== python api doc ==

First commit to make some structure in doc/ directory.

- moved source/blender/python/doc -> doc/python_api
- moved source/gameengine/PyDoc/*.rst -> doc/python_api/rst
- modified accordingly sphinx_doc_gen.py and sphinx_doc_gen.sh
  (later on I'll try alternative/ scripts by neXyon as promised :)
- source/gameengine/PyDoc/ is still there because contains epydoc stuff for the bge, will ask more and look into it later
This commit is contained in:
Luca Bonavita
2010-10-13 10:42:33 +00:00
parent d058a9c8c3
commit 996efebbe3
28 changed files with 1014 additions and 26 deletions

1807
doc/python_api/epy/BGL.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,189 @@
# Blender.Geometry module and its subtypes
"""
The Blender.Geometry submodule.
Geometry
========
(when accessing it from the Game Engine use Geometry instead of Blender.Geometry)
This new module provides access to a geometry function.
"""
def Intersect(vec1, vec2, vec3, ray, orig, clip=1):
"""
Return the intersection between a ray and a triangle, if possible, return None otherwise.
@type vec1: Vector object.
@param vec1: A 3d vector, one corner of the triangle.
@type vec2: Vector object.
@param vec2: A 3d vector, one corner of the triangle.
@type vec3: Vector object.
@param vec3: A 3d vector, one corner of the triangle.
@type ray: Vector object.
@param ray: A 3d vector, the orientation of the ray. the length of the ray is not used, only the direction.
@type orig: Vector object.
@param orig: A 3d vector, the origin of the ray.
@type clip: integer
@param clip: if 0, don't restrict the intersection to the area of the triangle, use the infinite plane defined by the triangle.
@rtype: Vector object
@return: The intersection between a ray and a triangle, if possible, None otherwise.
"""
def TriangleArea(vec1, vec2, vec3):
"""
Return the area size of the 2D or 3D triangle defined.
@type vec1: Vector object.
@param vec1: A 2d or 3d vector, one corner of the triangle.
@type vec2: Vector object.
@param vec2: A 2d or 3d vector, one corner of the triangle.
@type vec3: Vector object.
@param vec3: A 2d or 3d vector, one corner of the triangle.
@rtype: float
@return: The area size of the 2D or 3D triangle defined.
"""
def TriangleNormal(vec1, vec2, vec3):
"""
Return the normal of the 3D triangle defined.
@type vec1: Vector object.
@param vec1: A 3d vector, one corner of the triangle.
@type vec2: Vector object.
@param vec2: A 3d vector, one corner of the triangle.
@type vec3: Vector object.
@param vec3: A 3d vector, one corner of the triangle.
@rtype: float
@return: The normal of the 3D triangle defined.
"""
def QuadNormal(vec1, vec2, vec3, vec4):
"""
Return the normal of the 3D quad defined.
@type vec1: Vector object.
@param vec1: A 3d vector, the first vertex of the quad.
@type vec2: Vector object.
@param vec2: A 3d vector, the second vertex of the quad.
@type vec3: Vector object.
@param vec3: A 3d vector, the third vertex of the quad.
@type vec4: Vector object.
@param vec4: A 3d vector, the fourth vertex of the quad.
@rtype: float
@return: The normal of the 3D quad defined.
"""
def LineIntersect(vec1, vec2, vec3, vec4):
"""
Return a tuple with the points on each line respectively closest to the other
(when both lines intersect, both vector hold the same value).
The lines are evaluated as infinite lines in space, the values returned may not be between the 2 points given for each line.
@type vec1: Vector object.
@param vec1: A 3d vector, one point on the first line.
@type vec2: Vector object.
@param vec2: A 3d vector, another point on the first line.
@type vec3: Vector object.
@param vec3: A 3d vector, one point on the second line.
@type vec4: Vector object.
@param vec4: A 3d vector, another point on the second line.
@rtype: (Vector object, Vector object)
@return: A tuple with the points on each line respectively closest to the other.
"""
def PolyFill(polylines):
"""
Takes a list of polylines and calculates triangles that would fill in the polylines.
Multiple lines can be used to make holes inside a polyline, or fill in 2 separate lines at once.
@type polylines: List of lists containing vectors, each representing a closed polyline.
@rtype: list
@return: a list if tuples each a tuple of 3 ints representing a triangle indexing the points given.
@note: 2D Vectors will have an assumed Z axis of zero, 4D Vectors W axis is ignored.
@note: The order of points in a polyline effect the direction returned triangles face, reverse the order of a polyline to flip the normal of returned faces.
I{B{Example:}}
The example below creates 2 polylines and fills them in with faces, then makes a mesh in the current scene::
import Blender
Vector= Blender.mathutils.Vector
# Outline of 5 points
polyline1= [Vector(-2.0, 1.0, 1.0), Vector(-1.0, 2.0, 1.0), Vector(1.0, 2.0, 1.0), Vector(1.0, -1.0, 1.0), Vector(-1.0, -1.0, 1.0)]
polyline2= [Vector(-1, 1, 1.0), Vector(0, 1, 1.0), Vector(0, 0, 1.0), Vector(-1.0, 0.0, 1.0)]
fill= Blender.Geometry.PolyFill([polyline1, polyline2])
# Make a new mesh and add the truangles into it
me= Blender.Mesh.New()
me.verts.extend(polyline1)
me.verts.extend(polyline2)
me.faces.extend(fill) # Add the faces, they reference the verts in polyline 1 and 2
scn = Blender.Scene.GetCurrent()
ob = scn.objects.new(me)
Blender.Redraw()
"""
def LineIntersect2D(vec1, vec2, vec3, vec4):
"""
Takes 2 lines vec1, vec2 for the 2 points of the first line and vec2, vec3 for the 2 points of the second line.
@rtype: Vector
@return: a 2D Vector for the intersection or None where there is no intersection.
"""
def ClosestPointOnLine(pt, vec1, vec2):
"""
Takes 2 lines vec1, vec2 for the 2 points of the first line and vec2, vec3 for the 2 points of the second line.
@rtype: tuple
@return: a tuple containing a vector and a float, the vector is the closest point on the line, the float is the position on the line, between 0 and 1 the point is on the line.
"""
def PointInTriangle2D(pt, tri_pt1, tri_pt2, tri_pt3):
"""
Takes 4 vectors (one for the test point and 3 for the triangle)
This is a 2d function so only X and Y are used, Z and W will be ignored.
@rtype: int
@return: 1 for a clockwise intersection, -1 for counter clockwise intersection, 0 when there is no intersection.
"""
def PointInQuad2D(pt, quad_pt1, quad_pt2, quad_pt3):
"""
Takes 5 vectors (one for the test point and 5 for the quad)
This is a 2d function so only X and Y are used, Z and W will be ignored.
@rtype: int
@return: 1 for a clockwise intersection, -1 for counter clockwise intersection, 0 when there is no intersection.
"""
def BoxPack2D(boxlist):
"""
Takes a list of 2D boxes and packs them into a square.
Each box in boxlist must be a list of at least 4 items - [x,y,w,h], after running this script,
the X and Y values in each box will be moved to packed, non overlapping locations.
Example::
# Make 500 random boxes, pack them and make a mesh from it
from Blender import Geometry, Scene, Mesh
import random
boxes = []
for i in xrange(500):
boxes.append( [0,0, random.random()+0.1, random.random()+0.1] )
boxsize = Geometry.BoxPack2D(boxes)
print 'BoxSize', boxsize
me = Mesh.New()
for x in boxes:
me.verts.extend([(x[0],x[1], 0), (x[0],x[1]+x[3], 0), (x[0]+x[2],x[1]+x[3], 0), (x[0]+x[2],x[1], 0) ])
v1= me.verts[-1]
v2= me.verts[-2]
v3= me.verts[-3]
v4= me.verts[-4]
me.faces.extend([(v1,v2,v3,v4)])
scn = Scene.GetCurrent()
scn.objects.new(me)
@note: Each boxlist item can be longer then 4, the extra items are ignored and stay untouched.
@rtype: tuple
@return: a tuple pair - (width, height) of all the packed boxes.
"""
def BezierInterp(vec_knot_1, vec_handle_1, vec_handle_2, vec_knot_2, resolution):
"""
Takes 4 vectors representing a bezier curve and returns a list of vector points.
@note: any vector size is supported, the largest dimension from the input will be used for all returned vectors/
@rtype: list
@return: a list of vectors the size of resolution including the start and end points (vec_knot_1 and vec_knot_2)
"""

View File

@@ -0,0 +1,132 @@
class IDGroup:
"""
The IDGroup Type
================
This type supports both iteration and the []
operator to get child ID properties.
You can also add new properties using the [] operator.
For example::
group['a float!'] = 0.0
group['an int!'] = 0
group['a string!'] = "hi!"
group['an array!'] = [0, 0, 1.0, 0]
group['a subgroup!] = {"float": 0.0, "an int": 1.0, "an array": [1, 2],
"another subgroup": {"a": 0.0, "str": "bleh"}}
Note that for arrays, the array type defaults to int unless a float is found
while scanning the template list; if any floats are found, then the whole
array is float. Note that double-precision floating point numbers are used for
python-created float ID properties and arrays (though the internal C api does
support single-precision floats, and the python code will read them).
You can also delete properties with the del operator. For example:
del group['property']
To get the type of a property, use the type() operator, for example::
if type(group['bleh']) == str: pass
To tell if the property is a group or array type, import the Blender.Types module and test
against IDGroupType and IDArrayType, like so::
from Blender.Types import IDGroupType, IDArrayType.
if type(group['bleghr']) == IDGroupType:
(do something)
@ivar name: The name of the property
@type name: string
"""
def pop(item):
"""
Pop an item from the group property.
@type item: string
@param item: The item name.
@rtype: can be dict, list, int, float or string.
@return: The removed property.
"""
def update(updatedict):
"""
Updates items in the dict, similar to normal python
dictionary method .update().
@type updatedict: dict
@param updatedict: A dict of simple types to derive updated/new IDProperties from.
@rtype: None
@return: None
"""
def keys():
"""
Returns a list of the keys in this property group.
@rtype: list of strings.
@return: a list of the keys in this property group.
"""
def values():
"""
Returns a list of the values in this property group.
Note that unless a value is itself a property group or an array, you
cannot change it by changing the values in this list, you must change them
in the parent property group.
For example,
group['some_property'] = new_value
. . .is correct, while,
values = group.values()
values[0] = new_value
. . .is wrong.
@rtype: list of strings.
@return: a list of the values in this property group.
"""
def iteritems():
"""
Implements the python dictionary iteritmes method.
For example::
for k, v in group.iteritems():
print "Property name: " + k
print "Property value: " + str(v)
@rtype: an iterator that spits out items of the form [key, value]
@return: an iterator.
"""
def convert_to_pyobject():
"""
Converts the entire property group to a purely python form.
@rtype: dict
@return: A python dictionary representing the property group
"""
class IDArray:
"""
The IDArray Type
================
@ivar type: returns the type of the array, can be either IDP_Int or IDP_Float
"""
def __getitem__(index):
pass
def __setitem__(index, value):
pass
def __len__():
pass

View File

@@ -0,0 +1,156 @@
# Blender.mathutils module and its subtypes
class Vector:
"""
@attention: Vector data can be wrapped or non-wrapped. When a object is wrapped it
means that the object will give you direct access to the data inside of blender. Modification
of this object will directly change the data inside of blender. To copy a wrapped object
you need to use the object's constructor. If you copy and object by assignment you will not get
a second copy but a second reference to the same data. Only certain functions will return
wrapped data. This will be indicated in the method description.
"""
def __init__(list = None):
"""
Create a new 2d, 3d, or 4d Vector object from a list of floating point numbers.
@note: that python uses higher precission floating point numbers, so values assigned to a vector may have some rounding error.
Example::
v = Vector(1,0,0)
v = Vector(myVec)
v = Vector(list)
@type list: PyList of float or int
@param list: The list of values for the Vector object. Can be a sequence or raw numbers.
Must be 2, 3, or 4 values. The list is mapped to the parameters as [x,y,z,w].
@rtype: Vector object.
@return: It depends wheter a parameter was passed:
- (list): Vector object initialized with the given values;
- (): An empty 3 dimensional vector.
"""
class Euler:
"""
The Euler object
================
This object gives access to Eulers in Blender.
@note: You can access a euler object like a sequence
- x = euler[0]
@note: Comparison operators can be done:
- ==, != test numeric values within epsilon
@attention: Euler data can be wrapped or non-wrapped. When a object is wrapped it
means that the object will give you direct access to the data inside of blender. Modification
of this object will directly change the data inside of blender. To copy a wrapped object
you need to use the object's constructor. If you copy and object by assignment you will not get
a second copy but a second reference to the same data. Only certain functions will return
wrapped data. This will be indicated in the method description.
"""
def __init__(list = None):
"""
Create a new euler object.
Example::
euler = Euler(45,0,0)
euler = Euler(myEuler)
euler = Euler(sequence)
@type list: PyList of float/int
@param list: 3d list to initialize euler
@rtype: Euler object
@return: Euler representing heading, pitch, bank.
@note: Values are in degrees.
"""
class Quaternion:
"""
The Quaternion object
=====================
This object gives access to Quaternions in Blender.
@note: Comparison operators can be done:
- ==, != test numeric values within epsilon
@note: Math can be performed on Quaternion classes
- quat + quat
- quat - quat
- quat * float/int
- quat * vec
- quat * quat
@note: You can access a quaternion object like a sequence
- x = quat[0]
@attention: Quaternion data can be wrapped or non-wrapped. When a object is wrapped it
means that the object will give you direct access to the data inside of blender. Modification
of this object will directly change the data inside of blender. To copy a wrapped object
you need to use the object's constructor. If you copy and object by assignment you will not get
a second copy but a second reference to the same data. Only certain functions will return
wrapped data. This will be indicated in the method description.
"""
def __init__(list, angle = None):
"""
Create a new quaternion object from initialized values.
Example::
quat = Quaternion(1,2,3,4)
quat = Quaternion(axis, angle)
quat = Quaternion()
quat = Quaternion(180, list)
@type list: PyList of int/float
@param list: A 3d or 4d list to initialize quaternion.
4d if intializing [w,x,y,z], 3d if used as an axis of rotation.
@type angle: float (optional)
@param angle: An arbitrary rotation amount around 'list'.
List is used as an axis of rotation in this case.
@rtype: New quaternion object.
@return: It depends wheter a parameter was passed:
- (list/angle): Quaternion object initialized with the given values;
- (): An identity 4 dimensional quaternion.
"""
class Matrix:
"""
The Matrix Object
=================
@note: Math can be performed on Matrix classes
- mat + mat
- mat - mat
- mat * float/int
- mat * vec
- mat * mat
@note: Comparison operators can be done:
- ==, != test numeric values within epsilon
@note: You can access a quaternion object like a 2d sequence
- x = matrix[0][1]
- vector = matrix[2]
@attention: Quaternion data can be wrapped or non-wrapped. When a object is wrapped it
means that the object will give you direct access to the data inside of blender. Modification
of this object will directly change the data inside of blender. To copy a wrapped object
you need to use the object's constructor. If you copy and object by assignment you will not get
a second copy but a second reference to the same data. Only certain functions will return
wrapped data. This will be indicated in the method description.
"""
def __init__(list1 = None, list2 = None, list3 = None, list4 = None):
"""
Create a new matrix object from initialized values.
Example::
matrix = Matrix([1,1,1],[0,1,0],[1,0,0])
matrix = Matrix(mat)
matrix = Matrix(seq1, seq2, vector)
@type list1: PyList of int/float
@param list1: A 2d,3d or 4d list.
@type list2: PyList of int/float
@param list2: A 2d,3d or 4d list.
@type list3: PyList of int/float
@param list3: A 2d,3d or 4d list.
@type list4: PyList of int/float
@param list4: A 2d,3d or 4d list.
@rtype: New matrix object.
@return: It depends wheter a parameter was passed:
- (list1, etc.): Matrix object initialized with the given values;
- (): An empty 3 dimensional matrix.
"""

View File

@@ -0,0 +1,45 @@
# Testing the BGL module
import Blender
from Blender.BGL import *
from Blender import Draw
R = G = B = 0
A = 1
instructions = "Hold mouse buttons to change the background color."
quitting = " Press ESC or q to quit."
def show_win():
glClearColor(R,G,B,A) # define color used to clear buffers
glClear(GL_COLOR_BUFFER_BIT) # use it to clear the color buffer
glColor3f(1,1,1) # change default color
glRasterPos2i(50,100) # move cursor to x = 50, y = 100
Draw.Text("Testing BGL + Draw") # draw this text there
glRasterPos2i(350,20) # move cursor again
Draw.Text(instructions + quitting) # draw another msg
glBegin(GL_LINE_LOOP) # begin a vertex-data list
glVertex2i(46,92)
glVertex2i(120,92)
glVertex2i(120,115)
glVertex2i(46,115)
glEnd() # close this list
glColor3f(0.35,0.18,0.92) # change default color again
glBegin(GL_POLYGON) # another list, for a polygon
glVertex2i(315, 292)
glVertex2i(412, 200)
glVertex2i(264, 256)
glEnd()
Draw.Redraw(1) # make changes visible.
def ev(evt, val): # this is a callback for Draw.Register()
global R,G,B,A # it handles input events
if evt == Draw.ESCKEY or evt == Draw.QKEY:
Draw.Exit() # this quits the script
elif evt == Draw.LEFTMOUSE: R = 1 - R
elif evt == Draw.MIDDLEMOUSE: G = 1 - G
elif evt == Draw.RIGHTMOUSE: B = 1 - B
else:
Draw.Register(show_win, ev, None)
Draw.Register(show_win, ev, None) # start the main loop