Cycles: OpenCL kernel split
This commit contains all the work related on the AMD megakernel split work which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely someone else which we're forgetting to mention. Currently only AMD cards are enabled for the new split kernel, but it is possible to force split opencl kernel to be used by setting the following environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1. Not all the features are supported yet, and that being said no motion blur, camera blur, SSS and volumetrics for now. Also transparent shadows are disabled on AMD device because of some compiler bug. This kernel is also only implements regular path tracing and supporting branched one will take a bit. Branched path tracing is exposed to the interface still, which is a bit misleading and will be hidden there soon. More feature will be enabled once they're ported to the split kernel and tested. Neither regular CPU nor CUDA has any difference, they're generating the same exact code, which means no regressions/improvements there. Based on the research paper: https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf Here's the documentation: https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit Design discussion of the patch: https://developer.blender.org/T44197 Differential Revision: https://developer.blender.org/D1200
This commit is contained in:

committed by
Sergey Sharybin

parent
f680c1b54a
commit
7f4479da42
@@ -31,9 +31,9 @@ ccl_device void svm_node_tex_coord(KernelGlobals *kg,
|
||||
|
||||
switch(type) {
|
||||
case NODE_TEXCO_OBJECT: {
|
||||
data = sd->P;
|
||||
data = ccl_fetch(sd, P);
|
||||
if(node.w == 0) {
|
||||
if(sd->object != OBJECT_NONE) {
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE) {
|
||||
object_inverse_position_transform(kg, sd, &data);
|
||||
}
|
||||
}
|
||||
@@ -48,48 +48,48 @@ ccl_device void svm_node_tex_coord(KernelGlobals *kg,
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_NORMAL: {
|
||||
data = sd->N;
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = ccl_fetch(sd, N);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
object_inverse_normal_transform(kg, sd, &data);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_CAMERA: {
|
||||
Transform tfm = kernel_data.cam.worldtocamera;
|
||||
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = transform_point(&tfm, sd->P);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P));
|
||||
else
|
||||
data = transform_point(&tfm, sd->P + camera_position(kg));
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P) + camera_position(kg));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_WINDOW: {
|
||||
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, sd->ray_P);
|
||||
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P));
|
||||
else
|
||||
data = camera_world_to_ndc(kg, sd, sd->P);
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P));
|
||||
data.z = 0.0f;
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_REFLECTION: {
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
|
||||
else
|
||||
data = sd->I;
|
||||
data = ccl_fetch(sd, I);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_GENERATED: {
|
||||
data = object_dupli_generated(kg, sd->object);
|
||||
data = object_dupli_generated(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_UV: {
|
||||
data = object_dupli_uv(kg, sd->object);
|
||||
data = object_dupli_uv(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_VOLUME_GENERATED: {
|
||||
data = sd->P;
|
||||
data = ccl_fetch(sd, P);
|
||||
|
||||
#ifdef __VOLUME__
|
||||
if(sd->object != OBJECT_NONE)
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = volume_normalized_position(kg, sd, data);
|
||||
#endif
|
||||
break;
|
||||
@@ -113,9 +113,9 @@ ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
|
||||
|
||||
switch(type) {
|
||||
case NODE_TEXCO_OBJECT: {
|
||||
data = sd->P + sd->dP.dx;
|
||||
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
|
||||
if(node.w == 0) {
|
||||
if(sd->object != OBJECT_NONE) {
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE) {
|
||||
object_inverse_position_transform(kg, sd, &data);
|
||||
}
|
||||
}
|
||||
@@ -130,48 +130,48 @@ ccl_device void svm_node_tex_coord_bump_dx(KernelGlobals *kg,
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_NORMAL: {
|
||||
data = sd->N;
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = ccl_fetch(sd, N);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
object_inverse_normal_transform(kg, sd, &data);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_CAMERA: {
|
||||
Transform tfm = kernel_data.cam.worldtocamera;
|
||||
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = transform_point(&tfm, sd->P + sd->dP.dx);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
|
||||
else
|
||||
data = transform_point(&tfm, sd->P + sd->dP.dx + camera_position(kg));
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx + camera_position(kg));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_WINDOW: {
|
||||
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx);
|
||||
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dx);
|
||||
else
|
||||
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx);
|
||||
data.z = 0.0f;
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_REFLECTION: {
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
|
||||
else
|
||||
data = sd->I;
|
||||
data = ccl_fetch(sd, I);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_GENERATED: {
|
||||
data = object_dupli_generated(kg, sd->object);
|
||||
data = object_dupli_generated(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_UV: {
|
||||
data = object_dupli_uv(kg, sd->object);
|
||||
data = object_dupli_uv(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_VOLUME_GENERATED: {
|
||||
data = sd->P + sd->dP.dx;
|
||||
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dx;
|
||||
|
||||
#ifdef __VOLUME__
|
||||
if(sd->object != OBJECT_NONE)
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = volume_normalized_position(kg, sd, data);
|
||||
#endif
|
||||
break;
|
||||
@@ -198,9 +198,9 @@ ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
|
||||
|
||||
switch(type) {
|
||||
case NODE_TEXCO_OBJECT: {
|
||||
data = sd->P + sd->dP.dy;
|
||||
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
|
||||
if(node.w == 0) {
|
||||
if(sd->object != OBJECT_NONE) {
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE) {
|
||||
object_inverse_position_transform(kg, sd, &data);
|
||||
}
|
||||
}
|
||||
@@ -215,48 +215,48 @@ ccl_device void svm_node_tex_coord_bump_dy(KernelGlobals *kg,
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_NORMAL: {
|
||||
data = sd->N;
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = ccl_fetch(sd, N);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
object_inverse_normal_transform(kg, sd, &data);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_CAMERA: {
|
||||
Transform tfm = kernel_data.cam.worldtocamera;
|
||||
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = transform_point(&tfm, sd->P + sd->dP.dy);
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
|
||||
else
|
||||
data = transform_point(&tfm, sd->P + sd->dP.dy + camera_position(kg));
|
||||
data = transform_point(&tfm, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy + camera_position(kg));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_WINDOW: {
|
||||
if((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy);
|
||||
if((path_flag & PATH_RAY_CAMERA) && ccl_fetch(sd, object) == OBJECT_NONE && kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, ray_P) + ccl_fetch(sd, ray_dP).dy);
|
||||
else
|
||||
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
|
||||
data = camera_world_to_ndc(kg, sd, ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy);
|
||||
data.z = 0.0f;
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_REFLECTION: {
|
||||
if(sd->object != OBJECT_NONE)
|
||||
data = 2.0f*dot(sd->N, sd->I)*sd->N - sd->I;
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = 2.0f*dot(ccl_fetch(sd, N), ccl_fetch(sd, I))*ccl_fetch(sd, N) - ccl_fetch(sd, I);
|
||||
else
|
||||
data = sd->I;
|
||||
data = ccl_fetch(sd, I);
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_GENERATED: {
|
||||
data = object_dupli_generated(kg, sd->object);
|
||||
data = object_dupli_generated(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_DUPLI_UV: {
|
||||
data = object_dupli_uv(kg, sd->object);
|
||||
data = object_dupli_uv(kg, ccl_fetch(sd, object));
|
||||
break;
|
||||
}
|
||||
case NODE_TEXCO_VOLUME_GENERATED: {
|
||||
data = sd->P + sd->dP.dy;
|
||||
data = ccl_fetch(sd, P) + ccl_fetch(sd, dP).dy;
|
||||
|
||||
#ifdef __VOLUME__
|
||||
if(sd->object != OBJECT_NONE)
|
||||
if(ccl_fetch(sd, object) != OBJECT_NONE)
|
||||
data = volume_normalized_position(kg, sd, data);
|
||||
#endif
|
||||
break;
|
||||
@@ -281,7 +281,7 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
|
||||
|
||||
if(space == NODE_NORMAL_MAP_TANGENT) {
|
||||
/* tangent space */
|
||||
if(sd->object == OBJECT_NONE) {
|
||||
if(ccl_fetch(sd, object) == OBJECT_NONE) {
|
||||
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
|
||||
return;
|
||||
}
|
||||
@@ -302,11 +302,11 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
|
||||
float sign = primitive_attribute_float(kg, sd, attr_sign_elem, attr_sign_offset, NULL, NULL);
|
||||
float3 normal;
|
||||
|
||||
if(sd->shader & SHADER_SMOOTH_NORMAL) {
|
||||
if(ccl_fetch(sd, shader) & SHADER_SMOOTH_NORMAL) {
|
||||
normal = primitive_attribute_float3(kg, sd, attr_normal_elem, attr_normal_offset, NULL, NULL);
|
||||
}
|
||||
else {
|
||||
normal = sd->Ng;
|
||||
normal = ccl_fetch(sd, Ng);
|
||||
object_inverse_normal_transform(kg, sd, &normal);
|
||||
}
|
||||
|
||||
@@ -337,7 +337,7 @@ ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *st
|
||||
|
||||
if(strength != 1.0f) {
|
||||
strength = max(strength, 0.0f);
|
||||
N = normalize(sd->N + (N - sd->N)*strength);
|
||||
N = normalize(ccl_fetch(sd, N) + (N - ccl_fetch(sd, N))*strength);
|
||||
}
|
||||
|
||||
stack_store_float3(stack, normal_offset, N);
|
||||
@@ -367,7 +367,7 @@ ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack
|
||||
float3 generated;
|
||||
|
||||
if(attr_offset == ATTR_STD_NOT_FOUND)
|
||||
generated = sd->P;
|
||||
generated = ccl_fetch(sd, P);
|
||||
else
|
||||
generated = primitive_attribute_float3(kg, sd, attr_elem, attr_offset, NULL, NULL);
|
||||
|
||||
@@ -380,7 +380,7 @@ ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack
|
||||
}
|
||||
|
||||
object_normal_transform(kg, sd, &tangent);
|
||||
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
|
||||
tangent = cross(ccl_fetch(sd, N), normalize(cross(tangent, ccl_fetch(sd, N))));
|
||||
stack_store_float3(stack, tangent_offset, tangent);
|
||||
}
|
||||
|
||||
|
Reference in New Issue
Block a user