Cycles: OpenCL kernel split

This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.

Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.

Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.

This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.

More feature will be enabled once they're ported to the split kernel and
tested.

Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.

Based on the research paper:

  https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf

Here's the documentation:

  https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit

Design discussion of the patch:

  https://developer.blender.org/T44197

Differential Revision: https://developer.blender.org/D1200
This commit is contained in:
George Kyriazis
2015-05-09 19:34:30 +05:00
committed by Sergey Sharybin
parent f680c1b54a
commit 7f4479da42
57 changed files with 5826 additions and 870 deletions

View File

@@ -24,7 +24,7 @@ ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RN
{
#ifdef __EMISSION__
/* sample illumination from lights to find path contribution */
if(!(sd->flag & SD_BSDF_HAS_EVAL))
if(!(ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL))
return;
Ray light_ray;
@@ -32,7 +32,7 @@ ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RN
bool is_lamp;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
light_ray.time = ccl_fetch(sd, time);
#endif
if(sample_all_lights) {
@@ -53,7 +53,7 @@ ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RN
path_branched_rng_2D(kg, &lamp_rng, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls);
lamp_light_sample(kg, i, light_u, light_v, ccl_fetch(sd, P), &ls);
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
/* trace shadow ray */
@@ -85,7 +85,7 @@ ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RN
light_t = 0.5f*light_t;
LightSample ls;
light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls);
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
/* trace shadow ray */
@@ -106,7 +106,7 @@ ccl_device void kernel_branched_path_surface_connect_light(KernelGlobals *kg, RN
path_state_rng_2D(kg, rng, state, PRNG_LIGHT_U, &light_u, &light_v);
LightSample ls;
light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls);
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
/* sample random light */
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
@@ -149,15 +149,15 @@ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
ray->D = bsdf_omega_in;
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dP = ccl_fetch(sd, dP);
ray->dD = bsdf_domega_in;
#endif
#ifdef __OBJECT_MOTION__
ray->time = sd->time;
ray->time = ccl_fetch(sd, time);
#endif
#ifdef __VOLUME__
@@ -181,12 +181,13 @@ ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg, RNG *rng,
#endif
#ifndef __SPLIT_KERNEL__
/* path tracing: connect path directly to position on a light and add it to L */
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, RNG *rng,
ShaderData *sd, float3 throughput, PathState *state, PathRadiance *L)
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, ccl_addr_space RNG *rng,
ShaderData *sd, float3 throughput, ccl_addr_space PathState *state, PathRadiance *L)
{
#ifdef __EMISSION__
if(!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)))
if(!(kernel_data.integrator.use_direct_light && (ccl_fetch(sd, flag) & SD_BSDF_HAS_EVAL)))
return;
/* sample illumination from lights to find path contribution */
@@ -199,11 +200,11 @@ ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, RNG
bool is_lamp;
#ifdef __OBJECT_MOTION__
light_ray.time = sd->time;
light_ray.time = ccl_fetch(sd, time);
#endif
LightSample ls;
light_sample(kg, light_t, light_u, light_v, sd->time, sd->P, state->bounce, &ls);
light_sample(kg, light_t, light_u, light_v, ccl_fetch(sd, time), ccl_fetch(sd, P), state->bounce, &ls);
if(direct_emission(kg, sd, &ls, &light_ray, &L_light, &is_lamp, state->bounce, state->transparent_bounce)) {
/* trace shadow ray */
@@ -216,13 +217,14 @@ ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg, RNG
}
#endif
}
#endif
/* path tracing: bounce off or through surface to with new direction stored in ray */
ccl_device_inline bool kernel_path_surface_bounce(KernelGlobals *kg, RNG *rng,
ShaderData *sd, float3 *throughput, PathState *state, PathRadiance *L, Ray *ray)
ccl_device_inline bool kernel_path_surface_bounce(KernelGlobals *kg, ccl_addr_space RNG *rng,
ShaderData *sd, ccl_addr_space float3 *throughput, ccl_addr_space PathState *state, PathRadiance *L, ccl_addr_space Ray *ray)
{
/* no BSDF? we can stop here */
if(sd->flag & SD_BSDF) {
if(ccl_fetch(sd, flag) & SD_BSDF) {
/* sample BSDF */
float bsdf_pdf;
BsdfEval bsdf_eval;
@@ -254,16 +256,16 @@ ccl_device_inline bool kernel_path_surface_bounce(KernelGlobals *kg, RNG *rng,
path_state_next(kg, state, label);
/* setup ray */
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
ray->P = ray_offset(ccl_fetch(sd, P), (label & LABEL_TRANSMIT)? -ccl_fetch(sd, Ng): ccl_fetch(sd, Ng));
ray->D = bsdf_omega_in;
if(state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
else
ray->t = FLT_MAX;
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dP = ccl_fetch(sd, dP);
ray->dD = bsdf_domega_in;
#endif
@@ -275,21 +277,21 @@ ccl_device_inline bool kernel_path_surface_bounce(KernelGlobals *kg, RNG *rng,
return true;
}
#ifdef __VOLUME__
else if(sd->flag & SD_HAS_ONLY_VOLUME) {
else if(ccl_fetch(sd, flag) & SD_HAS_ONLY_VOLUME) {
/* no surface shader but have a volume shader? act transparent */
/* update path state, count as transparent */
path_state_next(kg, state, LABEL_TRANSPARENT);
if(state->bounce == 0)
ray->t -= sd->ray_length; /* clipping works through transparent */
ray->t -= ccl_fetch(sd, ray_length); /* clipping works through transparent */
else
ray->t = FLT_MAX;
/* setup ray position, direction stays unchanged */
ray->P = ray_offset(sd->P, -sd->Ng);
ray->P = ray_offset(ccl_fetch(sd, P), -ccl_fetch(sd, Ng));
#ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dP = ccl_fetch(sd, dP);
#endif
/* enter/exit volume */