allocator on how long the memory is expected to be in use.
/// @return A pointer to the beginning of the allocated memory block, or null if the allocation failed.
void* rcAlloc(int size, rcAllocHint hint);
/// @see rcFree
void* rcAlloc(size_t size, rcAllocHint hint);
/// Deallocates a memory block.
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
/// @param[in] ptr A pointer to a memory block previously allocated using #rcAlloc.
/// @see rcAlloc
void rcFree(void* ptr);
@@ -60,42 +64,58 @@ class rcIntArray
{
int* m_data;
int m_size, m_cap;
inline rcIntArray(const rcIntArray&);
inline rcIntArray& operator=(const rcIntArray&);
public:
void doResize(int n);
// Explicitly disabled copy constructor and copy assignment operator.
rcIntArray(const rcIntArray&);
rcIntArray& operator=(const rcIntArray&);
public:
/// Constructs an instance with an initial array size of zero.
inline rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
rcIntArray() : m_data(0), m_size(0), m_cap(0) {}
/// Constructs an instance initialized to the specified size.
/// @param[in] n The initial size of the integer array.
inline rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
inline ~rcIntArray() { rcFree(m_data); }
/// @param[in] n The initial size of the integer array.
rcIntArray(int n) : m_data(0), m_size(0), m_cap(0) { resize(n); }
~rcIntArray() { rcFree(m_data); }
/// Specifies the new size of the integer array.
/// @param[in] n The new size of the integer array.
void resize(int n);
/// @param[in] n The new size of the integer array.
void resize(int n)
{
if (n > m_cap)
doResize(n);
m_size = n;
}
/// Push the specified integer onto the end of the array and increases the size by one.
/// @param[in] item The new value.
inline void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
/// @param[in] item The new value.
void push(int item) { resize(m_size+1); m_data[m_size-1] = item; }
/// Returns the value at the end of the array and reduces the size by one.
/// @return The value at the end of the array.
inline int pop() { if (m_size > 0) m_size--; return m_data[m_size]; }
int pop()
{
if (m_size > 0)
m_size--;
return m_data[m_size];
}
/// The value at the specified array index.
/// @warning Does not provide overflow protection.
/// @param[in] i The index of the value.
inline const int& operator[](int i) const { return m_data[i]; }
/// @param[in] i The index of the value.
const int& operator[](int i) const { return m_data[i]; }
/// The value at the specified array index.
/// @warning Does not provide overflow protection.
/// @param[in] i The index of the value.
inline int& operator[](int i) { return m_data[i]; }
/// @param[in] i The index of the value.
int& operator[](int i) { return m_data[i]; }
/// The current size of the integer array.
inline int size() const { return m_size; }
int size() const { return m_size; }
};
/// A simple helper class used to delete an array when it goes out of scope.
@@ -110,13 +130,18 @@ public:
inline rcScopedDelete() : ptr(0) {}
/// Constructs an instance with the specified pointer.
/// @param[in] p An pointer to an allocated array.
/// @param[in] p An pointer to an allocated array.
inline rcScopedDelete(T* p) : ptr(p) {}
inline ~rcScopedDelete() { rcFree(ptr); }
/// The root array pointer.
/// @return The root array pointer.
inline operator T*() { return ptr; }
private:
// Explicitly disabled copy constructor and copy assignment operator.
rcScopedDelete(const rcScopedDelete&);
rcScopedDelete& operator=(const rcScopedDelete&);
};
#endif

View File

@@ -24,7 +24,7 @@
#ifdef NDEBUG
// From http://cnicholson.net/2009/02/stupid-c-tricks-adventures-in-assert/
# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__ == -1), false)
# define rcAssert(x) do { (void)sizeof(x); } while((void)(__LINE__==-1),false)
#else
# include <assert.h>
# define rcAssert assert

View File

@@ -1,80 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_LOG_H
#define RECAST_LOG_H
enum rcLogCategory
{
RC_LOG_PROGRESS = 1,
RC_LOG_WARNING,
RC_LOG_ERROR,
};
class rcLog
{
public:
rcLog();
~rcLog();
void log(rcLogCategory category, const char* format, ...);
inline void clear() { m_messageCount = 0; m_textPoolSize = 0; }
inline int getMessageCount() const { return m_messageCount; }
inline char getMessageType(int i) const { return *m_messages[i]; }
inline const char* getMessageText(int i) const { return m_messages[i]+1; }
private:
static const int MAX_MESSAGES = 1000;
const char* m_messages[MAX_MESSAGES];
int m_messageCount;
static const int TEXT_POOL_SIZE = 8000;
char m_textPool[TEXT_POOL_SIZE];
int m_textPoolSize;
};
struct rcBuildTimes
{
int rasterizeTriangles;
int buildCompact;
int buildContours;
int buildContoursTrace;
int buildContoursSimplify;
int filterBorder;
int filterWalkable;
int filterMarkReachable;
int buildPolymesh;
int buildDistanceField;
int buildDistanceFieldDist;
int buildDistanceFieldBlur;
int buildRegions;
int buildRegionsReg;
int buildRegionsExp;
int buildRegionsFlood;
int buildRegionsFilter;
int buildDetailMesh;
int mergePolyMesh;
int mergePolyMeshDetail;
};
void rcSetLog(rcLog* log);
rcLog* rcGetLog();
void rcSetBuildTimes(rcBuildTimes* btimes);
rcBuildTimes* rcGetBuildTimes();
#endif // RECAST_LOG_H

View File

@@ -1,31 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#ifndef RECAST_TIMER_H
#define RECAST_TIMER_H
#ifdef __GNUC__
#include <stdint.h>
typedef int64_t rcTimeVal;
#else
typedef __int64 rcTimeVal;
#endif
rcTimeVal rcGetPerformanceTimer();
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end);
#endif // RECAST_TIMER_H

View File

@@ -208,12 +208,11 @@ void rcCalcGridSize(const float* bmin, const float* bmax, float cs, int* w, int*
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcAllocHeightfield, rcHeightfield
bool rcCreateHeightfield(rcContext* /*ctx*/, rcHeightfield& hf, int width, int height,
bool rcCreateHeightfield(rcContext* ctx, rcHeightfield& hf, int width, int height,
const float* bmin, const float* bmax,
float cs, float ch)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
rcIgnoreUnused(ctx);
hf.width = width;
hf.height = height;
@@ -239,19 +238,18 @@ static void calcTriNormal(const float* v0, const float* v1, const float* v2, flo
/// @par
///
/// Only sets the aread id's for the walkable triangles. Does not alter the
/// Only sets the area id's for the walkable triangles. Does not alter the
/// area id's for unwalkable triangles.
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
void rcMarkWalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
void rcMarkWalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
const float* verts, int /*nv*/,
const int* tris, int nt,
unsigned char* areas)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
rcIgnoreUnused(ctx);
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
@@ -269,19 +267,18 @@ void rcMarkWalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
/// @par
///
/// Only sets the aread id's for the unwalkable triangles. Does not alter the
/// Only sets the area id's for the unwalkable triangles. Does not alter the
/// area id's for walkable triangles.
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
/// @see rcHeightfield, rcClearUnwalkableTriangles, rcRasterizeTriangles
void rcClearUnwalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAngle,
void rcClearUnwalkableTriangles(rcContext* ctx, const float walkableSlopeAngle,
const float* verts, int /*nv*/,
const int* tris, int nt,
unsigned char* areas)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
rcIgnoreUnused(ctx);
const float walkableThr = cosf(walkableSlopeAngle/180.0f*RC_PI);
@@ -297,10 +294,9 @@ void rcClearUnwalkableTriangles(rcContext* /*ctx*/, const float walkableSlopeAng
}
}
int rcGetHeightFieldSpanCount(rcContext* /*ctx*/, rcHeightfield& hf)
int rcGetHeightFieldSpanCount(rcContext* ctx, rcHeightfield& hf)
{
// TODO: VC complains about unref formal variable, figure out a way to handle this better.
// rcAssert(ctx);
rcIgnoreUnused(ctx);
const int w = hf.width;
const int h = hf.height;
@@ -322,7 +318,7 @@ int rcGetHeightFieldSpanCount(rcContext* /*ctx*/, rcHeightfield& hf)
/// @par
///
/// This is just the beginning of the process of fully building a compact heightfield.
/// Various filters may be applied applied, then the distance field and regions built.
/// Various filters may be applied, then the distance field and regions built.
/// E.g: #rcBuildDistanceField and #rcBuildRegions
///
/// See the #rcConfig documentation for more information on the configuration parameters.
@@ -333,7 +329,7 @@ bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const i
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
const int w = hf.width;
const int h = hf.height;
@@ -439,13 +435,13 @@ bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const i
if ((top - bot) >= walkableHeight && rcAbs((int)ns.y - (int)s.y) <= walkableClimb)
{
// Mark direction as walkable.
const int idx = k - (int)nc.index;
if (idx < 0 || idx > MAX_LAYERS)
const int lidx = k - (int)nc.index;
if (lidx < 0 || lidx > MAX_LAYERS)
{
tooHighNeighbour = rcMax(tooHighNeighbour, idx);
tooHighNeighbour = rcMax(tooHighNeighbour, lidx);
continue;
}
rcSetCon(s, dir, idx);
rcSetCon(s, dir, lidx);
break;
}
}
@@ -460,8 +456,6 @@ bool rcBuildCompactHeightfield(rcContext* ctx, const int walkableHeight, const i
ctx->log(RC_LOG_ERROR, "rcBuildCompactHeightfield: Heightfield has too many layers %d (max: %d)",
tooHighNeighbour, MAX_LAYERS);
}
ctx->stopTimer(RC_TIMER_BUILD_COMPACTHEIGHTFIELD);
return true;
}
@@ -490,4 +484,4 @@ static int getCompactHeightFieldMemoryusage(const rcCompactHeightfield& chf)
size += sizeof(rcCompactCell) * chf.width * chf.height;
return size;
}
*/
*/

View File

@@ -20,7 +20,7 @@
#include <string.h>
#include "RecastAlloc.h"
static void *rcAllocDefault(int size, rcAllocHint)
static void *rcAllocDefault(size_t size, rcAllocHint)
{
return malloc(size);
}
@@ -41,7 +41,7 @@ void rcAllocSetCustom(rcAllocFunc *allocFunc, rcFreeFunc *freeFunc)
}
/// @see rcAllocSetCustom
void* rcAlloc(int size, rcAllocHint hint)
void* rcAlloc(size_t size, rcAllocHint hint)
{
return sRecastAllocFunc(size, hint);
}
@@ -72,17 +72,13 @@ void rcFree(void* ptr)
/// Using this method ensures the array is at least large enough to hold
/// the specified number of elements. This can improve performance by
/// avoiding auto-resizing during use.
void rcIntArray::resize(int n)
void rcIntArray::doResize(int n)
{
if (n > m_cap)
{
if (!m_cap) m_cap = n;
while (m_cap < n) m_cap *= 2;
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
rcFree(m_data);
m_data = newData;
}
m_size = n;
if (!m_cap) m_cap = n;
while (m_cap < n) m_cap *= 2;
int* newData = (int*)rcAlloc(m_cap*sizeof(int), RC_ALLOC_TEMP);
if (m_size && newData) memcpy(newData, m_data, m_size*sizeof(int));
rcFree(m_data);
m_data = newData;
}

View File

@@ -41,7 +41,7 @@ bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
const int w = chf.width;
const int h = chf.height;
ctx->startTimer(RC_TIMER_ERODE_AREA);
rcScopedTimer timer(ctx, RC_TIMER_ERODE_AREA);
unsigned char* dist = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
if (!dist)
@@ -75,8 +75,8 @@ bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
{
const int nx = x + rcGetDirOffsetX(dir);
const int ny = y + rcGetDirOffsetY(dir);
const int ni = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir);
if (chf.areas[ni] != RC_NULL_AREA)
const int nidx = (int)chf.cells[nx+ny*w].index + rcGetCon(s, dir);
if (chf.areas[nidx] != RC_NULL_AREA)
{
nc++;
}
@@ -215,8 +215,6 @@ bool rcErodeWalkableArea(rcContext* ctx, int radius, rcCompactHeightfield& chf)
rcFree(dist);
ctx->stopTimer(RC_TIMER_ERODE_AREA);
return true;
}
@@ -245,7 +243,7 @@ bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
const int w = chf.width;
const int h = chf.height;
ctx->startTimer(RC_TIMER_MEDIAN_AREA);
rcScopedTimer timer(ctx, RC_TIMER_MEDIAN_AREA);
unsigned char* areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
if (!areas)
@@ -306,8 +304,6 @@ bool rcMedianFilterWalkableArea(rcContext* ctx, rcCompactHeightfield& chf)
memcpy(chf.areas, areas, sizeof(unsigned char)*chf.spanCount);
rcFree(areas);
ctx->stopTimer(RC_TIMER_MEDIAN_AREA);
return true;
}
@@ -322,7 +318,7 @@ void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigne
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MARK_BOX_AREA);
rcScopedTimer timer(ctx, RC_TIMER_MARK_BOX_AREA);
int minx = (int)((bmin[0]-chf.bmin[0])/chf.cs);
int miny = (int)((bmin[1]-chf.bmin[1])/chf.ch);
@@ -357,9 +353,6 @@ void rcMarkBoxArea(rcContext* ctx, const float* bmin, const float* bmax, unsigne
}
}
}
ctx->stopTimer(RC_TIMER_MARK_BOX_AREA);
}
@@ -391,7 +384,7 @@ void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MARK_CONVEXPOLY_AREA);
rcScopedTimer timer(ctx, RC_TIMER_MARK_CONVEXPOLY_AREA);
float bmin[3], bmax[3];
rcVcopy(bmin, verts);
@@ -448,10 +441,86 @@ void rcMarkConvexPolyArea(rcContext* ctx, const float* verts, const int nverts,
}
}
}
ctx->stopTimer(RC_TIMER_MARK_CONVEXPOLY_AREA);
}
int rcOffsetPoly(const float* verts, const int nverts, const float offset,
float* outVerts, const int maxOutVerts)
{
const float MITER_LIMIT = 1.20f;
int n = 0;
for (int i = 0; i < nverts; i++)
{
const int a = (i+nverts-1) % nverts;
const int b = i;
const int c = (i+1) % nverts;
const float* va = &verts[a*3];
const float* vb = &verts[b*3];
const float* vc = &verts[c*3];
float dx0 = vb[0] - va[0];
float dy0 = vb[2] - va[2];
float d0 = dx0*dx0 + dy0*dy0;
if (d0 > 1e-6f)
{
d0 = 1.0f/rcSqrt(d0);
dx0 *= d0;
dy0 *= d0;
}
float dx1 = vc[0] - vb[0];
float dy1 = vc[2] - vb[2];
float d1 = dx1*dx1 + dy1*dy1;
if (d1 > 1e-6f)
{
d1 = 1.0f/rcSqrt(d1);
dx1 *= d1;
dy1 *= d1;
}
const float dlx0 = -dy0;
const float dly0 = dx0;
const float dlx1 = -dy1;
const float dly1 = dx1;
float cross = dx1*dy0 - dx0*dy1;
float dmx = (dlx0 + dlx1) * 0.5f;
float dmy = (dly0 + dly1) * 0.5f;
float dmr2 = dmx*dmx + dmy*dmy;
bool bevel = dmr2 * MITER_LIMIT*MITER_LIMIT < 1.0f;
if (dmr2 > 1e-6f)
{
const float scale = 1.0f / dmr2;
dmx *= scale;
dmy *= scale;
}
if (bevel && cross < 0.0f)
{
if (n+2 >= maxOutVerts)
return 0;
float d = (1.0f - (dx0*dx1 + dy0*dy1))*0.5f;
outVerts[n*3+0] = vb[0] + (-dlx0+dx0*d)*offset;
outVerts[n*3+1] = vb[1];
outVerts[n*3+2] = vb[2] + (-dly0+dy0*d)*offset;
n++;
outVerts[n*3+0] = vb[0] + (-dlx1-dx1*d)*offset;
outVerts[n*3+1] = vb[1];
outVerts[n*3+2] = vb[2] + (-dly1-dy1*d)*offset;
n++;
}
else
{
if (n+1 >= maxOutVerts)
return 0;
outVerts[n*3+0] = vb[0] - dmx*offset;
outVerts[n*3+1] = vb[1];
outVerts[n*3+2] = vb[2] - dmy*offset;
n++;
}
}
return n;
}
/// @par
///
/// The value of spacial parameters are in world units.
@@ -463,7 +532,7 @@ void rcMarkCylinderArea(rcContext* ctx, const float* pos,
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_MARK_CYLINDER_AREA);
rcScopedTimer timer(ctx, RC_TIMER_MARK_CYLINDER_AREA);
float bmin[3], bmax[3];
bmin[0] = pos[0] - r;
@@ -519,6 +588,4 @@ void rcMarkCylinderArea(rcContext* ctx, const float* pos,
}
}
}
ctx->stopTimer(RC_TIMER_MARK_CYLINDER_AREA);
}

View File

@@ -20,6 +20,7 @@
#include <math.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include "Recast.h"
#include "RecastAlloc.h"
#include "RecastAssert.h"
@@ -36,7 +37,7 @@ static int getCornerHeight(int x, int y, int i, int dir,
unsigned int regs[4] = {0,0,0,0};
// Combine region and area codes in order to prevent
// border vertices which are in between two areas to be removed.
// border vertices which are in between two areas to be removed.
regs[0] = chf.spans[i].reg | (chf.areas[i] << 16);
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
@@ -187,27 +188,6 @@ static float distancePtSeg(const int x, const int z,
const int px, const int pz,
const int qx, const int qz)
{
/* float pqx = (float)(qx - px);
float pqy = (float)(qy - py);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
float dy = (float)(y - py);
float dz = (float)(z - pz);
float d = pqx*pqx + pqy*pqy + pqz*pqz;
float t = pqx*dx + pqy*dy + pqz*dz;
if (d > 0)
t /= d;
if (t < 0)
t = 0;
else if (t > 1)
t = 1;
dx = px + t*pqx - x;
dy = py + t*pqy - y;
dz = pz + t*pqz - z;
return dx*dx + dy*dy + dz*dz;*/
float pqx = (float)(qx - px);
float pqz = (float)(qz - pz);
float dx = (float)(x - px);
@@ -257,13 +237,13 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified.push(points[i*4+2]);
simplified.push(i);
}
}
}
}
if (simplified.size() == 0)
{
// If there is no connections at all,
// create some initial points for the simplification process.
// create some initial points for the simplification process.
// Find lower-left and upper-right vertices of the contour.
int llx = points[0];
int lly = points[1];
@@ -311,19 +291,19 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
{
int ii = (i+1) % (simplified.size()/4);
const int ax = simplified[i*4+0];
const int az = simplified[i*4+2];
const int ai = simplified[i*4+3];
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
int ax = simplified[i*4+0];
int az = simplified[i*4+2];
int ai = simplified[i*4+3];
int bx = simplified[ii*4+0];
int bz = simplified[ii*4+2];
int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
float maxd = 0;
int i_max = -1;
int maxi = -1;
int ci, cinc, endi;
// Traverse the segment in lexilogical order so that the
// max deviation is calculated similarly when traversing
// opposite segments.
@@ -338,6 +318,8 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
cinc = pn-1;
ci = (bi+cinc) % pn;
endi = ai;
rcSwap(ax, bx);
rcSwap(az, bz);
}
// Tessellate only outer edges or edges between areas.
@@ -350,7 +332,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
if (d > maxd)
{
maxd = d;
i_max = ci;
maxi = ci;
}
ci = (ci+cinc) % pn;
}
@@ -359,7 +341,7 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (i_max != -1 && maxd > (maxError*maxError))
if (maxi != -1 && maxd > (maxError*maxError))
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
@@ -372,10 +354,10 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[i_max*4+0];
simplified[(i+1)*4+1] = points[i_max*4+1];
simplified[(i+1)*4+2] = points[i_max*4+2];
simplified[(i+1)*4+3] = i_max;
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
@@ -397,11 +379,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
const int bx = simplified[ii*4+0];
const int bz = simplified[ii*4+2];
const int bi = simplified[ii*4+3];
// Find maximum deviation from the segment.
int i_max = -1;
int maxi = -1;
int ci = (ai+1) % pn;
// Tessellate only outer edges or edges between areas.
bool tess = false;
// Wall edges.
@@ -420,22 +402,20 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// Round based on the segments in lexilogical order so that the
// max tesselation is consistent regardles in which direction
// segments are traversed.
if (bx > ax || (bx == ax && bz > az))
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
if (n > 1)
{
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
i_max = (ai + n/2) % pn;
}
else
{
const int n = bi < ai ? (bi+pn - ai) : (bi - ai);
i_max = (ai + (n+1)/2) % pn;
if (bx > ax || (bx == ax && bz > az))
maxi = (ai + n/2) % pn;
else
maxi = (ai + (n+1)/2) % pn;
}
}
}
// If the max deviation is larger than accepted error,
// add new point, else continue to next segment.
if (i_max != -1)
if (maxi != -1)
{
// Add space for the new point.
simplified.resize(simplified.size()+4);
@@ -448,10 +428,10 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
simplified[j*4+3] = simplified[(j-1)*4+3];
}
// Add the point.
simplified[(i+1)*4+0] = points[i_max*4+0];
simplified[(i+1)*4+1] = points[i_max*4+1];
simplified[(i+1)*4+2] = points[i_max*4+2];
simplified[(i+1)*4+3] = i_max;
simplified[(i+1)*4+0] = points[maxi*4+0];
simplified[(i+1)*4+1] = points[maxi*4+1];
simplified[(i+1)*4+2] = points[maxi*4+2];
simplified[(i+1)*4+3] = maxi;
}
else
{
@@ -466,37 +446,11 @@ static void simplifyContour(rcIntArray& points, rcIntArray& simplified,
// and the neighbour region is take from the next raw point.
const int ai = (simplified[i*4+3]+1) % pn;
const int bi = simplified[i*4+3];
simplified[i*4+3] = (points[ai*4+3] & RC_CONTOUR_REG_MASK) | (points[bi*4+3] & RC_BORDER_VERTEX);
simplified[i*4+3] = (points[ai*4+3] & (RC_CONTOUR_REG_MASK|RC_AREA_BORDER)) | (points[bi*4+3] & RC_BORDER_VERTEX);
}
}
static void removeDegenerateSegments(rcIntArray& simplified)
{
// Remove adjacent vertices which are equal on xz-plane,
// or else the triangulator will get confused.
for (int i = 0; i < simplified.size()/4; ++i)
{
int ni = i+1;
if (ni >= (simplified.size()/4))
ni = 0;
if (simplified[i*4+0] == simplified[ni*4+0] &&
simplified[i*4+2] == simplified[ni*4+2])
{
// Degenerate segment, remove.
for (int j = i; j < simplified.size()/4-1; ++j)
{
simplified[j*4+0] = simplified[(j+1)*4+0];
simplified[j*4+1] = simplified[(j+1)*4+1];
simplified[j*4+2] = simplified[(j+1)*4+2];
simplified[j*4+3] = simplified[(j+1)*4+3];
}
simplified.resize(simplified.size()-4);
}
}
}
static int calcAreaOfPolygon2D(const int* verts, const int nverts)
{
int area = 0;
@@ -509,54 +463,155 @@ static int calcAreaOfPolygon2D(const int* verts, const int nverts)
return (area+1) / 2;
}
inline bool ileft(const int* a, const int* b, const int* c)
// TODO: these are the same as in RecastMesh.cpp, consider using the same.
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
inline int area2(const int* a, const int* b, const int* c)
{
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]) <= 0;
return (b[0] - a[0]) * (c[2] - a[2]) - (c[0] - a[0]) * (b[2] - a[2]);
}
static void getClosestIndices(const int* vertsa, const int nvertsa,
const int* vertsb, const int nvertsb,
int& ia, int& ib)
// Exclusive or: true iff exactly one argument is true.
// The arguments are negated to ensure that they are 0/1
// values. Then the bitwise Xor operator may apply.
// (This idea is due to Michael Baldwin.)
inline bool xorb(bool x, bool y)
{
int closestDist = 0xfffffff;
ia = -1, ib = -1;
for (int i = 0; i < nvertsa; ++i)
return !x ^ !y;
}
// Returns true iff c is strictly to the left of the directed
// line through a to b.
inline bool left(const int* a, const int* b, const int* c)
{
return area2(a, b, c) < 0;
}
inline bool leftOn(const int* a, const int* b, const int* c)
{
return area2(a, b, c) <= 0;
}
inline bool collinear(const int* a, const int* b, const int* c)
{
return area2(a, b, c) == 0;
}
// Returns true iff ab properly intersects cd: they share
// a point interior to both segments. The properness of the
// intersection is ensured by using strict leftness.
static bool intersectProp(const int* a, const int* b, const int* c, const int* d)
{
// Eliminate improper cases.
if (collinear(a,b,c) || collinear(a,b,d) ||
collinear(c,d,a) || collinear(c,d,b))
return false;
return xorb(left(a,b,c), left(a,b,d)) && xorb(left(c,d,a), left(c,d,b));
}
// Returns T iff (a,b,c) are collinear and point c lies
// on the closed segement ab.
static bool between(const int* a, const int* b, const int* c)
{
if (!collinear(a, b, c))
return false;
// If ab not vertical, check betweenness on x; else on y.
if (a[0] != b[0])
return ((a[0] <= c[0]) && (c[0] <= b[0])) || ((a[0] >= c[0]) && (c[0] >= b[0]));
else
return ((a[2] <= c[2]) && (c[2] <= b[2])) || ((a[2] >= c[2]) && (c[2] >= b[2]));
}
// Returns true iff segments ab and cd intersect, properly or improperly.
static bool intersect(const int* a, const int* b, const int* c, const int* d)
{
if (intersectProp(a, b, c, d))
return true;
else if (between(a, b, c) || between(a, b, d) ||
between(c, d, a) || between(c, d, b))
return true;
else
return false;
}
static bool vequal(const int* a, const int* b)
{
return a[0] == b[0] && a[2] == b[2];
}
static bool intersectSegCountour(const int* d0, const int* d1, int i, int n, const int* verts)
{
// For each edge (k,k+1) of P
for (int k = 0; k < n; k++)
{
const int in = (i+1) % nvertsa;
const int ip = (i+nvertsa-1) % nvertsa;
const int* va = &vertsa[i*4];
const int* van = &vertsa[in*4];
const int* vap = &vertsa[ip*4];
int k1 = next(k, n);
// Skip edges incident to i.
if (i == k || i == k1)
continue;
const int* p0 = &verts[k * 4];
const int* p1 = &verts[k1 * 4];
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
continue;
for (int j = 0; j < nvertsb; ++j)
if (intersect(d0, d1, p0, p1))
return true;
}
return false;
}
static bool inCone(int i, int n, const int* verts, const int* pj)
{
const int* pi = &verts[i * 4];
const int* pi1 = &verts[next(i, n) * 4];
const int* pin1 = &verts[prev(i, n) * 4];
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
if (leftOn(pin1, pi, pi1))
return left(pi, pj, pin1) && left(pj, pi, pi1);
// Assume (i-1,i,i+1) not collinear.
// else P[i] is reflex.
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
}
static void removeDegenerateSegments(rcIntArray& simplified)
{
// Remove adjacent vertices which are equal on xz-plane,
// or else the triangulator will get confused.
int npts = simplified.size()/4;
for (int i = 0; i < npts; ++i)
{
int ni = next(i, npts);
if (vequal(&simplified[i*4], &simplified[ni*4]))
{
const int* vb = &vertsb[j*4];
// vb must be "infront" of va.
if (ileft(vap,va,vb) && ileft(va,van,vb))
// Degenerate segment, remove.
for (int j = i; j < simplified.size()/4-1; ++j)
{
const int dx = vb[0] - va[0];
const int dz = vb[2] - va[2];
const int d = dx*dx + dz*dz;
if (d < closestDist)
{
ia = i;
ib = j;
closestDist = d;
}
simplified[j*4+0] = simplified[(j+1)*4+0];
simplified[j*4+1] = simplified[(j+1)*4+1];
simplified[j*4+2] = simplified[(j+1)*4+2];
simplified[j*4+3] = simplified[(j+1)*4+3];
}
simplified.resize(simplified.size()-4);
npts--;
}
}
}
static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
{
const int maxVerts = ca.nverts + cb.nverts + 2;
int* verts = (int*)rcAlloc(sizeof(int)*maxVerts*4, RC_ALLOC_PERM);
if (!verts)
return false;
int nv = 0;
// Copy contour A.
for (int i = 0; i <= ca.nverts; ++i)
{
@@ -584,7 +639,7 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
rcFree(ca.verts);
ca.verts = verts;
ca.nverts = nv;
rcFree(cb.verts);
cb.verts = 0;
cb.nverts = 0;
@@ -592,18 +647,179 @@ static bool mergeContours(rcContour& ca, rcContour& cb, int ia, int ib)
return true;
}
struct rcContourHole
{
rcContour* contour;
int minx, minz, leftmost;
};
struct rcContourRegion
{
rcContour* outline;
rcContourHole* holes;
int nholes;
};
struct rcPotentialDiagonal
{
int vert;
int dist;
};
// Finds the lowest leftmost vertex of a contour.
static void findLeftMostVertex(rcContour* contour, int* minx, int* minz, int* leftmost)
{
*minx = contour->verts[0];
*minz = contour->verts[2];
*leftmost = 0;
for (int i = 1; i < contour->nverts; i++)
{
const int x = contour->verts[i*4+0];
const int z = contour->verts[i*4+2];
if (x < *minx || (x == *minx && z < *minz))
{
*minx = x;
*minz = z;
*leftmost = i;
}
}
}
static int compareHoles(const void* va, const void* vb)
{
const rcContourHole* a = (const rcContourHole*)va;
const rcContourHole* b = (const rcContourHole*)vb;
if (a->minx == b->minx)
{
if (a->minz < b->minz)
return -1;
if (a->minz > b->minz)
return 1;
}
else
{
if (a->minx < b->minx)
return -1;
if (a->minx > b->minx)
return 1;
}
return 0;
}
static int compareDiagDist(const void* va, const void* vb)
{
const rcPotentialDiagonal* a = (const rcPotentialDiagonal*)va;
const rcPotentialDiagonal* b = (const rcPotentialDiagonal*)vb;
if (a->dist < b->dist)
return -1;
if (a->dist > b->dist)
return 1;
return 0;
}
static void mergeRegionHoles(rcContext* ctx, rcContourRegion& region)
{
// Sort holes from left to right.
for (int i = 0; i < region.nholes; i++)
findLeftMostVertex(region.holes[i].contour, &region.holes[i].minx, &region.holes[i].minz, &region.holes[i].leftmost);
qsort(region.holes, region.nholes, sizeof(rcContourHole), compareHoles);
int maxVerts = region.outline->nverts;
for (int i = 0; i < region.nholes; i++)
maxVerts += region.holes[i].contour->nverts;
rcScopedDelete<rcPotentialDiagonal> diags((rcPotentialDiagonal*)rcAlloc(sizeof(rcPotentialDiagonal)*maxVerts, RC_ALLOC_TEMP));
if (!diags)
{
ctx->log(RC_LOG_WARNING, "mergeRegionHoles: Failed to allocated diags %d.", maxVerts);
return;
}
rcContour* outline = region.outline;
// Merge holes into the outline one by one.
for (int i = 0; i < region.nholes; i++)
{
rcContour* hole = region.holes[i].contour;
int index = -1;
int bestVertex = region.holes[i].leftmost;
for (int iter = 0; iter < hole->nverts; iter++)
{
// Find potential diagonals.
// The 'best' vertex must be in the cone described by 3 cosequtive vertices of the outline.
// ..o j-1
// |
// | * best
// |
// j o-----o j+1
// :
int ndiags = 0;
const int* corner = &hole->verts[bestVertex*4];
for (int j = 0; j < outline->nverts; j++)
{
if (inCone(j, outline->nverts, outline->verts, corner))
{
int dx = outline->verts[j*4+0] - corner[0];
int dz = outline->verts[j*4+2] - corner[2];
diags[ndiags].vert = j;
diags[ndiags].dist = dx*dx + dz*dz;
ndiags++;
}
}
// Sort potential diagonals by distance, we want to make the connection as short as possible.
qsort(diags, ndiags, sizeof(rcPotentialDiagonal), compareDiagDist);
// Find a diagonal that is not intersecting the outline not the remaining holes.
index = -1;
for (int j = 0; j < ndiags; j++)
{
const int* pt = &outline->verts[diags[j].vert*4];
bool intersect = intersectSegCountour(pt, corner, diags[i].vert, outline->nverts, outline->verts);
for (int k = i; k < region.nholes && !intersect; k++)
intersect |= intersectSegCountour(pt, corner, -1, region.holes[k].contour->nverts, region.holes[k].contour->verts);
if (!intersect)
{
index = diags[j].vert;
break;
}
}
// If found non-intersecting diagonal, stop looking.
if (index != -1)
break;
// All the potential diagonals for the current vertex were intersecting, try next vertex.
bestVertex = (bestVertex + 1) % hole->nverts;
}
if (index == -1)
{
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to find merge points for %p and %p.", region.outline, hole);
continue;
}
if (!mergeContours(*region.outline, *hole, index, bestVertex))
{
ctx->log(RC_LOG_WARNING, "mergeHoles: Failed to merge contours %p and %p.", region.outline, hole);
continue;
}
}
}
/// @par
///
/// The raw contours will match the region outlines exactly. The @p maxError and @p maxEdgeLen
/// parameters control how closely the simplified contours will match the raw contours.
///
/// Simplified contours are generated such that the vertices for portals between areas match up.
/// Simplified contours are generated such that the vertices for portals between areas match up.
/// (They are considered mandatory vertices.)
///
/// Setting @p maxEdgeLength to zero will disabled the edge length feature.
///
///
/// See the #rcConfig documentation for more information on the configuration parameters.
///
///
/// @see rcAllocContourSet, rcCompactHeightfield, rcContourSet, rcConfig
bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const float maxError, const int maxEdgeLen,
@@ -615,7 +831,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
const int h = chf.height;
const int borderSize = chf.borderSize;
ctx->startTimer(RC_TIMER_BUILD_CONTOURS);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_CONTOURS);
rcVcopy(cset.bmin, chf.bmin);
rcVcopy(cset.bmax, chf.bmax);
@@ -633,6 +849,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
cset.width = chf.width - chf.borderSize*2;
cset.height = chf.height - chf.borderSize*2;
cset.borderSize = chf.borderSize;
cset.maxError = maxError;
int maxContours = rcMax((int)chf.maxRegions, 8);
cset.conts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
@@ -640,7 +857,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
return false;
cset.nconts = 0;
rcScopedDelete<unsigned char> flags = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
rcScopedDelete<unsigned char> flags((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
if (!flags)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'flags' (%d).", chf.spanCount);
@@ -706,17 +923,17 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
verts.resize(0);
simplified.resize(0);
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
walkContour(x, y, i, chf, flags, verts);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_TRACE);
ctx->startTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
simplifyContour(verts, simplified, maxError, maxEdgeLen, buildFlags);
removeDegenerateSegments(simplified);
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS_SIMPLIFY);
// Store region->contour remap info.
// Create contour.
if (simplified.size()/4 >= 3)
@@ -724,7 +941,7 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (cset.nconts >= maxContours)
{
// Allocate more contours.
// This can happen when there are tiny holes in the heightfield.
// This happens when a region has holes.
const int oldMax = maxContours;
maxContours *= 2;
rcContour* newConts = (rcContour*)rcAlloc(sizeof(rcContour)*maxContours, RC_ALLOC_PERM);
@@ -737,10 +954,10 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
rcFree(cset.conts);
cset.conts = newConts;
ctx->log(RC_LOG_WARNING, "rcBuildContours: Expanding max contours from %d to %d.", oldMax, maxContours);
}
rcContour* cont = &cset.conts[cset.nconts++];
cont->nverts = simplified.size()/4;
@@ -754,9 +971,9 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (borderSize > 0)
{
// If the heightfield was build with bordersize, remove the offset.
for (int i = 0; i < cont->nverts; ++i)
for (int j = 0; j < cont->nverts; ++j)
{
int* v = &cont->verts[i*4];
int* v = &cont->verts[j*4];
v[0] -= borderSize;
v[2] -= borderSize;
}
@@ -773,25 +990,14 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
if (borderSize > 0)
{
// If the heightfield was build with bordersize, remove the offset.
for (int i = 0; i < cont->nrverts; ++i)
for (int j = 0; j < cont->nrverts; ++j)
{
int* v = &cont->rverts[i*4];
int* v = &cont->rverts[j*4];
v[0] -= borderSize;
v[2] -= borderSize;
}
}
/* cont->cx = cont->cy = cont->cz = 0;
for (int i = 0; i < cont->nverts; ++i)
{
cont->cx += cont->verts[i*4+0];
cont->cy += cont->verts[i*4+1];
cont->cz += cont->verts[i*4+2];
}
cont->cx /= cont->nverts;
cont->cy /= cont->nverts;
cont->cz /= cont->nverts;*/
cont->reg = reg;
cont->area = area;
}
@@ -799,55 +1005,101 @@ bool rcBuildContours(rcContext* ctx, rcCompactHeightfield& chf,
}
}
// Check and merge droppings.
// Sometimes the previous algorithms can fail and create several contours
// per area. This pass will try to merge the holes into the main region.
for (int i = 0; i < cset.nconts; ++i)
// Merge holes if needed.
if (cset.nconts > 0)
{
rcContour& cont = cset.conts[i];
// Check if the contour is would backwards.
if (calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0)
// Calculate winding of all polygons.
rcScopedDelete<char> winding((char*)rcAlloc(sizeof(char)*cset.nconts, RC_ALLOC_TEMP));
if (!winding)
{
// Find another contour which has the same region ID.
int mergeIdx = -1;
for (int j = 0; j < cset.nconts; ++j)
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'hole' (%d).", cset.nconts);
return false;
}
int nholes = 0;
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
// If the contour is wound backwards, it is a hole.
winding[i] = calcAreaOfPolygon2D(cont.verts, cont.nverts) < 0 ? -1 : 1;
if (winding[i] < 0)
nholes++;
}
if (nholes > 0)
{
// Collect outline contour and holes contours per region.
// We assume that there is one outline and multiple holes.
const int nregions = chf.maxRegions+1;
rcScopedDelete<rcContourRegion> regions((rcContourRegion*)rcAlloc(sizeof(rcContourRegion)*nregions, RC_ALLOC_TEMP));
if (!regions)
{
if (i == j) continue;
if (cset.conts[j].nverts && cset.conts[j].reg == cont.reg)
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'regions' (%d).", nregions);
return false;
}
memset(regions, 0, sizeof(rcContourRegion)*nregions);
rcScopedDelete<rcContourHole> holes((rcContourHole*)rcAlloc(sizeof(rcContourHole)*cset.nconts, RC_ALLOC_TEMP));
if (!holes)
{
ctx->log(RC_LOG_ERROR, "rcBuildContours: Out of memory 'holes' (%d).", cset.nconts);
return false;
}
memset(holes, 0, sizeof(rcContourHole)*cset.nconts);
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
// Positively would contours are outlines, negative holes.
if (winding[i] > 0)
{
// Make sure the polygon is correctly oriented.
if (calcAreaOfPolygon2D(cset.conts[j].verts, cset.conts[j].nverts))
{
mergeIdx = j;
break;
}
if (regions[cont.reg].outline)
ctx->log(RC_LOG_ERROR, "rcBuildContours: Multiple outlines for region %d.", cont.reg);
regions[cont.reg].outline = &cont;
}
else
{
regions[cont.reg].nholes++;
}
}
if (mergeIdx == -1)
int index = 0;
for (int i = 0; i < nregions; i++)
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Could not find merge target for bad contour %d.", i);
}
else
{
rcContour& mcont = cset.conts[mergeIdx];
// Merge by closest points.
int ia = 0, ib = 0;
getClosestIndices(mcont.verts, mcont.nverts, cont.verts, cont.nverts, ia, ib);
if (ia == -1 || ib == -1)
if (regions[i].nholes > 0)
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to find merge points for %d and %d.", i, mergeIdx);
continue;
regions[i].holes = &holes[index];
index += regions[i].nholes;
regions[i].nholes = 0;
}
if (!mergeContours(mcont, cont, ia, ib))
}
for (int i = 0; i < cset.nconts; ++i)
{
rcContour& cont = cset.conts[i];
rcContourRegion& reg = regions[cont.reg];
if (winding[i] < 0)
reg.holes[reg.nholes++].contour = &cont;
}
// Finally merge each regions holes into the outline.
for (int i = 0; i < nregions; i++)
{
rcContourRegion& reg = regions[i];
if (!reg.nholes) continue;
if (reg.outline)
{
ctx->log(RC_LOG_WARNING, "rcBuildContours: Failed to merge contours %d and %d.", i, mergeIdx);
continue;
mergeRegionHoles(ctx, reg);
}
else
{
// The region does not have an outline.
// This can happen if the contour becaomes selfoverlapping because of
// too aggressive simplification settings.
ctx->log(RC_LOG_ERROR, "rcBuildContours: Bad outline for region %d, contour simplification is likely too aggressive.", i);
}
}
}
}
ctx->stopTimer(RC_TIMER_BUILD_CONTOURS);
return true;
}

View File

@@ -37,7 +37,7 @@ void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_LOW_OBSTACLES);
rcScopedTimer timer(ctx, RC_TIMER_FILTER_LOW_OBSTACLES);
const int w = solid.width;
const int h = solid.height;
@@ -67,8 +67,6 @@ void rcFilterLowHangingWalkableObstacles(rcContext* ctx, const int walkableClimb
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_LOW_OBSTACLES);
}
/// @par
@@ -86,7 +84,7 @@ void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walk
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_BORDER);
rcScopedTimer timer(ctx, RC_TIMER_FILTER_BORDER);
const int w = solid.width;
const int h = solid.height;
@@ -128,7 +126,7 @@ void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walk
rcSpan* ns = solid.spans[dx + dy*w];
int nbot = -walkableClimb;
int ntop = ns ? (int)ns->smin : MAX_HEIGHT;
// Skip neighbor if the gap between the spans is too small.
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
minh = rcMin(minh, nbot - bot);
@@ -137,7 +135,7 @@ void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walk
{
nbot = (int)ns->smax;
ntop = ns->next ? (int)ns->next->smin : MAX_HEIGHT;
// Skip neighbor if the gap between the spans is too small.
// Skip neightbour if the gap between the spans is too small.
if (rcMin(top,ntop) - rcMax(bot,nbot) > walkableHeight)
{
minh = rcMin(minh, nbot - bot);
@@ -156,20 +154,19 @@ void rcFilterLedgeSpans(rcContext* ctx, const int walkableHeight, const int walk
// The current span is close to a ledge if the drop to any
// neighbour span is less than the walkableClimb.
if (minh < -walkableClimb)
{
s->area = RC_NULL_AREA;
}
// If the difference between all neighbours is too large,
// we are at steep slope, mark the span as ledge.
if ((asmax - asmin) > walkableClimb)
else if ((asmax - asmin) > walkableClimb)
{
s->area = RC_NULL_AREA;
}
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_BORDER);
}
}
/// @par
///
@@ -181,7 +178,7 @@ void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeight
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_FILTER_WALKABLE);
rcScopedTimer timer(ctx, RC_TIMER_FILTER_WALKABLE);
const int w = solid.width;
const int h = solid.height;
@@ -202,6 +199,4 @@ void rcFilterWalkableLowHeightSpans(rcContext* ctx, int walkableHeight, rcHeight
}
}
}
ctx->stopTimer(RC_TIMER_FILTER_WALKABLE);
}

View File

@@ -38,7 +38,7 @@ struct rcLayerRegion
unsigned char layerId; // Layer ID
unsigned char nlayers; // Layer count
unsigned char nneis; // Neighbour count
unsigned char base; // Flag indicating if the region is hte base of merged regions.
unsigned char base; // Flag indicating if the region is the base of merged regions.
};
@@ -87,12 +87,12 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_LAYERS);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_LAYERS);
const int w = chf.width;
const int h = chf.height;
rcScopedDelete<unsigned char> srcReg = (unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP);
rcScopedDelete<unsigned char> srcReg((unsigned char*)rcAlloc(sizeof(unsigned char)*chf.spanCount, RC_ALLOC_TEMP));
if (!srcReg)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'srcReg' (%d).", chf.spanCount);
@@ -101,7 +101,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
memset(srcReg,0xff,sizeof(unsigned char)*chf.spanCount);
const int nsweeps = chf.width;
rcScopedDelete<rcLayerSweepSpan> sweeps = (rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP);
rcScopedDelete<rcLayerSweepSpan> sweeps((rcLayerSweepSpan*)rcAlloc(sizeof(rcLayerSweepSpan)*nsweeps, RC_ALLOC_TEMP));
if (!sweeps)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'sweeps' (%d).", nsweeps);
@@ -212,7 +212,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
// Allocate and init layer regions.
const int nregs = (int)regId;
rcScopedDelete<rcLayerRegion> regs = (rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP);
rcScopedDelete<rcLayerRegion> regs((rcLayerRegion*)rcAlloc(sizeof(rcLayerRegion)*nregs, RC_ALLOC_TEMP));
if (!regs)
{
ctx->log(RC_LOG_ERROR, "rcBuildHeightfieldLayers: Out of memory 'regs' (%d).", nregs);
@@ -258,7 +258,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
const unsigned char rai = srcReg[ai];
if (rai != 0xff && rai != ri)
if (rai != 0xff && rai != ri && regs[ri].nneis < RC_MAX_NEIS)
addUnique(regs[ri].neis, regs[ri].nneis, rai);
}
}
@@ -293,7 +293,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
for (int i = 0; i < nregs; ++i)
{
rcLayerRegion& root = regs[i];
// Skip alreadu visited.
// Skip already visited.
if (root.layerId != 0xff)
continue;
@@ -325,7 +325,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
continue;
// Skip if the height range would become too large.
const int ymin = rcMin(root.ymin, regn.ymin);
const int ymax = rcMin(root.ymax, regn.ymax);
const int ymax = rcMax(root.ymax, regn.ymax);
if ((ymax - ymin) >= 255)
continue;
@@ -373,11 +373,11 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
continue;
// Skip if the height range would become too large.
const int ymin = rcMin(ri.ymin, rj.ymin);
const int ymax = rcMin(ri.ymax, rj.ymax);
const int ymax = rcMax(ri.ymax, rj.ymax);
if ((ymax - ymin) >= 255)
continue;
// Make sure that there is no overlap when mergin 'ri' and 'rj'.
// Make sure that there is no overlap when merging 'ri' and 'rj'.
bool overlap = false;
// Iterate over all regions which have the same layerId as 'rj'
for (int k = 0; k < nregs; ++k)
@@ -417,7 +417,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
// Add overlaid layers from 'rj' to 'ri'.
for (int k = 0; k < rj.nlayers; ++k)
addUnique(ri.layers, ri.nlayers, rj.layers[k]);
// Update heigh bounds.
// Update height bounds.
ri.ymin = rcMin(ri.ymin, rj.ymin);
ri.ymax = rcMax(ri.ymax, rj.ymax);
}
@@ -446,10 +446,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
// No layers, return empty.
if (layerId == 0)
{
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}
// Create layers.
rcAssert(lset.layers == 0);
@@ -481,10 +478,8 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
for (int i = 0; i < lset.nlayers; ++i)
{
unsigned char curId = (unsigned char)i;
// Allocate memory for the current layer.
rcHeightfieldLayer* layer = &lset.layers[i];
memset(layer, 0, sizeof(rcHeightfieldLayer));
const int gridSize = sizeof(unsigned char)*lw*lh;
@@ -528,7 +523,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
layer->cs = chf.cs;
layer->ch = chf.ch;
// Adjust the bbox to fit the heighfield.
// Adjust the bbox to fit the heightfield.
rcVcopy(layer->bmin, bmin);
rcVcopy(layer->bmax, bmax);
layer->bmin[1] = bmin[1] + hmin*chf.ch;
@@ -542,7 +537,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
layer->miny = layer->height;
layer->maxy = 0;
// Copy height and area from compact heighfield.
// Copy height and area from compact heightfield.
for (int y = 0; y < lh; ++y)
{
for (int x = 0; x < lw; ++x)
@@ -550,14 +545,14 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
const int cx = borderSize+x;
const int cy = borderSize+y;
const rcCompactCell& c = chf.cells[cx+cy*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
for (int j = (int)c.index, nj = (int)(c.index+c.count); j < nj; ++j)
{
const rcCompactSpan& s = chf.spans[i];
const rcCompactSpan& s = chf.spans[j];
// Skip unassigned regions.
if (srcReg[i] == 0xff)
if (srcReg[j] == 0xff)
continue;
// Skip of does nto belong to current layer.
unsigned char lid = regs[srcReg[i]].layerId;
unsigned char lid = regs[srcReg[j]].layerId;
if (lid != curId)
continue;
@@ -570,7 +565,7 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
// Store height and area type.
const int idx = x+y*lw;
layer->heights[idx] = (unsigned char)(s.y - hmin);
layer->areas[idx] = chf.areas[i];
layer->areas[idx] = chf.areas[j];
// Check connection.
unsigned char portal = 0;
@@ -614,7 +609,5 @@ bool rcBuildHeightfieldLayers(rcContext* ctx, rcCompactHeightfield& chf,
layer->miny = layer->maxy = 0;
}
ctx->stopTimer(RC_TIMER_BUILD_LAYERS);
return true;
}

View File

@@ -1,77 +0,0 @@
//
// Copyright (c) 2009 Mikko Mononen memon@inside.org
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
//
#include "RecastLog.h"
#include <stdio.h>
#include <stdarg.h>
static rcLog* g_log = 0;
static rcBuildTimes* g_btimes = 0;
rcLog::rcLog() :
m_messageCount(0),
m_textPoolSize(0)
{
}
rcLog::~rcLog()
{
if (g_log == this)
g_log = 0;
}
void rcLog::log(rcLogCategory category, const char* format, ...)
{
if (m_messageCount >= MAX_MESSAGES)
return;
char* dst = &m_textPool[m_textPoolSize];
int n = TEXT_POOL_SIZE - m_textPoolSize;
if (n < 2)
return;
// Store category
*dst = (char)category;
n--;
// Store message
va_list ap;
va_start(ap, format);
int ret = vsnprintf(dst+1, n-1, format, ap);
va_end(ap);
if (ret > 0)
m_textPoolSize += ret+2;
m_messages[m_messageCount++] = dst;
}
void rcSetLog(rcLog* log)
{
g_log = log;
}
rcLog* rcGetLog()
{
return g_log;
}
void rcSetBuildTimes(rcBuildTimes* btimes)
{
g_btimes = btimes;
}
rcBuildTimes* rcGetBuildTimes()
{
return g_btimes;
}

View File

@@ -160,6 +160,7 @@ static unsigned short addVertex(unsigned short x, unsigned short y, unsigned sho
return (unsigned short)i;
}
// Last time I checked the if version got compiled using cmov, which was a lot faster than module (with idiv).
inline int prev(int i, int n) { return i-1 >= 0 ? i-1 : n-1; }
inline int next(int i, int n) { return i+1 < n ? i+1 : 0; }
@@ -288,6 +289,53 @@ static bool diagonal(int i, int j, int n, const int* verts, int* indices)
return inCone(i, j, n, verts, indices) && diagonalie(i, j, n, verts, indices);
}
static bool diagonalieLoose(int i, int j, int n, const int* verts, int* indices)
{
const int* d0 = &verts[(indices[i] & 0x0fffffff) * 4];
const int* d1 = &verts[(indices[j] & 0x0fffffff) * 4];
// For each edge (k,k+1) of P
for (int k = 0; k < n; k++)
{
int k1 = next(k, n);
// Skip edges incident to i or j
if (!((k == i) || (k1 == i) || (k == j) || (k1 == j)))
{
const int* p0 = &verts[(indices[k] & 0x0fffffff) * 4];
const int* p1 = &verts[(indices[k1] & 0x0fffffff) * 4];
if (vequal(d0, p0) || vequal(d1, p0) || vequal(d0, p1) || vequal(d1, p1))
continue;
if (intersectProp(d0, d1, p0, p1))
return false;
}
}
return true;
}
static bool inConeLoose(int i, int j, int n, const int* verts, int* indices)
{
const int* pi = &verts[(indices[i] & 0x0fffffff) * 4];
const int* pj = &verts[(indices[j] & 0x0fffffff) * 4];
const int* pi1 = &verts[(indices[next(i, n)] & 0x0fffffff) * 4];
const int* pin1 = &verts[(indices[prev(i, n)] & 0x0fffffff) * 4];
// If P[i] is a convex vertex [ i+1 left or on (i-1,i) ].
if (leftOn(pin1, pi, pi1))
return leftOn(pi, pj, pin1) && leftOn(pj, pi, pi1);
// Assume (i-1,i,i+1) not collinear.
// else P[i] is reflex.
return !(leftOn(pi, pj, pi1) && leftOn(pj, pi, pin1));
}
static bool diagonalLoose(int i, int j, int n, const int* verts, int* indices)
{
return inConeLoose(i, j, n, verts, indices) && diagonalieLoose(i, j, n, verts, indices);
}
static int triangulate(int n, const int* verts, int* indices, int* tris)
{
int ntris = 0;
@@ -305,7 +353,7 @@ static int triangulate(int n, const int* verts, int* indices, int* tris)
while (n > 3)
{
int minLen = -1;
int i_min = -1;
int mini = -1;
for (int i = 0; i < n; i++)
{
int i1 = next(i, n);
@@ -321,24 +369,51 @@ static int triangulate(int n, const int* verts, int* indices, int* tris)
if (minLen < 0 || len < minLen)
{
minLen = len;
i_min = i;
mini = i;
}
}
}
if (i_min == -1)
if (mini == -1)
{
// Should not happen.
/* printf("mini == -1 ntris=%d n=%d\n", ntris, n);
// We might get here because the contour has overlapping segments, like this:
//
// A o-o=====o---o B
// / |C D| \
// o o o o
// : : : :
// We'll try to recover by loosing up the inCone test a bit so that a diagonal
// like A-B or C-D can be found and we can continue.
minLen = -1;
mini = -1;
for (int i = 0; i < n; i++)
{
printf("%d ", indices[i] & 0x0fffffff);
int i1 = next(i, n);
int i2 = next(i1, n);
if (diagonalLoose(i, i2, n, verts, indices))
{
const int* p0 = &verts[(indices[i] & 0x0fffffff) * 4];
const int* p2 = &verts[(indices[next(i2, n)] & 0x0fffffff) * 4];
int dx = p2[0] - p0[0];
int dy = p2[2] - p0[2];
int len = dx*dx + dy*dy;
if (minLen < 0 || len < minLen)
{
minLen = len;
mini = i;
}
}
}
if (mini == -1)
{
// The contour is messed up. This sometimes happens
// if the contour simplification is too aggressive.
return -ntris;
}
printf("\n");*/
return -ntris;
}
int i = i_min;
int i = mini;
int i1 = next(i, n);
int i2 = next(i1, n);
@@ -453,8 +528,8 @@ static int getPolyMergeValue(unsigned short* pa, unsigned short* pb,
return dx*dx + dy*dy;
}
static void mergePolys(unsigned short* pa, unsigned short* pb, int ea, int eb,
unsigned short* tmp, const int nvp)
static void mergePolyVerts(unsigned short* pa, unsigned short* pb, int ea, int eb,
unsigned short* tmp, const int nvp)
{
const int na = countPolyVerts(pa, nvp);
const int nb = countPolyVerts(pb, nvp);
@@ -526,7 +601,7 @@ static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned sho
// Find edges which share the removed vertex.
const int maxEdges = numTouchedVerts*2;
int nedges = 0;
rcScopedDelete<int> edges = (int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP);
rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*maxEdges*3, RC_ALLOC_TEMP));
if (!edges)
{
ctx->log(RC_LOG_WARNING, "canRemoveVertex: Out of memory 'edges' (%d).", maxEdges*3);
@@ -550,9 +625,9 @@ static bool canRemoveVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned sho
// Check if the edge exists
bool exists = false;
for (int k = 0; k < nedges; ++k)
for (int m = 0; m < nedges; ++m)
{
int* e = &edges[k*3];
int* e = &edges[m*3];
if (e[1] == b)
{
// Exists, increment vertex share count.
@@ -606,7 +681,7 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
int nedges = 0;
rcScopedDelete<int> edges = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP);
rcScopedDelete<int> edges((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp*4, RC_ALLOC_TEMP));
if (!edges)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'edges' (%d).", numRemovedVerts*nvp*4);
@@ -614,15 +689,15 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
int nhole = 0;
rcScopedDelete<int> hole = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP);
rcScopedDelete<int> hole((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
if (!hole)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hole' (%d).", numRemovedVerts*nvp);
return false;
}
int nhreg = 0;
rcScopedDelete<int> hreg = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP);
rcScopedDelete<int> hreg((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
if (!hreg)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'hreg' (%d).", numRemovedVerts*nvp);
@@ -630,7 +705,7 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
int nharea = 0;
rcScopedDelete<int> harea = (int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP);
rcScopedDelete<int> harea((int*)rcAlloc(sizeof(int)*numRemovedVerts*nvp, RC_ALLOC_TEMP));
if (!harea)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'harea' (%d).", numRemovedVerts*nvp);
@@ -661,7 +736,8 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
// Remove the polygon.
unsigned short* p2 = &mesh.polys[(mesh.npolys-1)*nvp*2];
memcpy(p,p2,sizeof(unsigned short)*nvp);
if (p != p2)
memcpy(p,p2,sizeof(unsigned short)*nvp);
memset(p+nvp,0xff,sizeof(unsigned short)*nvp);
mesh.regs[i] = mesh.regs[mesh.npolys-1];
mesh.areas[i] = mesh.areas[mesh.npolys-1];
@@ -671,7 +747,7 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
// Remove vertex.
for (int i = (int)rem; i < mesh.nverts; ++i)
for (int i = (int)rem; i < mesh.nverts - 1; ++i)
{
mesh.verts[i*3+0] = mesh.verts[(i+1)*3+0];
mesh.verts[i*3+1] = mesh.verts[(i+1)*3+1];
@@ -746,22 +822,22 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
break;
}
rcScopedDelete<int> tris = (int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP);
rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*nhole*3, RC_ALLOC_TEMP));
if (!tris)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tris' (%d).", nhole*3);
return false;
}
rcScopedDelete<int> tverts = (int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP);
rcScopedDelete<int> tverts((int*)rcAlloc(sizeof(int)*nhole*4, RC_ALLOC_TEMP));
if (!tverts)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'tverts' (%d).", nhole*4);
return false;
}
rcScopedDelete<int> thole = (int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP);
if (!tverts)
rcScopedDelete<int> thole((int*)rcAlloc(sizeof(int)*nhole, RC_ALLOC_TEMP));
if (!thole)
{
ctx->log(RC_LOG_WARNING, "removeVertex: Out of memory 'thole' (%d).", nhole);
return false;
@@ -787,20 +863,20 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
}
// Merge the hole triangles back to polygons.
rcScopedDelete<unsigned short> polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP);
rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(ntris+1)*nvp, RC_ALLOC_TEMP));
if (!polys)
{
ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'polys' (%d).", (ntris+1)*nvp);
return false;
}
rcScopedDelete<unsigned short> pregs = (unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP);
rcScopedDelete<unsigned short> pregs((unsigned short*)rcAlloc(sizeof(unsigned short)*ntris, RC_ALLOC_TEMP));
if (!pregs)
{
ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pregs' (%d).", ntris);
return false;
}
rcScopedDelete<unsigned char> pareas = (unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP);
if (!pregs)
rcScopedDelete<unsigned char> pareas((unsigned char*)rcAlloc(sizeof(unsigned char)*ntris, RC_ALLOC_TEMP));
if (!pareas)
{
ctx->log(RC_LOG_ERROR, "removeVertex: Out of memory 'pareas' (%d).", ntris);
return false;
@@ -819,7 +895,14 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
polys[npolys*nvp+0] = (unsigned short)hole[t[0]];
polys[npolys*nvp+1] = (unsigned short)hole[t[1]];
polys[npolys*nvp+2] = (unsigned short)hole[t[2]];
pregs[npolys] = (unsigned short)hreg[t[0]];
// If this polygon covers multiple region types then
// mark it as such
if (hreg[t[0]] != hreg[t[1]] || hreg[t[1]] != hreg[t[2]])
pregs[npolys] = RC_MULTIPLE_REGS;
else
pregs[npolys] = (unsigned short)hreg[t[0]];
pareas[npolys] = (unsigned char)harea[t[0]];
npolys++;
}
@@ -860,8 +943,13 @@ static bool removeVertex(rcContext* ctx, rcPolyMesh& mesh, const unsigned short
// Found best, merge.
unsigned short* pa = &polys[bestPa*nvp];
unsigned short* pb = &polys[bestPb*nvp];
mergePolys(pa, pb, bestEa, bestEb, tmpPoly, nvp);
memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
if (pregs[bestPa] != pregs[bestPb])
pregs[bestPa] = RC_MULTIPLE_REGS;
unsigned short* last = &polys[(npolys-1)*nvp];
if (pb != last)
memcpy(pb, last, sizeof(unsigned short)*nvp);
pregs[bestPb] = pregs[npolys-1];
pareas[bestPb] = pareas[npolys-1];
npolys--;
@@ -905,13 +993,14 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_POLYMESH);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_POLYMESH);
rcVcopy(mesh.bmin, cset.bmin);
rcVcopy(mesh.bmax, cset.bmax);
mesh.cs = cset.cs;
mesh.ch = cset.ch;
mesh.borderSize = cset.borderSize;
mesh.maxEdgeError = cset.maxError;
int maxVertices = 0;
int maxTris = 0;
@@ -931,10 +1020,10 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
return false;
}
rcScopedDelete<unsigned char> vflags = (unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP);
rcScopedDelete<unsigned char> vflags((unsigned char*)rcAlloc(sizeof(unsigned char)*maxVertices, RC_ALLOC_TEMP));
if (!vflags)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'mesh.verts' (%d).", maxVertices);
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'vflags' (%d).", maxVertices);
return false;
}
memset(vflags, 0, maxVertices);
@@ -974,7 +1063,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
memset(mesh.regs, 0, sizeof(unsigned short)*maxTris);
memset(mesh.areas, 0, sizeof(unsigned char)*maxTris);
rcScopedDelete<int> nextVert = (int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP);
rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVertices, RC_ALLOC_TEMP));
if (!nextVert)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'nextVert' (%d).", maxVertices);
@@ -982,7 +1071,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
}
memset(nextVert, 0, sizeof(int)*maxVertices);
rcScopedDelete<int> firstVert = (int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP);
rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
if (!firstVert)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
@@ -991,19 +1080,19 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
firstVert[i] = -1;
rcScopedDelete<int> indices = (int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP);
rcScopedDelete<int> indices((int*)rcAlloc(sizeof(int)*maxVertsPerCont, RC_ALLOC_TEMP));
if (!indices)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'indices' (%d).", maxVertsPerCont);
return false;
}
rcScopedDelete<int> tris = (int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP);
rcScopedDelete<int> tris((int*)rcAlloc(sizeof(int)*maxVertsPerCont*3, RC_ALLOC_TEMP));
if (!tris)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'tris' (%d).", maxVertsPerCont*3);
return false;
}
rcScopedDelete<unsigned short> polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP);
rcScopedDelete<unsigned short> polys((unsigned short*)rcAlloc(sizeof(unsigned short)*(maxVertsPerCont+1)*nvp, RC_ALLOC_TEMP));
if (!polys)
{
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: Out of memory 'polys' (%d).", maxVertsPerCont*nvp);
@@ -1053,7 +1142,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
vflags[indices[j]] = 1;
}
}
// Build initial polygons.
int npolys = 0;
memset(polys, 0xff, maxVertsPerCont*nvp*sizeof(unsigned short));
@@ -1104,8 +1193,10 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
// Found best, merge.
unsigned short* pa = &polys[bestPa*nvp];
unsigned short* pb = &polys[bestPb*nvp];
mergePolys(pa, pb, bestEa, bestEb, tmpPoly, nvp);
memcpy(pb, &polys[(npolys-1)*nvp], sizeof(unsigned short)*nvp);
mergePolyVerts(pa, pb, bestEa, bestEb, tmpPoly, nvp);
unsigned short* lastPoly = &polys[(npolys-1)*nvp];
if (pb != lastPoly)
memcpy(pb, lastPoly, sizeof(unsigned short)*nvp);
npolys--;
}
else
@@ -1150,6 +1241,7 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
}
// Remove vertex
// Note: mesh.nverts is already decremented inside removeVertex()!
// Fixup vertex flags
for (int j = i; j < mesh.nverts; ++j)
vflags[j] = vflags[j+1];
--i;
@@ -1212,8 +1304,6 @@ bool rcBuildPolyMesh(rcContext* ctx, rcContourSet& cset, const int nvp, rcPolyMe
ctx->log(RC_LOG_ERROR, "rcBuildPolyMesh: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
}
ctx->stopTimer(RC_TIMER_BUILD_POLYMESH);
return true;
}
@@ -1225,7 +1315,7 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
if (!nmeshes || !meshes)
return true;
ctx->startTimer(RC_TIMER_MERGE_POLYMESH);
rcScopedTimer timer(ctx, RC_TIMER_MERGE_POLYMESH);
mesh.nvp = meshes[0]->nvp;
mesh.cs = meshes[0]->cs;
@@ -1286,7 +1376,7 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
}
memset(mesh.flags, 0, sizeof(unsigned short)*maxPolys);
rcScopedDelete<int> nextVert = (int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP);
rcScopedDelete<int> nextVert((int*)rcAlloc(sizeof(int)*maxVerts, RC_ALLOC_TEMP));
if (!nextVert)
{
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'nextVert' (%d).", maxVerts);
@@ -1294,7 +1384,7 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
}
memset(nextVert, 0, sizeof(int)*maxVerts);
rcScopedDelete<int> firstVert = (int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP);
rcScopedDelete<int> firstVert((int*)rcAlloc(sizeof(int)*VERTEX_BUCKET_COUNT, RC_ALLOC_TEMP));
if (!firstVert)
{
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'firstVert' (%d).", VERTEX_BUCKET_COUNT);
@@ -1303,13 +1393,13 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
for (int i = 0; i < VERTEX_BUCKET_COUNT; ++i)
firstVert[i] = -1;
rcScopedDelete<unsigned short> vremap = (unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM);
rcScopedDelete<unsigned short> vremap((unsigned short*)rcAlloc(sizeof(unsigned short)*maxVertsPerMesh, RC_ALLOC_PERM));
if (!vremap)
{
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: Out of memory 'vremap' (%d).", maxVertsPerMesh);
return false;
}
memset(nextVert, 0, sizeof(int)*maxVerts);
memset(vremap, 0, sizeof(unsigned short)*maxVertsPerMesh);
for (int i = 0; i < nmeshes; ++i)
{
@@ -1318,6 +1408,12 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
const unsigned short ox = (unsigned short)floorf((pmesh->bmin[0]-mesh.bmin[0])/mesh.cs+0.5f);
const unsigned short oz = (unsigned short)floorf((pmesh->bmin[2]-mesh.bmin[2])/mesh.cs+0.5f);
bool isMinX = (ox == 0);
bool isMinZ = (oz == 0);
bool isMaxX = ((unsigned short)floorf((mesh.bmax[0] - pmesh->bmax[0]) / mesh.cs + 0.5f)) == 0;
bool isMaxZ = ((unsigned short)floorf((mesh.bmax[2] - pmesh->bmax[2]) / mesh.cs + 0.5f)) == 0;
bool isOnBorder = (isMinX || isMinZ || isMaxX || isMaxZ);
for (int j = 0; j < pmesh->nverts; ++j)
{
unsigned short* v = &pmesh->verts[j*3];
@@ -1338,6 +1434,36 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
if (src[k] == RC_MESH_NULL_IDX) break;
tgt[k] = vremap[src[k]];
}
if (isOnBorder)
{
for (int k = mesh.nvp; k < mesh.nvp * 2; ++k)
{
if (src[k] & 0x8000 && src[k] != 0xffff)
{
unsigned short dir = src[k] & 0xf;
switch (dir)
{
case 0: // Portal x-
if (isMinX)
tgt[k] = src[k];
break;
case 1: // Portal z+
if (isMaxZ)
tgt[k] = src[k];
break;
case 2: // Portal x+
if (isMaxX)
tgt[k] = src[k];
break;
case 3: // Portal z-
if (isMinZ)
tgt[k] = src[k];
break;
}
}
}
}
}
}
@@ -1357,7 +1483,70 @@ bool rcMergePolyMeshes(rcContext* ctx, rcPolyMesh** meshes, const int nmeshes, r
ctx->log(RC_LOG_ERROR, "rcMergePolyMeshes: The resulting mesh has too many polygons %d (max %d). Data can be corrupted.", mesh.npolys, 0xffff);
}
ctx->stopTimer(RC_TIMER_MERGE_POLYMESH);
return true;
}
bool rcCopyPolyMesh(rcContext* ctx, const rcPolyMesh& src, rcPolyMesh& dst)
{
rcAssert(ctx);
// Destination must be empty.
rcAssert(dst.verts == 0);
rcAssert(dst.polys == 0);
rcAssert(dst.regs == 0);
rcAssert(dst.areas == 0);
rcAssert(dst.flags == 0);
dst.nverts = src.nverts;
dst.npolys = src.npolys;
dst.maxpolys = src.npolys;
dst.nvp = src.nvp;
rcVcopy(dst.bmin, src.bmin);
rcVcopy(dst.bmax, src.bmax);
dst.cs = src.cs;
dst.ch = src.ch;
dst.borderSize = src.borderSize;
dst.maxEdgeError = src.maxEdgeError;
dst.verts = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.nverts*3, RC_ALLOC_PERM);
if (!dst.verts)
{
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.verts' (%d).", src.nverts*3);
return false;
}
memcpy(dst.verts, src.verts, sizeof(unsigned short)*src.nverts*3);
dst.polys = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys*2*src.nvp, RC_ALLOC_PERM);
if (!dst.polys)
{
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.polys' (%d).", src.npolys*2*src.nvp);
return false;
}
memcpy(dst.polys, src.polys, sizeof(unsigned short)*src.npolys*2*src.nvp);
dst.regs = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
if (!dst.regs)
{
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.regs' (%d).", src.npolys);
return false;
}
memcpy(dst.regs, src.regs, sizeof(unsigned short)*src.npolys);
dst.areas = (unsigned char*)rcAlloc(sizeof(unsigned char)*src.npolys, RC_ALLOC_PERM);
if (!dst.areas)
{
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.areas' (%d).", src.npolys);
return false;
}
memcpy(dst.areas, src.areas, sizeof(unsigned char)*src.npolys);
dst.flags = (unsigned short*)rcAlloc(sizeof(unsigned short)*src.npolys, RC_ALLOC_PERM);
if (!dst.flags)
{
ctx->log(RC_LOG_ERROR, "rcCopyPolyMesh: Out of memory 'dst.flags' (%d).", src.npolys);
return false;
}
memcpy(dst.flags, src.flags, sizeof(unsigned short)*src.npolys);
return true;
}

File diff suppressed because it is too large Load Diff

View File

@@ -50,7 +50,7 @@ static rcSpan* allocSpan(rcHeightfield& hf)
// Allocate memory for the new pool.
rcSpanPool* pool = (rcSpanPool*)rcAlloc(sizeof(rcSpanPool), RC_ALLOC_PERM);
if (!pool) return 0;
pool->next = 0;
// Add the pool into the list of pools.
pool->next = hf.pools;
hf.pools = pool;
@@ -82,7 +82,7 @@ static void freeSpan(rcHeightfield& hf, rcSpan* ptr)
hf.freelist = ptr;
}
static void addSpan(rcHeightfield& hf, const int x, const int y,
static bool addSpan(rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr)
{
@@ -90,16 +90,18 @@ static void addSpan(rcHeightfield& hf, const int x, const int y,
int idx = x + y*hf.width;
rcSpan* s = allocSpan(hf);
if (!s)
return false;
s->smin = smin;
s->smax = smax;
s->area = area;
s->next = 0;
// Empty cell, add he first span.
// Empty cell, add the first span.
if (!hf.spans[idx])
{
hf.spans[idx] = s;
return;
return true;
}
rcSpan* prev = 0;
rcSpan* cur = hf.spans[idx];
@@ -152,6 +154,8 @@ static void addSpan(rcHeightfield& hf, const int x, const int y,
s->next = hf.spans[idx];
hf.spans[idx] = s;
}
return true;
}
/// @par
@@ -161,45 +165,80 @@ static void addSpan(rcHeightfield& hf, const int x, const int y,
/// from the existing span, the span flags are merged.
///
/// @see rcHeightfield, rcSpan.
void rcAddSpan(rcContext* /*ctx*/, rcHeightfield& hf, const int x, const int y,
bool rcAddSpan(rcContext* ctx, rcHeightfield& hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr)
{
// rcAssert(ctx);
addSpan(hf, x,y, smin, smax, area, flagMergeThr);
rcAssert(ctx);
if (!addSpan(hf, x, y, smin, smax, area, flagMergeThr))
{
ctx->log(RC_LOG_ERROR, "rcAddSpan: Out of memory.");
return false;
}
return true;
}
static int clipPoly(const float* in, int n, float* out, float pnx, float pnz, float pd)
// divides a convex polygons into two convex polygons on both sides of a line
static void dividePoly(const float* in, int nin,
float* out1, int* nout1,
float* out2, int* nout2,
float x, int axis)
{
float d[12];
for (int i = 0; i < n; ++i)
d[i] = pnx*in[i*3+0] + pnz*in[i*3+2] + pd;
int m = 0;
for (int i = 0, j = n-1; i < n; j=i, ++i)
for (int i = 0; i < nin; ++i)
d[i] = x - in[i*3+axis];
int m = 0, n = 0;
for (int i = 0, j = nin-1; i < nin; j=i, ++i)
{
bool ina = d[j] >= 0;
bool inb = d[i] >= 0;
if (ina != inb)
{
float s = d[j] / (d[j] - d[i]);
out[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
out[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
out[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
out1[m*3+0] = in[j*3+0] + (in[i*3+0] - in[j*3+0])*s;
out1[m*3+1] = in[j*3+1] + (in[i*3+1] - in[j*3+1])*s;
out1[m*3+2] = in[j*3+2] + (in[i*3+2] - in[j*3+2])*s;
rcVcopy(out2 + n*3, out1 + m*3);
m++;
n++;
// add the i'th point to the right polygon. Do NOT add points that are on the dividing line
// since these were already added above
if (d[i] > 0)
{
rcVcopy(out1 + m*3, in + i*3);
m++;
}
else if (d[i] < 0)
{
rcVcopy(out2 + n*3, in + i*3);
n++;
}
}
if (inb)
else // same side
{
out[m*3+0] = in[i*3+0];
out[m*3+1] = in[i*3+1];
out[m*3+2] = in[i*3+2];
m++;
// add the i'th point to the right polygon. Addition is done even for points on the dividing line
if (d[i] >= 0)
{
rcVcopy(out1 + m*3, in + i*3);
m++;
if (d[i] != 0)
continue;
}
rcVcopy(out2 + n*3, in + i*3);
n++;
}
}
return m;
*nout1 = m;
*nout2 = n;
}
static void rasterizeTri(const float* v0, const float* v1, const float* v2,
static bool rasterizeTri(const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& hf,
const float* bmin, const float* bmax,
const float cs, const float ics, const float ich,
@@ -220,50 +259,59 @@ static void rasterizeTri(const float* v0, const float* v1, const float* v2,
// If the triangle does not touch the bbox of the heightfield, skip the triagle.
if (!overlapBounds(bmin, bmax, tmin, tmax))
return;
return true;
// Calculate the footpring of the triangle on the grid.
int x0 = (int)((tmin[0] - bmin[0])*ics);
// Calculate the footprint of the triangle on the grid's y-axis
int y0 = (int)((tmin[2] - bmin[2])*ics);
int x1 = (int)((tmax[0] - bmin[0])*ics);
int y1 = (int)((tmax[2] - bmin[2])*ics);
x0 = rcClamp(x0, 0, w-1);
y0 = rcClamp(y0, 0, h-1);
x1 = rcClamp(x1, 0, w-1);
y1 = rcClamp(y1, 0, h-1);
// Clip the triangle into all grid cells it touches.
float in[7*3], out[7*3], inrow[7*3];
float buf[7*3*4];
float *in = buf, *inrow = buf+7*3, *p1 = inrow+7*3, *p2 = p1+7*3;
rcVcopy(&in[0], v0);
rcVcopy(&in[1*3], v1);
rcVcopy(&in[2*3], v2);
int nvrow, nvIn = 3;
for (int y = y0; y <= y1; ++y)
{
// Clip polygon to row.
rcVcopy(&in[0], v0);
rcVcopy(&in[1*3], v1);
rcVcopy(&in[2*3], v2);
int nvrow = 3;
// Clip polygon to row. Store the remaining polygon as well
const float cz = bmin[2] + y*cs;
nvrow = clipPoly(in, nvrow, out, 0, 1, -cz);
if (nvrow < 3) continue;
nvrow = clipPoly(out, nvrow, inrow, 0, -1, cz+cs);
dividePoly(in, nvIn, inrow, &nvrow, p1, &nvIn, cz+cs, 2);
rcSwap(in, p1);
if (nvrow < 3) continue;
// find the horizontal bounds in the row
float minX = inrow[0], maxX = inrow[0];
for (int i=1; i<nvrow; ++i)
{
if (minX > inrow[i*3]) minX = inrow[i*3];
if (maxX < inrow[i*3]) maxX = inrow[i*3];
}
int x0 = (int)((minX - bmin[0])*ics);
int x1 = (int)((maxX - bmin[0])*ics);
x0 = rcClamp(x0, 0, w-1);
x1 = rcClamp(x1, 0, w-1);
int nv, nv2 = nvrow;
for (int x = x0; x <= x1; ++x)
{
// Clip polygon to column.
int nv = nvrow;
// Clip polygon to column. store the remaining polygon as well
const float cx = bmin[0] + x*cs;
nv = clipPoly(inrow, nv, out, 1, 0, -cx);
if (nv < 3) continue;
nv = clipPoly(out, nv, in, -1, 0, cx+cs);
dividePoly(inrow, nv2, p1, &nv, p2, &nv2, cx+cs, 0);
rcSwap(inrow, p2);
if (nv < 3) continue;
// Calculate min and max of the span.
float smin = in[1], smax = in[1];
float smin = p1[1], smax = p1[1];
for (int i = 1; i < nv; ++i)
{
smin = rcMin(smin, in[i*3+1]);
smax = rcMax(smax, in[i*3+1]);
smin = rcMin(smin, p1[i*3+1]);
smax = rcMax(smax, p1[i*3+1]);
}
smin -= bmin[1];
smax -= bmin[1];
@@ -278,9 +326,12 @@ static void rasterizeTri(const float* v0, const float* v1, const float* v2,
unsigned short ismin = (unsigned short)rcClamp((int)floorf(smin * ich), 0, RC_SPAN_MAX_HEIGHT);
unsigned short ismax = (unsigned short)rcClamp((int)ceilf(smax * ich), (int)ismin+1, RC_SPAN_MAX_HEIGHT);
addSpan(hf, x, y, ismin, ismax, area, flagMergeThr);
if (!addSpan(hf, x, y, ismin, ismax, area, flagMergeThr))
return false;
}
}
return true;
}
/// @par
@@ -288,19 +339,23 @@ static void rasterizeTri(const float* v0, const float* v1, const float* v2,
/// No spans will be added if the triangle does not overlap the heightfield grid.
///
/// @see rcHeightfield
void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
bool rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const float* v2,
const unsigned char area, rcHeightfield& solid,
const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
if (!rasterizeTri(v0, v1, v2, area, solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
{
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangle: Out of memory.");
return false;
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
return true;
}
/// @par
@@ -308,13 +363,13 @@ void rcRasterizeTriangle(rcContext* ctx, const float* v0, const float* v1, const
/// Spans will only be added for triangles that overlap the heightfield grid.
///
/// @see rcHeightfield
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const int* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
@@ -325,10 +380,14 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const float* v1 = &verts[tris[i*3+1]*3];
const float* v2 = &verts[tris[i*3+2]*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
{
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
return true;
}
/// @par
@@ -336,13 +395,13 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
/// Spans will only be added for triangles that overlap the heightfield grid.
///
/// @see rcHeightfield
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const unsigned short* tris, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
@@ -353,10 +412,14 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
const float* v1 = &verts[tris[i*3+1]*3];
const float* v2 = &verts[tris[i*3+2]*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
{
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
return true;
}
/// @par
@@ -364,12 +427,12 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const int /*nv*/,
/// Spans will only be added for triangles that overlap the heightfield grid.
///
/// @see rcHeightfield
void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
bool rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned char* areas, const int nt,
rcHeightfield& solid, const int flagMergeThr)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_RASTERIZE_TRIANGLES);
rcScopedTimer timer(ctx, RC_TIMER_RASTERIZE_TRIANGLES);
const float ics = 1.0f/solid.cs;
const float ich = 1.0f/solid.ch;
@@ -380,8 +443,12 @@ void rcRasterizeTriangles(rcContext* ctx, const float* verts, const unsigned cha
const float* v1 = &verts[(i*3+1)*3];
const float* v2 = &verts[(i*3+2)*3];
// Rasterize.
rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr);
if (!rasterizeTri(v0, v1, v2, areas[i], solid, solid.bmin, solid.bmax, solid.cs, ics, ich, flagMergeThr))
{
ctx->log(RC_LOG_ERROR, "rcRasterizeTriangles: Out of memory.");
return false;
}
}
ctx->stopTimer(RC_TIMER_RASTERIZE_TRIANGLES);
return true;
}

View File

@@ -286,7 +286,10 @@ static bool floodRegion(int x, int y, int i,
if (nr & RC_BORDER_REG) // Do not take borders into account.
continue;
if (nr != 0 && nr != r)
{
ar = nr;
break;
}
const rcCompactSpan& as = chf.spans[ai];
@@ -298,9 +301,12 @@ static bool floodRegion(int x, int y, int i,
const int ai2 = (int)chf.cells[ax2+ay2*w].index + rcGetCon(as, dir2);
if (chf.areas[ai2] != area)
continue;
unsigned short nr = srcReg[ai2];
if (nr != 0 && nr != r)
ar = nr;
unsigned short nr2 = srcReg[ai2];
if (nr2 != 0 && nr2 != r)
{
ar = nr2;
break;
}
}
}
}
@@ -309,6 +315,7 @@ static bool floodRegion(int x, int y, int i,
srcReg[ci] = 0;
continue;
}
count++;
// Expand neighbours.
@@ -340,30 +347,44 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
rcCompactHeightfield& chf,
unsigned short* srcReg, unsigned short* srcDist,
unsigned short* dstReg, unsigned short* dstDist,
rcIntArray& stack)
rcIntArray& stack,
bool fillStack)
{
const int w = chf.width;
const int h = chf.height;
// Find cells revealed by the raised level.
stack.resize(0);
for (int y = 0; y < h; ++y)
if (fillStack)
{
for (int x = 0; x < w; ++x)
// Find cells revealed by the raised level.
stack.resize(0);
for (int y = 0; y < h; ++y)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
for (int x = 0; x < w; ++x)
{
if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
stack.push(x);
stack.push(y);
stack.push(i);
if (chf.dist[i] >= level && srcReg[i] == 0 && chf.areas[i] != RC_NULL_AREA)
{
stack.push(x);
stack.push(y);
stack.push(i);
}
}
}
}
}
else // use cells in the input stack
{
// mark all cells which already have a region
for (int j=0; j<stack.size(); j+=3)
{
int i = stack[j+2];
if (srcReg[i] != 0)
stack[j+2] = -1;
}
}
int iter = 0;
while (stack.size() > 0)
{
@@ -434,6 +455,61 @@ static unsigned short* expandRegions(int maxIter, unsigned short level,
}
static void sortCellsByLevel(unsigned short startLevel,
rcCompactHeightfield& chf,
unsigned short* srcReg,
unsigned int nbStacks, rcIntArray* stacks,
unsigned short loglevelsPerStack) // the levels per stack (2 in our case) as a bit shift
{
const int w = chf.width;
const int h = chf.height;
startLevel = startLevel >> loglevelsPerStack;
for (unsigned int j=0; j<nbStacks; ++j)
stacks[j].resize(0);
// put all cells in the level range into the appropriate stacks
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.areas[i] == RC_NULL_AREA || srcReg[i] != 0)
continue;
int level = chf.dist[i] >> loglevelsPerStack;
int sId = startLevel - level;
if (sId >= (int)nbStacks)
continue;
if (sId < 0)
sId = 0;
stacks[sId].push(x);
stacks[sId].push(y);
stacks[sId].push(i);
}
}
}
}
static void appendStacks(rcIntArray& srcStack, rcIntArray& dstStack,
unsigned short* srcReg)
{
for (int j=0; j<srcStack.size(); j+=3)
{
int i = srcStack[j+2];
if ((i < 0) || (srcReg[i] != 0))
continue;
dstStack.push(srcStack[j]);
dstStack.push(srcStack[j+1]);
dstStack.push(srcStack[j+2]);
}
}
struct rcRegion
{
inline rcRegion(unsigned short i) :
@@ -441,7 +517,11 @@ struct rcRegion
id(i),
areaType(0),
remap(false),
visited(false)
visited(false),
overlap(false),
connectsToBorder(false),
ymin(0xffff),
ymax(0)
{}
int spanCount; // Number of spans belonging to this region
@@ -449,6 +529,9 @@ struct rcRegion
unsigned char areaType; // Are type.
bool remap;
bool visited;
bool overlap;
bool connectsToBorder;
unsigned short ymin, ymax;
rcIntArray connections;
rcIntArray floors;
};
@@ -678,25 +761,26 @@ static void walkContour(int x, int y, int i, int dir,
// Remove adjacent duplicates.
if (cont.size() > 1)
{
for (int i = 0; i < cont.size(); )
for (int j = 0; j < cont.size(); )
{
int ni = (i+1) % cont.size();
if (cont[i] == cont[ni])
int nj = (j+1) % cont.size();
if (cont[j] == cont[nj])
{
for (int j = i; j < cont.size()-1; ++j)
cont[j] = cont[j+1];
for (int k = j; k < cont.size()-1; ++k)
cont[k] = cont[k+1];
cont.pop();
}
else
++i;
++j;
}
}
}
static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* srcReg)
static bool mergeAndFilterRegions(rcContext* ctx, int minRegionArea, int mergeRegionSize,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* srcReg, rcIntArray& overlaps)
{
const int w = chf.width;
const int h = chf.height;
@@ -705,7 +789,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
if (!regions)
{
ctx->log(RC_LOG_ERROR, "filterSmallRegions: Out of memory 'regions' (%d).", nreg);
ctx->log(RC_LOG_ERROR, "mergeAndFilterRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
@@ -728,7 +812,6 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
rcRegion& reg = regions[r];
reg.spanCount++;
// Update floors.
for (int j = (int)c.index; j < ni; ++j)
{
@@ -736,6 +819,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
unsigned short floorId = srcReg[j];
if (floorId == 0 || floorId >= nreg)
continue;
if (floorId == r)
reg.overlap = true;
addUniqueFloorRegion(reg, floorId);
}
@@ -806,14 +891,14 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
connectsToBorder = true;
continue;
}
rcRegion& nreg = regions[creg.connections[j]];
if (nreg.visited)
rcRegion& neireg = regions[creg.connections[j]];
if (neireg.visited)
continue;
if (nreg.id == 0 || (nreg.id & RC_BORDER_REG))
if (neireg.id == 0 || (neireg.id & RC_BORDER_REG))
continue;
// Visit
stack.push(nreg.id);
nreg.visited = true;
stack.push(neireg.id);
neireg.visited = true;
}
}
@@ -831,7 +916,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
}
}
}
// Merge too small regions to neighbour regions.
int mergeCount = 0 ;
do
@@ -841,7 +926,9 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
{
rcRegion& reg = regions[i];
if (reg.id == 0 || (reg.id & RC_BORDER_REG))
continue;
continue;
if (reg.overlap)
continue;
if (reg.spanCount == 0)
continue;
@@ -858,7 +945,7 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
{
if (reg.connections[j] & RC_BORDER_REG) continue;
rcRegion& mreg = regions[reg.connections[j]];
if (mreg.id == 0 || (mreg.id & RC_BORDER_REG)) continue;
if (mreg.id == 0 || (mreg.id & RC_BORDER_REG) || mreg.overlap) continue;
if (mreg.spanCount < smallest &&
canMergeWithRegion(reg, mreg) &&
canMergeWithRegion(mreg, reg))
@@ -922,6 +1009,224 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
}
maxRegionId = regIdGen;
// Remap regions.
for (int i = 0; i < chf.spanCount; ++i)
{
if ((srcReg[i] & RC_BORDER_REG) == 0)
srcReg[i] = regions[srcReg[i]].id;
}
// Return regions that we found to be overlapping.
for (int i = 0; i < nreg; ++i)
if (regions[i].overlap)
overlaps.push(regions[i].id);
for (int i = 0; i < nreg; ++i)
regions[i].~rcRegion();
rcFree(regions);
return true;
}
static void addUniqueConnection(rcRegion& reg, int n)
{
for (int i = 0; i < reg.connections.size(); ++i)
if (reg.connections[i] == n)
return;
reg.connections.push(n);
}
static bool mergeAndFilterLayerRegions(rcContext* ctx, int minRegionArea,
unsigned short& maxRegionId,
rcCompactHeightfield& chf,
unsigned short* srcReg, rcIntArray& /*overlaps*/)
{
const int w = chf.width;
const int h = chf.height;
const int nreg = maxRegionId+1;
rcRegion* regions = (rcRegion*)rcAlloc(sizeof(rcRegion)*nreg, RC_ALLOC_TEMP);
if (!regions)
{
ctx->log(RC_LOG_ERROR, "mergeAndFilterLayerRegions: Out of memory 'regions' (%d).", nreg);
return false;
}
// Construct regions
for (int i = 0; i < nreg; ++i)
new(&regions[i]) rcRegion((unsigned short)i);
// Find region neighbours and overlapping regions.
rcIntArray lregs(32);
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
lregs.resize(0);
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
const unsigned short ri = srcReg[i];
if (ri == 0 || ri >= nreg) continue;
rcRegion& reg = regions[ri];
reg.spanCount++;
reg.ymin = rcMin(reg.ymin, s.y);
reg.ymax = rcMax(reg.ymax, s.y);
// Collect all region layers.
lregs.push(ri);
// Update neighbours
for (int dir = 0; dir < 4; ++dir)
{
if (rcGetCon(s, dir) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(dir);
const int ay = y + rcGetDirOffsetY(dir);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, dir);
const unsigned short rai = srcReg[ai];
if (rai > 0 && rai < nreg && rai != ri)
addUniqueConnection(reg, rai);
if (rai & RC_BORDER_REG)
reg.connectsToBorder = true;
}
}
}
// Update overlapping regions.
for (int i = 0; i < lregs.size()-1; ++i)
{
for (int j = i+1; j < lregs.size(); ++j)
{
if (lregs[i] != lregs[j])
{
rcRegion& ri = regions[lregs[i]];
rcRegion& rj = regions[lregs[j]];
addUniqueFloorRegion(ri, lregs[j]);
addUniqueFloorRegion(rj, lregs[i]);
}
}
}
}
}
// Create 2D layers from regions.
unsigned short layerId = 1;
for (int i = 0; i < nreg; ++i)
regions[i].id = 0;
// Merge montone regions to create non-overlapping areas.
rcIntArray stack(32);
for (int i = 1; i < nreg; ++i)
{
rcRegion& root = regions[i];
// Skip already visited.
if (root.id != 0)
continue;
// Start search.
root.id = layerId;
stack.resize(0);
stack.push(i);
while (stack.size() > 0)
{
// Pop front
rcRegion& reg = regions[stack[0]];
for (int j = 0; j < stack.size()-1; ++j)
stack[j] = stack[j+1];
stack.resize(stack.size()-1);
const int ncons = (int)reg.connections.size();
for (int j = 0; j < ncons; ++j)
{
const int nei = reg.connections[j];
rcRegion& regn = regions[nei];
// Skip already visited.
if (regn.id != 0)
continue;
// Skip if the neighbour is overlapping root region.
bool overlap = false;
for (int k = 0; k < root.floors.size(); k++)
{
if (root.floors[k] == nei)
{
overlap = true;
break;
}
}
if (overlap)
continue;
// Deepen
stack.push(nei);
// Mark layer id
regn.id = layerId;
// Merge current layers to root.
for (int k = 0; k < regn.floors.size(); ++k)
addUniqueFloorRegion(root, regn.floors[k]);
root.ymin = rcMin(root.ymin, regn.ymin);
root.ymax = rcMax(root.ymax, regn.ymax);
root.spanCount += regn.spanCount;
regn.spanCount = 0;
root.connectsToBorder = root.connectsToBorder || regn.connectsToBorder;
}
}
layerId++;
}
// Remove small regions
for (int i = 0; i < nreg; ++i)
{
if (regions[i].spanCount > 0 && regions[i].spanCount < minRegionArea && !regions[i].connectsToBorder)
{
unsigned short reg = regions[i].id;
for (int j = 0; j < nreg; ++j)
if (regions[j].id == reg)
regions[j].id = 0;
}
}
// Compress region Ids.
for (int i = 0; i < nreg; ++i)
{
regions[i].remap = false;
if (regions[i].id == 0) continue; // Skip nil regions.
if (regions[i].id & RC_BORDER_REG) continue; // Skip external regions.
regions[i].remap = true;
}
unsigned short regIdGen = 0;
for (int i = 0; i < nreg; ++i)
{
if (!regions[i].remap)
continue;
unsigned short oldId = regions[i].id;
unsigned short newId = ++regIdGen;
for (int j = i; j < nreg; ++j)
{
if (regions[j].id == oldId)
{
regions[j].id = newId;
regions[j].remap = false;
}
}
}
maxRegionId = regIdGen;
// Remap regions.
for (int i = 0; i < chf.spanCount; ++i)
{
@@ -936,6 +1241,8 @@ static bool filterSmallRegions(rcContext* ctx, int minRegionArea, int mergeRegio
return true;
}
/// @par
///
/// This is usually the second to the last step in creating a fully built
@@ -950,7 +1257,7 @@ bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf)
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_DISTANCEFIELD);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_DISTANCEFIELD);
if (chf.dist)
{
@@ -974,25 +1281,23 @@ bool rcBuildDistanceField(rcContext* ctx, rcCompactHeightfield& chf)
unsigned short maxDist = 0;
ctx->startTimer(RC_TIMER_BUILD_DISTANCEFIELD_DIST);
calculateDistanceField(chf, src, maxDist);
chf.maxDistance = maxDist;
ctx->stopTimer(RC_TIMER_BUILD_DISTANCEFIELD_DIST);
ctx->startTimer(RC_TIMER_BUILD_DISTANCEFIELD_BLUR);
// Blur
if (boxBlur(chf, 1, src, dst) != src)
rcSwap(src, dst);
// Store distance.
chf.dist = src;
ctx->stopTimer(RC_TIMER_BUILD_DISTANCEFIELD_BLUR);
{
rcScopedTimer timerDist(ctx, RC_TIMER_BUILD_DISTANCEFIELD_DIST);
ctx->stopTimer(RC_TIMER_BUILD_DISTANCEFIELD);
calculateDistanceField(chf, src, maxDist);
chf.maxDistance = maxDist;
}
{
rcScopedTimer timerBlur(ctx, RC_TIMER_BUILD_DISTANCEFIELD_BLUR);
// Blur
if (boxBlur(chf, 1, src, dst) != src)
rcSwap(src, dst);
// Store distance.
chf.dist = src;
}
rcFree(dst);
@@ -1052,13 +1357,13 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_REGIONS);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
const int w = chf.width;
const int h = chf.height;
unsigned short id = 1;
rcScopedDelete<unsigned short> srcReg = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP);
rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
if (!srcReg)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
@@ -1067,7 +1372,7 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
const int nsweeps = rcMax(chf.width,chf.height);
rcScopedDelete<rcSweepSpan> sweeps = (rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP);
rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
if (!sweeps)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
@@ -1181,20 +1486,22 @@ bool rcBuildRegionsMonotone(rcContext* ctx, rcCompactHeightfield& chf,
}
}
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
// Filter out small regions.
chf.maxRegions = id;
if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg))
return false;
{
rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
// Merge regions and filter out small regions.
rcIntArray overlaps;
chf.maxRegions = id;
if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
return false;
// Monotone partitioning does not generate overlapping regions.
}
// Store the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = srcReg[i];
ctx->stopTimer(RC_TIMER_BUILD_REGIONS);
return true;
}
@@ -1223,12 +1530,12 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
{
rcAssert(ctx);
ctx->startTimer(RC_TIMER_BUILD_REGIONS);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
const int w = chf.width;
const int h = chf.height;
rcScopedDelete<unsigned short> buf = (unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP);
rcScopedDelete<unsigned short> buf((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount*4, RC_ALLOC_TEMP));
if (!buf)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegions: Out of memory 'tmp' (%d).", chf.spanCount*4);
@@ -1236,7 +1543,13 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
}
ctx->startTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
const int LOG_NB_STACKS = 3;
const int NB_STACKS = 1 << LOG_NB_STACKS;
rcIntArray lvlStacks[NB_STACKS];
for (int i=0; i<NB_STACKS; ++i)
lvlStacks[i].resize(1024);
rcIntArray stack(1024);
rcIntArray visited(1024);
@@ -1262,6 +1575,13 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
// Make sure border will not overflow.
const int bw = rcMin(w, borderSize);
const int bh = rcMin(h, borderSize);
if (regionId > 0xFFFB)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow");
return false;
}
// Paint regions
paintRectRegion(0, bw, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
paintRectRegion(w-bw, w, 0, h, regionId|RC_BORDER_REG, chf, srcReg); regionId++;
@@ -1271,44 +1591,60 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
chf.borderSize = borderSize;
}
int sId = -1;
while (level > 0)
{
level = level >= 2 ? level-2 : 0;
ctx->startTimer(RC_TIMER_BUILD_REGIONS_EXPAND);
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, stack) != srcReg)
sId = (sId+1) & (NB_STACKS-1);
// ctx->startTimer(RC_TIMER_DIVIDE_TO_LEVELS);
if (sId == 0)
sortCellsByLevel(level, chf, srcReg, NB_STACKS, lvlStacks, 1);
else
appendStacks(lvlStacks[sId-1], lvlStacks[sId], srcReg); // copy left overs from last level
// ctx->stopTimer(RC_TIMER_DIVIDE_TO_LEVELS);
{
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
}
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_EXPAND);
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FLOOD);
// Mark new regions with IDs.
for (int y = 0; y < h; ++y)
{
for (int x = 0; x < w; ++x)
rcScopedTimer timerExpand(ctx, RC_TIMER_BUILD_REGIONS_EXPAND);
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters, level, chf, srcReg, srcDist, dstReg, dstDist, lvlStacks[sId], false) != srcReg)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (chf.dist[i] < level || srcReg[i] != 0 || chf.areas[i] == RC_NULL_AREA)
continue;
if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
regionId++;
}
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
}
}
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FLOOD);
{
rcScopedTimer timerFloor(ctx, RC_TIMER_BUILD_REGIONS_FLOOD);
// Mark new regions with IDs.
for (int j = 0; j<lvlStacks[sId].size(); j += 3)
{
int x = lvlStacks[sId][j];
int y = lvlStacks[sId][j+1];
int i = lvlStacks[sId][j+2];
if (i >= 0 && srcReg[i] == 0)
{
if (floodRegion(x, y, i, level, regionId, chf, srcReg, srcDist, stack))
{
if (regionId == 0xFFFF)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegions: Region ID overflow");
return false;
}
regionId++;
}
}
}
}
}
// Expand current regions until no empty connected cells found.
if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack) != srcReg)
if (expandRegions(expandIters*8, 0, chf, srcReg, srcDist, dstReg, dstDist, stack, true) != srcReg)
{
rcSwap(srcReg, dstReg);
rcSwap(srcDist, dstDist);
@@ -1316,22 +1652,179 @@ bool rcBuildRegions(rcContext* ctx, rcCompactHeightfield& chf,
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_WATERSHED);
ctx->startTimer(RC_TIMER_BUILD_REGIONS_FILTER);
// Filter out small regions.
chf.maxRegions = regionId;
if (!filterSmallRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg))
return false;
ctx->stopTimer(RC_TIMER_BUILD_REGIONS_FILTER);
{
rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
// Merge regions and filter out smalle regions.
rcIntArray overlaps;
chf.maxRegions = regionId;
if (!mergeAndFilterRegions(ctx, minRegionArea, mergeRegionArea, chf.maxRegions, chf, srcReg, overlaps))
return false;
// If overlapping regions were found during merging, split those regions.
if (overlaps.size() > 0)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegions: %d overlapping regions.", overlaps.size());
}
}
// Write the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = srcReg[i];
ctx->stopTimer(RC_TIMER_BUILD_REGIONS);
return true;
}
bool rcBuildLayerRegions(rcContext* ctx, rcCompactHeightfield& chf,
const int borderSize, const int minRegionArea)
{
rcAssert(ctx);
rcScopedTimer timer(ctx, RC_TIMER_BUILD_REGIONS);
const int w = chf.width;
const int h = chf.height;
unsigned short id = 1;
rcScopedDelete<unsigned short> srcReg((unsigned short*)rcAlloc(sizeof(unsigned short)*chf.spanCount, RC_ALLOC_TEMP));
if (!srcReg)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'src' (%d).", chf.spanCount);
return false;
}
memset(srcReg,0,sizeof(unsigned short)*chf.spanCount);
const int nsweeps = rcMax(chf.width,chf.height);
rcScopedDelete<rcSweepSpan> sweeps((rcSweepSpan*)rcAlloc(sizeof(rcSweepSpan)*nsweeps, RC_ALLOC_TEMP));
if (!sweeps)
{
ctx->log(RC_LOG_ERROR, "rcBuildRegionsMonotone: Out of memory 'sweeps' (%d).", nsweeps);
return false;
}
// Mark border regions.
if (borderSize > 0)
{
// Make sure border will not overflow.
const int bw = rcMin(w, borderSize);
const int bh = rcMin(h, borderSize);
// Paint regions
paintRectRegion(0, bw, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(w-bw, w, 0, h, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, 0, bh, id|RC_BORDER_REG, chf, srcReg); id++;
paintRectRegion(0, w, h-bh, h, id|RC_BORDER_REG, chf, srcReg); id++;
chf.borderSize = borderSize;
}
rcIntArray prev(256);
// Sweep one line at a time.
for (int y = borderSize; y < h-borderSize; ++y)
{
// Collect spans from this row.
prev.resize(id+1);
memset(&prev[0],0,sizeof(int)*id);
unsigned short rid = 1;
for (int x = borderSize; x < w-borderSize; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
const rcCompactSpan& s = chf.spans[i];
if (chf.areas[i] == RC_NULL_AREA) continue;
// -x
unsigned short previd = 0;
if (rcGetCon(s, 0) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(0);
const int ay = y + rcGetDirOffsetY(0);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 0);
if ((srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
previd = srcReg[ai];
}
if (!previd)
{
previd = rid++;
sweeps[previd].rid = previd;
sweeps[previd].ns = 0;
sweeps[previd].nei = 0;
}
// -y
if (rcGetCon(s,3) != RC_NOT_CONNECTED)
{
const int ax = x + rcGetDirOffsetX(3);
const int ay = y + rcGetDirOffsetY(3);
const int ai = (int)chf.cells[ax+ay*w].index + rcGetCon(s, 3);
if (srcReg[ai] && (srcReg[ai] & RC_BORDER_REG) == 0 && chf.areas[i] == chf.areas[ai])
{
unsigned short nr = srcReg[ai];
if (!sweeps[previd].nei || sweeps[previd].nei == nr)
{
sweeps[previd].nei = nr;
sweeps[previd].ns++;
prev[nr]++;
}
else
{
sweeps[previd].nei = RC_NULL_NEI;
}
}
}
srcReg[i] = previd;
}
}
// Create unique ID.
for (int i = 1; i < rid; ++i)
{
if (sweeps[i].nei != RC_NULL_NEI && sweeps[i].nei != 0 &&
prev[sweeps[i].nei] == (int)sweeps[i].ns)
{
sweeps[i].id = sweeps[i].nei;
}
else
{
sweeps[i].id = id++;
}
}
// Remap IDs
for (int x = borderSize; x < w-borderSize; ++x)
{
const rcCompactCell& c = chf.cells[x+y*w];
for (int i = (int)c.index, ni = (int)(c.index+c.count); i < ni; ++i)
{
if (srcReg[i] > 0 && srcReg[i] < rid)
srcReg[i] = sweeps[srcReg[i]].id;
}
}
}
{
rcScopedTimer timerFilter(ctx, RC_TIMER_BUILD_REGIONS_FILTER);
// Merge monotone regions to layers and remove small regions.
rcIntArray overlaps;
chf.maxRegions = id;
if (!mergeAndFilterLayerRegions(ctx, minRegionArea, chf.maxRegions, chf, srcReg, overlaps))
return false;
}
// Store the result out.
for (int i = 0; i < chf.spanCount; ++i)
chf.spans[i].reg = srcReg[i];
return true;
}

View File

@@ -1,58 +0,0 @@
#include "RecastTimer.h"
#if defined(WIN32)
// Win32
#include <windows.h>
rcTimeVal rcGetPerformanceTimer()
{
__int64 count;
QueryPerformanceCounter((LARGE_INTEGER*)&count);
return count;
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
static __int64 freq = 0;
if (freq == 0)
QueryPerformanceFrequency((LARGE_INTEGER*)&freq);
__int64 elapsed = end - start;
return (int)(elapsed*1000000 / freq);
}
#elif defined(__MACH__)
// OSX
#include <mach/mach_time.h>
rcTimeVal rcGetPerformanceTimer()
{
return mach_absolute_time();
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
static mach_timebase_info_data_t timebaseInfo;
if (timebaseInfo.denom == 0)
mach_timebase_info(&timebaseInfo);
uint64_t elapsed = end - start;
uint64_t nanosec = elapsed * timebaseInfo.numer / timebaseInfo.denom;
return (int)(nanosec / 1000);
}
#else
// TODO: Linux, etc
rcTimeVal rcGetPerformanceTimer()
{
return 0;
}
int rcGetDeltaTimeUsec(rcTimeVal start, rcTimeVal end)
{
return 0;
}
#endif

View File

@@ -0,0 +1,22 @@
The version of Recast is 1.5.0, from:
https://github.com/recastnavigation/recastnavigation
Changes made:
* Recast/Source/RecastMesh.cpp: made buildMeshAdjacency() non-static so it can be used with recast-capi
* Recast/Include/Recast.h: Added forward declaration for buildMeshAdjacency()
The following additional files were added:
* recast-capi.cpp
* recast-capi.h
These expose a C interface to the Recast library, which has only C++ headers.
The version of Detour is 1.4, from:
https://code.google.com/archive/p/recastnavigation/downloads
Changes made:
* DetourStatNavMesh.h: use more portable definition of DT_STAT_NAVMESH_MAGIC
* DetourStatNavMesh.cpp: comment out some unused variables to avoid compiler warnings
* DetourStatNavMeshBuilder.h: add forward declaration for createBVTree
* DetourStatNavMeshBuilder.cpp: made createBVTree non-static for use with recast-capi
The CMakeLists.txt file has been added, since the original software does not include build files for the libraries.
~rdb

View File

@@ -68,17 +68,41 @@ int recast_createHeightfield(struct recast_heightfield *hf, int width, int heigh
}
void recast_markWalkableTriangles(const float walkableSlopeAngle,const float *verts, int nv,
const int *tris, int nt, unsigned char *flags)
const int *tris, int nt, unsigned char *areas)
{
INIT_SCTX();
rcMarkWalkableTriangles(sctx, walkableSlopeAngle, verts, nv, tris, nt, flags);
rcMarkWalkableTriangles(sctx, walkableSlopeAngle, verts, nv, tris, nt, areas);
}
void recast_rasterizeTriangles(const float *verts, int nv, const int *tris,
const unsigned char *flags, int nt, struct recast_heightfield *solid)
void recast_clearUnwalkableTriangles(const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas)
{
INIT_SCTX();
rcRasterizeTriangles(sctx, verts, nv, tris, flags, nt, *(rcHeightfield *) solid);
rcClearUnwalkableTriangles(sctx, walkableSlopeAngle, verts, nv, tris, nt, areas);
}
int recast_addSpan(struct recast_heightfield *hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr)
{
INIT_SCTX();
return rcAddSpan(sctx, *(rcHeightfield *) hf, x, y, smin, smax, area, flagMergeThr);
}
int recast_rasterizeTriangle(const float *v0, const float *v1, const float *v2,
const unsigned char area, struct recast_heightfield *solid,
const int flagMergeThr)
{
INIT_SCTX();
return rcRasterizeTriangle(sctx, v0, v1, v2, area, *(rcHeightfield *) solid, flagMergeThr);
}
int recast_rasterizeTriangles(const float *verts, const int nv, const int *tris,
const unsigned char *areas, const int nt, struct recast_heightfield *solid,
const int flagMergeThr)
{
INIT_SCTX();
return rcRasterizeTriangles(sctx, verts, nv, tris, areas, nt, *(rcHeightfield *) solid, flagMergeThr);
}
void recast_filterLedgeSpans(const int walkableHeight, const int walkableClimb,
@@ -100,6 +124,22 @@ void recast_filterLowHangingWalkableObstacles(const int walkableClimb, struct re
rcFilterLowHangingWalkableObstacles(sctx, walkableClimb, *(rcHeightfield *) solid);
}
int recast_getHeightFieldSpanCount(struct recast_heightfield *hf)
{
INIT_SCTX();
return rcGetHeightFieldSpanCount(sctx, *(rcHeightfield *) hf);
}
struct recast_heightfieldLayerSet *recast_newHeightfieldLayerSet(void)
{
return (struct recast_heightfieldLayerSet *) rcAllocHeightfieldLayerSet();
}
void recast_destroyHeightfieldLayerSet(struct recast_heightfieldLayerSet *lset)
{
rcFreeHeightfieldLayerSet( (rcHeightfieldLayerSet *) lset);
}
struct recast_compactHeightfield *recast_newCompactHeightfield(void)
{
return (struct recast_compactHeightfield *) rcAllocCompactHeightfield();
@@ -124,18 +164,68 @@ int recast_erodeWalkableArea(int radius, struct recast_compactHeightfield *chf)
return rcErodeWalkableArea(sctx, radius, *(rcCompactHeightfield *) chf);
}
int recast_medianFilterWalkableArea(struct recast_compactHeightfield *chf)
{
INIT_SCTX();
return rcMedianFilterWalkableArea(sctx, *(rcCompactHeightfield *) chf);
}
void recast_markBoxArea(const float *bmin, const float *bmax, unsigned char areaId,
struct recast_compactHeightfield *chf)
{
INIT_SCTX();
rcMarkBoxArea(sctx, bmin, bmax, areaId, *(rcCompactHeightfield *) chf);
}
void recast_markConvexPolyArea(const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
struct recast_compactHeightfield *chf)
{
INIT_SCTX();
rcMarkConvexPolyArea(sctx, verts, nverts, hmin, hmax, areaId, *(rcCompactHeightfield *) chf);
}
int recast_offsetPoly(const float* verts, const int nverts,
const float offset, float *outVerts, const int maxOutVerts)
{
return rcOffsetPoly(verts, nverts, offset, outVerts, maxOutVerts);
}
void recast_markCylinderArea(const float* pos, const float r, const float h,
unsigned char areaId, struct recast_compactHeightfield *chf)
{
INIT_SCTX();
rcMarkCylinderArea(sctx, pos, r, h, areaId, *(rcCompactHeightfield *) chf);
}
int recast_buildDistanceField(struct recast_compactHeightfield *chf)
{
INIT_SCTX();
return rcBuildDistanceField(sctx, *(rcCompactHeightfield *) chf);
}
int recast_buildRegions(struct recast_compactHeightfield *chf, int borderSize,
int minRegionSize, int mergeRegionSize)
int recast_buildRegions(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea)
{
INIT_SCTX();
return rcBuildRegions(sctx, *(rcCompactHeightfield *) chf, borderSize,
minRegionSize, mergeRegionSize);
minRegionArea, mergeRegionArea);
}
int recast_buildLayerRegions(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea)
{
INIT_SCTX();
return rcBuildLayerRegions(sctx, *(rcCompactHeightfield *) chf, borderSize,
minRegionArea);
}
int recast_buildRegionsMonotone(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea)
{
INIT_SCTX();
return rcBuildRegionsMonotone(sctx, *(rcCompactHeightfield *) chf, borderSize,
minRegionArea, mergeRegionArea);
}
struct recast_contourSet *recast_newContourSet(void)
@@ -149,10 +239,11 @@ void recast_destroyContourSet(struct recast_contourSet *contourSet)
}
int recast_buildContours(struct recast_compactHeightfield *chf,
const float maxError, const int maxEdgeLen, struct recast_contourSet *cset)
const float maxError, const int maxEdgeLen, struct recast_contourSet *cset,
const int buildFlags)
{
INIT_SCTX();
return rcBuildContours(sctx, *(rcCompactHeightfield *) chf, maxError, maxEdgeLen, *(rcContourSet *) cset);
return rcBuildContours(sctx, *(rcCompactHeightfield *) chf, maxError, maxEdgeLen, *(rcContourSet *) cset, buildFlags);
}
struct recast_polyMesh *recast_newPolyMesh(void)
@@ -165,10 +256,22 @@ void recast_destroyPolyMesh(struct recast_polyMesh *polyMesh)
rcFreePolyMesh((rcPolyMesh *) polyMesh);
}
int recast_buildPolyMesh(struct recast_contourSet *cset, int nvp, struct recast_polyMesh *mesh)
int recast_buildPolyMesh(struct recast_contourSet *cset, const int nvp, struct recast_polyMesh *mesh)
{
INIT_SCTX();
return rcBuildPolyMesh(sctx, *(rcContourSet *) cset, nvp, * (rcPolyMesh *) mesh);
return rcBuildPolyMesh(sctx, *(rcContourSet *) cset, nvp, *(rcPolyMesh *) mesh);
}
int recast_mergePolyMeshes(struct recast_polyMesh **meshes, const int nmeshes, struct recast_polyMesh *mesh)
{
INIT_SCTX();
return rcMergePolyMeshes(sctx, (rcPolyMesh **) meshes, nmeshes, *(rcPolyMesh *) mesh);
}
int recast_copyPolyMesh(const struct recast_polyMesh *src, struct recast_polyMesh *dst)
{
INIT_SCTX();
return rcCopyPolyMesh(sctx, *(const rcPolyMesh *) src, *(rcPolyMesh *) dst);
}
unsigned short *recast_polyMeshGetVerts(struct recast_polyMesh *mesh, int *nverts)
@@ -240,6 +343,12 @@ int recast_buildPolyMeshDetail(const struct recast_polyMesh *mesh, const struct
sampleDist, sampleMaxError, *(rcPolyMeshDetail *) dmesh);
}
int recast_mergePolyMeshDetails(struct recast_polyMeshDetail **meshes, const int nmeshes, struct recast_polyMeshDetail *mesh)
{
INIT_SCTX();
return rcMergePolyMeshDetails(sctx, (rcPolyMeshDetail **) meshes, nmeshes, *(rcPolyMeshDetail *) mesh);
}
float *recast_polyMeshDetailGetVerts(struct recast_polyMeshDetail *mesh, int *nverts)
{
rcPolyMeshDetail *dmesh = (rcPolyMeshDetail *)mesh;

View File

@@ -38,12 +38,13 @@ struct recast_polyMesh;
struct recast_polyMeshDetail;
struct recast_heightfield;
struct recast_compactHeightfield;
struct recast_heightfieldLayerSet;
struct recast_contourSet;
enum recast_SpanFlags
enum recast_BuildContoursFlags
{
RECAST_WALKABLE = 0x01,
RECAST_REACHABLE = 0x02
RECAST_CONTOUR_TESS_WALL_EDGES = 0x01,
RECAST_CONTOUR_TESS_AREA_EDGES = 0x02,
};
int recast_buildMeshAdjacency(unsigned short* polys, const int npolys,
@@ -61,10 +62,22 @@ int recast_createHeightfield(struct recast_heightfield *hf, int width, int heigh
const float *bmin, const float* bmax, float cs, float ch);
void recast_markWalkableTriangles(const float walkableSlopeAngle,const float *verts, int nv,
const int *tris, int nt, unsigned char *flags);
const int *tris, int nt, unsigned char *areas);
void recast_rasterizeTriangles(const float *verts, int nv, const int *tris,
const unsigned char *flags, int nt, struct recast_heightfield *solid);
void recast_clearUnwalkableTriangles(const float walkableSlopeAngle, const float* verts, int nv,
const int* tris, int nt, unsigned char* areas);
int recast_addSpan(struct recast_heightfield *hf, const int x, const int y,
const unsigned short smin, const unsigned short smax,
const unsigned char area, const int flagMergeThr);
int recast_rasterizeTriangle(const float* v0, const float* v1, const float* v2,
const unsigned char area, struct recast_heightfield *solid,
const int flagMergeThr);
int recast_rasterizeTriangles(const float *verts, const int nv, const int *tris,
const unsigned char *areas, const int nt, struct recast_heightfield *solid,
const int flagMergeThr);
void recast_filterLedgeSpans(const int walkableHeight, const int walkableClimb,
struct recast_heightfield *solid);
@@ -73,6 +86,12 @@ void recast_filterWalkableLowHeightSpans(int walkableHeight, struct recast_heigh
void recast_filterLowHangingWalkableObstacles(const int walkableClimb, struct recast_heightfield *solid);
int recast_getHeightFieldSpanCount(struct recast_heightfield *hf);
struct recast_heightfieldLayerSet *recast_newHeightfieldLayerSet(void);
void recast_destroyHeightfieldLayerSet(struct recast_heightfieldLayerSet *lset);
struct recast_compactHeightfield *recast_newCompactHeightfield(void);
void recast_destroyCompactHeightfield(struct recast_compactHeightfield *compactHeightfield);
@@ -82,10 +101,31 @@ int recast_buildCompactHeightfield(const int walkableHeight, const int walkableC
int recast_erodeWalkableArea(int radius, struct recast_compactHeightfield *chf);
int recast_medianFilterWalkableArea(struct recast_compactHeightfield *chf);
void recast_markBoxArea(const float *bmin, const float *bmax, unsigned char areaId,
struct recast_compactHeightfield *chf);
void recast_markConvexPolyArea(const float* verts, const int nverts,
const float hmin, const float hmax, unsigned char areaId,
struct recast_compactHeightfield *chf);
int recast_offsetPoly(const float* verts, const int nverts,
const float offset, float *outVerts, const int maxOutVerts);
void recast_markCylinderArea(const float* pos, const float r, const float h,
unsigned char areaId, struct recast_compactHeightfield *chf);
int recast_buildDistanceField(struct recast_compactHeightfield *chf);
int recast_buildRegions(struct recast_compactHeightfield *chf, int borderSize,
int minRegionSize, int mergeRegionSize);
int recast_buildRegions(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
int recast_buildLayerRegions(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea);
int recast_buildRegionsMonotone(struct recast_compactHeightfield *chf,
const int borderSize, const int minRegionArea, const int mergeRegionArea);
/* Contour set */
@@ -94,7 +134,8 @@ struct recast_contourSet *recast_newContourSet(void);
void recast_destroyContourSet(struct recast_contourSet *contourSet);
int recast_buildContours(struct recast_compactHeightfield *chf,
const float maxError, const int maxEdgeLen, struct recast_contourSet *cset);
const float maxError, const int maxEdgeLen, struct recast_contourSet *cset,
const int buildFlags);
/* Poly mesh */
@@ -102,7 +143,11 @@ struct recast_polyMesh *recast_newPolyMesh(void);
void recast_destroyPolyMesh(struct recast_polyMesh *polyMesh);
int recast_buildPolyMesh(struct recast_contourSet *cset, int nvp, struct recast_polyMesh *mesh);
int recast_buildPolyMesh(struct recast_contourSet *cset, const int nvp, struct recast_polyMesh *mesh);
int recast_mergePolyMeshes(struct recast_polyMesh **meshes, const int nmeshes, struct recast_polyMesh *mesh);
int recast_copyPolyMesh(const struct recast_polyMesh *src, struct recast_polyMesh *dst);
unsigned short *recast_polyMeshGetVerts(struct recast_polyMesh *mesh, int *nverts);
@@ -121,6 +166,8 @@ void recast_destroyPolyMeshDetail(struct recast_polyMeshDetail *polyMeshDetail);
int recast_buildPolyMeshDetail(const struct recast_polyMesh *mesh, const struct recast_compactHeightfield *chf,
const float sampleDist, const float sampleMaxError, struct recast_polyMeshDetail *dmesh);
int recast_mergePolyMeshDetails(struct recast_polyMeshDetail **meshes, const int nmeshes, struct recast_polyMeshDetail *mesh);
float *recast_polyMeshDetailGetVerts(struct recast_polyMeshDetail *mesh, int *nverts);
unsigned char *recast_polyMeshDetailGetTris(struct recast_polyMeshDetail *mesh, int *ntris);