Fluid: Cleanup naming for emmission bounding box

Since the bounding boxes are now also being used for effector objects, there needs to be a better name for them. Instead of calling them EmissionMap, which caters only to emission objects, they will now be called FluidObjectBB.
This commit is contained in:
Sebastián Barschkis
2020-03-06 11:03:21 +01:00
parent 2e7cfb86fe
commit abd33a3c0c

View File

@@ -650,7 +650,7 @@ static bool is_static_object(Object *ob)
/** \name Bounding Box /** \name Bounding Box
* \{ */ * \{ */
typedef struct EmissionMap { typedef struct FluidObjectBB {
float *influence; float *influence;
float *velocity; float *velocity;
float *distances; float *distances;
@@ -658,95 +658,98 @@ typedef struct EmissionMap {
int min[3], max[3], res[3]; int min[3], max[3], res[3];
int hmin[3], hmax[3], hres[3]; int hmin[3], hmax[3], hres[3];
int total_cells, valid; int total_cells, valid;
} EmissionMap; } FluidObjectBB;
static void em_boundInsert(EmissionMap *em, float point[3]) static void bb_boundInsert(FluidObjectBB *bb, float point[3])
{ {
int i = 0; int i = 0;
if (!em->valid) { if (!bb->valid) {
for (; i < 3; i++) { for (; i < 3; i++) {
em->min[i] = (int)floor(point[i]); bb->min[i] = (int)floor(point[i]);
em->max[i] = (int)ceil(point[i]); bb->max[i] = (int)ceil(point[i]);
} }
em->valid = 1; bb->valid = 1;
} }
else { else {
for (; i < 3; i++) { for (; i < 3; i++) {
if (point[i] < em->min[i]) { if (point[i] < bb->min[i]) {
em->min[i] = (int)floor(point[i]); bb->min[i] = (int)floor(point[i]);
} }
if (point[i] > em->max[i]) { if (point[i] > bb->max[i]) {
em->max[i] = (int)ceil(point[i]); bb->max[i] = (int)ceil(point[i]);
} }
} }
} }
} }
static void em_allocateData(EmissionMap *em, bool use_velocity, bool use_influence) static void bb_allocateData(FluidObjectBB *bb, bool use_velocity, bool use_influence)
{ {
int i, res[3]; int i, res[3];
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
res[i] = em->max[i] - em->min[i]; res[i] = bb->max[i] - bb->min[i];
if (res[i] <= 0) { if (res[i] <= 0) {
return; return;
} }
} }
em->total_cells = res[0] * res[1] * res[2]; bb->total_cells = res[0] * res[1] * res[2];
copy_v3_v3_int(em->res, res); copy_v3_v3_int(bb->res, res);
em->numobjs = MEM_calloc_arrayN(em->total_cells, sizeof(float), "fluid_bb_numobjs"); bb->numobjs = MEM_calloc_arrayN(bb->total_cells, sizeof(float), "fluid_bb_numobjs");
if (use_influence) { if (use_influence) {
em->influence = MEM_calloc_arrayN(em->total_cells, sizeof(float), "fluid_bb_influence"); bb->influence = MEM_calloc_arrayN(bb->total_cells, sizeof(float), "fluid_bb_influence");
} }
if (use_velocity) { if (use_velocity) {
em->velocity = MEM_calloc_arrayN(em->total_cells * 3, sizeof(float), "fluid_bb_velocity"); bb->velocity = MEM_calloc_arrayN(bb->total_cells * 3, sizeof(float), "fluid_bb_velocity");
} }
em->distances = MEM_malloc_arrayN(em->total_cells, sizeof(float), "fluid_bb_distances"); bb->distances = MEM_malloc_arrayN(bb->total_cells, sizeof(float), "fluid_bb_distances");
/* Initialize to infinity. */ /* Initialize to infinity. */
memset(em->distances, 0x7f7f7f7f, sizeof(float) * em->total_cells); memset(bb->distances, 0x7f7f7f7f, sizeof(float) * bb->total_cells);
em->valid = true; bb->valid = true;
} }
static void em_freeData(EmissionMap *em) static void bb_freeData(FluidObjectBB *bb)
{ {
if (em->numobjs) { if (bb->numobjs) {
MEM_freeN(em->numobjs); MEM_freeN(bb->numobjs);
} }
if (em->influence) { if (bb->influence) {
MEM_freeN(em->influence); MEM_freeN(bb->influence);
} }
if (em->velocity) { if (bb->velocity) {
MEM_freeN(em->velocity); MEM_freeN(bb->velocity);
} }
if (em->distances) { if (bb->distances) {
MEM_freeN(em->distances); MEM_freeN(bb->distances);
} }
} }
static void em_combineMaps(EmissionMap *output, EmissionMap *em2, int additive, float sample_size) static void bb_combineMaps(FluidObjectBB *output,
FluidObjectBB *bb2,
int additive,
float sample_size)
{ {
int i, x, y, z; int i, x, y, z;
/* Copyfill input 1 struct and clear output for new allocation. */ /* Copyfill input 1 struct and clear output for new allocation. */
EmissionMap em1; FluidObjectBB bb1;
memcpy(&em1, output, sizeof(EmissionMap)); memcpy(&bb1, output, sizeof(FluidObjectBB));
memset(output, 0, sizeof(EmissionMap)); memset(output, 0, sizeof(FluidObjectBB));
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
if (em1.valid) { if (bb1.valid) {
output->min[i] = MIN2(em1.min[i], em2->min[i]); output->min[i] = MIN2(bb1.min[i], bb2->min[i]);
output->max[i] = MAX2(em1.max[i], em2->max[i]); output->max[i] = MAX2(bb1.max[i], bb2->max[i]);
} }
else { else {
output->min[i] = em2->min[i]; output->min[i] = bb2->min[i];
output->max[i] = em2->max[i]; output->max[i] = bb2->max[i];
} }
} }
/* Allocate output map. */ /* Allocate output map. */
em_allocateData(output, (em1.velocity || em2->velocity), (em1.influence || em2->influence)); bb_allocateData(output, (bb1.velocity || bb2->velocity), (bb1.influence || bb2->influence));
/* Low through bounding box */ /* Low through bounding box */
for (x = output->min[0]; x < output->max[0]; x++) { for (x = output->min[0]; x < output->max[0]; x++) {
@@ -759,45 +762,45 @@ static void em_combineMaps(EmissionMap *output, EmissionMap *em2, int additive,
z - output->min[2]); z - output->min[2]);
/* Initialize with first input if in range. */ /* Initialize with first input if in range. */
if (x >= em1.min[0] && x < em1.max[0] && y >= em1.min[1] && y < em1.max[1] && if (x >= bb1.min[0] && x < bb1.max[0] && y >= bb1.min[1] && y < bb1.max[1] &&
z >= em1.min[2] && z < em1.max[2]) { z >= bb1.min[2] && z < bb1.max[2]) {
int index_in = manta_get_index( int index_in = manta_get_index(
x - em1.min[0], em1.res[0], y - em1.min[1], em1.res[1], z - em1.min[2]); x - bb1.min[0], bb1.res[0], y - bb1.min[1], bb1.res[1], z - bb1.min[2]);
/* Values. */ /* Values. */
output->numobjs[index_out] = em1.numobjs[index_in]; output->numobjs[index_out] = bb1.numobjs[index_in];
output->influence[index_out] = em1.influence[index_in]; output->influence[index_out] = bb1.influence[index_in];
output->distances[index_out] = em1.distances[index_in]; output->distances[index_out] = bb1.distances[index_in];
if (output->velocity && em1.velocity) { if (output->velocity && bb1.velocity) {
copy_v3_v3(&output->velocity[index_out * 3], &em1.velocity[index_in * 3]); copy_v3_v3(&output->velocity[index_out * 3], &bb1.velocity[index_in * 3]);
} }
} }
/* Apply second input if in range. */ /* Apply second input if in range. */
if (x >= em2->min[0] && x < em2->max[0] && y >= em2->min[1] && y < em2->max[1] && if (x >= bb2->min[0] && x < bb2->max[0] && y >= bb2->min[1] && y < bb2->max[1] &&
z >= em2->min[2] && z < em2->max[2]) { z >= bb2->min[2] && z < bb2->max[2]) {
int index_in = manta_get_index( int index_in = manta_get_index(
x - em2->min[0], em2->res[0], y - em2->min[1], em2->res[1], z - em2->min[2]); x - bb2->min[0], bb2->res[0], y - bb2->min[1], bb2->res[1], z - bb2->min[2]);
/* Values. */ /* Values. */
output->numobjs[index_out] = MAX2(em2->numobjs[index_in], output->numobjs[index_out]); output->numobjs[index_out] = MAX2(bb2->numobjs[index_in], output->numobjs[index_out]);
if (additive) { if (additive) {
output->influence[index_out] += em2->influence[index_in] * sample_size; output->influence[index_out] += bb2->influence[index_in] * sample_size;
} }
else { else {
output->influence[index_out] = MAX2(em2->influence[index_in], output->influence[index_out] = MAX2(bb2->influence[index_in],
output->influence[index_out]); output->influence[index_out]);
} }
output->distances[index_out] = MIN2(em2->distances[index_in], output->distances[index_out] = MIN2(bb2->distances[index_in],
output->distances[index_out]); output->distances[index_out]);
if (output->velocity && em2->velocity) { if (output->velocity && bb2->velocity) {
/* Last sample replaces the velocity. */ /* Last sample replaces the velocity. */
output->velocity[index_out * 3] = ADD_IF_LOWER(output->velocity[index_out * 3], output->velocity[index_out * 3] = ADD_IF_LOWER(output->velocity[index_out * 3],
em2->velocity[index_in * 3]); bb2->velocity[index_in * 3]);
output->velocity[index_out * 3 + 1] = ADD_IF_LOWER(output->velocity[index_out * 3 + 1], output->velocity[index_out * 3 + 1] = ADD_IF_LOWER(output->velocity[index_out * 3 + 1],
em2->velocity[index_in * 3 + 1]); bb2->velocity[index_in * 3 + 1]);
output->velocity[index_out * 3 + 2] = ADD_IF_LOWER(output->velocity[index_out * 3 + 2], output->velocity[index_out * 3 + 2] = ADD_IF_LOWER(output->velocity[index_out * 3 + 2],
em2->velocity[index_in * 3 + 2]); bb2->velocity[index_in * 3 + 2]);
} }
} }
} /* Low res loop. */ } /* Low res loop. */
@@ -805,7 +808,7 @@ static void em_combineMaps(EmissionMap *output, EmissionMap *em2, int additive,
} }
/* Free original data. */ /* Free original data. */
em_freeData(&em1); bb_freeData(&bb1);
} }
/** \} */ /** \} */
@@ -940,7 +943,7 @@ typedef struct ObstaclesFromDMData {
const MLoopTri *mlooptri; const MLoopTri *mlooptri;
BVHTreeFromMesh *tree; BVHTreeFromMesh *tree;
EmissionMap *om; FluidObjectBB *bb;
bool has_velocity; bool has_velocity;
float *vert_vel; float *vert_vel;
@@ -952,29 +955,29 @@ static void obstacles_from_mesh_task_cb(void *__restrict userdata,
const TaskParallelTLS *__restrict UNUSED(tls)) const TaskParallelTLS *__restrict UNUSED(tls))
{ {
ObstaclesFromDMData *data = userdata; ObstaclesFromDMData *data = userdata;
EmissionMap *om = data->om; FluidObjectBB *bb = data->bb;
for (int x = data->min[0]; x < data->max[0]; x++) { for (int x = data->min[0]; x < data->max[0]; x++) {
for (int y = data->min[1]; y < data->max[1]; y++) { for (int y = data->min[1]; y < data->max[1]; y++) {
const int index = manta_get_index( const int index = manta_get_index(
x - om->min[0], om->res[0], y - om->min[1], om->res[1], z - om->min[2]); x - bb->min[0], bb->res[0], y - bb->min[1], bb->res[1], z - bb->min[2]);
float ray_start[3] = {(float)x + 0.5f, (float)y + 0.5f, (float)z + 0.5f}; float ray_start[3] = {(float)x + 0.5f, (float)y + 0.5f, (float)z + 0.5f};
/* Calculate object velocities. Result in om->velocity. */ /* Calculate object velocities. Result in bb->velocity. */
sample_effector(data->mes, sample_effector(data->mes,
data->mvert, data->mvert,
data->mloop, data->mloop,
data->mlooptri, data->mlooptri,
om->velocity, bb->velocity,
index, index,
data->tree, data->tree,
ray_start, ray_start,
data->vert_vel, data->vert_vel,
data->has_velocity); data->has_velocity);
/* Calculate levelset values from meshes. Result in om->distances. */ /* Calculate levelset values from meshes. Result in bb->distances. */
update_distances(index, update_distances(index,
om->distances, bb->distances,
data->tree, data->tree,
ray_start, ray_start,
data->mes->surface_distance, data->mes->surface_distance,
@@ -982,8 +985,8 @@ static void obstacles_from_mesh_task_cb(void *__restrict userdata,
/* Ensure that num objects are also counted inside object. /* Ensure that num objects are also counted inside object.
* But don't count twice (see object inc for nearest point). */ * But don't count twice (see object inc for nearest point). */
if (om->distances[index] < 0) { if (bb->distances[index] < 0) {
om->numobjs[index]++; bb->numobjs[index]++;
} }
} }
} }
@@ -992,7 +995,7 @@ static void obstacles_from_mesh_task_cb(void *__restrict userdata,
static void obstacles_from_mesh(Object *coll_ob, static void obstacles_from_mesh(Object *coll_ob,
FluidDomainSettings *mds, FluidDomainSettings *mds,
FluidEffectorSettings *mes, FluidEffectorSettings *mes,
EmissionMap *em, FluidObjectBB *bb,
float dt) float dt)
{ {
if (mes->mesh) { if (mes->mesh) {
@@ -1064,20 +1067,20 @@ static void obstacles_from_mesh(Object *coll_ob,
copy_v3_v3(&mes->verts_old[i * 3], co); copy_v3_v3(&mes->verts_old[i * 3], co);
/* Calculate emission map bounds. */ /* Calculate emission map bounds. */
em_boundInsert(em, mvert[i].co); bb_boundInsert(bb, mvert[i].co);
} }
/* Set emission map. /* Set emission map.
* Use 3 cell diagonals as margin (3 * 1.732 = 5.196). */ * Use 3 cell diagonals as margin (3 * 1.732 = 5.196). */
int bounds_margin = (int)ceil(5.196); int bounds_margin = (int)ceil(5.196);
clamp_bounds_in_domain(mds, em->min, em->max, NULL, NULL, bounds_margin, dt); clamp_bounds_in_domain(mds, bb->min, bb->max, NULL, NULL, bounds_margin, dt);
em_allocateData(em, true, false); bb_allocateData(bb, true, false);
/* Setup loop bounds. */ /* Setup loop bounds. */
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
min[i] = em->min[i]; min[i] = bb->min[i];
max[i] = em->max[i]; max[i] = bb->max[i];
res[i] = em->res[i]; res[i] = bb->res[i];
} }
if (BKE_bvhtree_from_mesh_get(&tree_data, me, BVHTREE_FROM_LOOPTRI, 4)) { if (BKE_bvhtree_from_mesh_get(&tree_data, me, BVHTREE_FROM_LOOPTRI, 4)) {
@@ -1088,7 +1091,7 @@ static void obstacles_from_mesh(Object *coll_ob,
.mloop = mloop, .mloop = mloop,
.mlooptri = looptri, .mlooptri = looptri,
.tree = &tree_data, .tree = &tree_data,
.om = em, .bb = bb,
.has_velocity = has_velocity, .has_velocity = has_velocity,
.vert_vel = vert_vel, .vert_vel = vert_vel,
.min = min, .min = min,
@@ -1168,7 +1171,7 @@ static void update_obstacles(Depsgraph *depsgraph,
int frame, int frame,
float dt) float dt)
{ {
EmissionMap *emaps = NULL; FluidObjectBB *bb_maps = NULL;
Object **effecobjs = NULL; Object **effecobjs = NULL;
uint numeffecobjs = 0, effec_index = 0; uint numeffecobjs = 0, effec_index = 0;
bool is_first_frame = (frame == mds->cache_frame_start); bool is_first_frame = (frame == mds->cache_frame_start);
@@ -1180,7 +1183,7 @@ static void update_obstacles(Depsgraph *depsgraph,
update_obstacleflags(mds, effecobjs, numeffecobjs); update_obstacleflags(mds, effecobjs, numeffecobjs);
/* Initialize effector maps for each flow. */ /* Initialize effector maps for each flow. */
emaps = MEM_callocN(sizeof(struct EmissionMap) * numeffecobjs, "fluid_bb_maps"); bb_maps = MEM_callocN(sizeof(struct FluidObjectBB) * numeffecobjs, "fluid_effector_bb_maps");
/* Prepare effector maps. */ /* Prepare effector maps. */
for (effec_index = 0; effec_index < numeffecobjs; effec_index++) { for (effec_index = 0; effec_index < numeffecobjs; effec_index++) {
@@ -1197,7 +1200,7 @@ static void update_obstacles(Depsgraph *depsgraph,
if ((mmd2->type & MOD_FLUID_TYPE_EFFEC) && mmd2->effector) { if ((mmd2->type & MOD_FLUID_TYPE_EFFEC) && mmd2->effector) {
FluidEffectorSettings *mes = mmd2->effector; FluidEffectorSettings *mes = mmd2->effector;
int subframes = mes->subframes; int subframes = mes->subframes;
EmissionMap *em = &emaps[effec_index]; FluidObjectBB *bb = &bb_maps[effec_index];
bool is_static = is_static_object(effecobj); bool is_static = is_static_object(effecobj);
/* Cannot use static mode with adaptive domain. /* Cannot use static mode with adaptive domain.
@@ -1238,7 +1241,7 @@ static void update_obstacles(Depsgraph *depsgraph,
for (subframe = subframes; subframe >= 0; subframe--) { for (subframe = subframes; subframe >= 0; subframe--) {
/* Temporary emission map used when subframes are enabled, i.e. at least one subframe. */ /* Temporary emission map used when subframes are enabled, i.e. at least one subframe. */
EmissionMap em_temp = {NULL}; FluidObjectBB bb_temp = {NULL};
/* Set scene time */ /* Set scene time */
/* Handle emission subframe */ /* Handle emission subframe */
@@ -1284,18 +1287,18 @@ static void update_obstacles(Depsgraph *depsgraph,
depsgraph, scene, effecobj, true, 5, BKE_scene_frame_get(scene), eModifierType_Fluid); depsgraph, scene, effecobj, true, 5, BKE_scene_frame_get(scene), eModifierType_Fluid);
if (subframes) { if (subframes) {
obstacles_from_mesh(effecobj, mds, mes, &em_temp, subframe_dt); obstacles_from_mesh(effecobj, mds, mes, &bb_temp, subframe_dt);
} }
else { else {
obstacles_from_mesh(effecobj, mds, mes, em, subframe_dt); obstacles_from_mesh(effecobj, mds, mes, bb, subframe_dt);
} }
/* If this we emitted with temp emission map in this loop (subframe emission), we combine /* If this we emitted with temp emission map in this loop (subframe emission), we combine
* the temp map with the original emission map. */ * the temp map with the original emission map. */
if (subframes) { if (subframes) {
/* Combine emission maps. */ /* Combine emission maps. */
em_combineMaps(em, &em_temp, 0, 0.0f); bb_combineMaps(bb, &bb_temp, 0, 0.0f);
em_freeData(&em_temp); bb_freeData(&bb_temp);
} }
} }
} }
@@ -1382,23 +1385,23 @@ static void update_obstacles(Depsgraph *depsgraph,
continue; continue;
} }
EmissionMap *em = &emaps[effec_index]; FluidObjectBB *bb = &bb_maps[effec_index];
float *velocity_map = em->velocity; float *velocity_map = bb->velocity;
float *numobjs_map = em->numobjs; float *numobjs_map = bb->numobjs;
float *distance_map = em->distances; float *distance_map = bb->distances;
int gx, gy, gz, ex, ey, ez, dx, dy, dz; int gx, gy, gz, ex, ey, ez, dx, dy, dz;
size_t e_index, d_index; size_t e_index, d_index;
/* Loop through every emission map cell. */ /* Loop through every emission map cell. */
for (gx = em->min[0]; gx < em->max[0]; gx++) { for (gx = bb->min[0]; gx < bb->max[0]; gx++) {
for (gy = em->min[1]; gy < em->max[1]; gy++) { for (gy = bb->min[1]; gy < bb->max[1]; gy++) {
for (gz = em->min[2]; gz < em->max[2]; gz++) { for (gz = bb->min[2]; gz < bb->max[2]; gz++) {
/* Compute emission map index. */ /* Compute emission map index. */
ex = gx - em->min[0]; ex = gx - bb->min[0];
ey = gy - em->min[1]; ey = gy - bb->min[1];
ez = gz - em->min[2]; ez = gz - bb->min[2];
e_index = manta_get_index(ex, em->res[0], ey, em->res[1], ez); e_index = manta_get_index(ex, bb->res[0], ey, bb->res[1], ez);
/* Get domain index. */ /* Get domain index. */
dx = gx - mds->res_min[0]; dx = gx - mds->res_min[0];
@@ -1462,13 +1465,13 @@ static void update_obstacles(Depsgraph *depsgraph,
} }
} }
} /* End of effector map loop. */ } /* End of effector map loop. */
em_freeData(em); bb_freeData(bb);
} /* End of effector object loop. */ } /* End of effector object loop. */
} }
BKE_collision_objects_free(effecobjs); BKE_collision_objects_free(effecobjs);
if (emaps) { if (bb_maps) {
MEM_freeN(emaps); MEM_freeN(bb_maps);
} }
} }
@@ -1482,7 +1485,7 @@ typedef struct EmitFromParticlesData {
FluidFlowSettings *mfs; FluidFlowSettings *mfs;
KDTree_3d *tree; KDTree_3d *tree;
EmissionMap *em; FluidObjectBB *bb;
float *particle_vel; float *particle_vel;
int *min, *max, *res; int *min, *max, *res;
@@ -1496,12 +1499,12 @@ static void emit_from_particles_task_cb(void *__restrict userdata,
{ {
EmitFromParticlesData *data = userdata; EmitFromParticlesData *data = userdata;
FluidFlowSettings *mfs = data->mfs; FluidFlowSettings *mfs = data->mfs;
EmissionMap *em = data->em; FluidObjectBB *bb = data->bb;
for (int x = data->min[0]; x < data->max[0]; x++) { for (int x = data->min[0]; x < data->max[0]; x++) {
for (int y = data->min[1]; y < data->max[1]; y++) { for (int y = data->min[1]; y < data->max[1]; y++) {
const int index = manta_get_index( const int index = manta_get_index(
x - em->min[0], em->res[0], y - em->min[1], em->res[1], z - em->min[2]); x - bb->min[0], bb->res[0], y - bb->min[1], bb->res[1], z - bb->min[2]);
const float ray_start[3] = {((float)x) + 0.5f, ((float)y) + 0.5f, ((float)z) + 0.5f}; const float ray_start[3] = {((float)x) + 0.5f, ((float)y) + 0.5f, ((float)z) + 0.5f};
/* Find particle distance from the kdtree. */ /* Find particle distance from the kdtree. */
@@ -1510,13 +1513,13 @@ static void emit_from_particles_task_cb(void *__restrict userdata,
BLI_kdtree_3d_find_nearest(data->tree, ray_start, &nearest); BLI_kdtree_3d_find_nearest(data->tree, ray_start, &nearest);
if (nearest.dist < range) { if (nearest.dist < range) {
em->influence[index] = (nearest.dist < data->solid) ? bb->influence[index] = (nearest.dist < data->solid) ?
1.0f : 1.0f :
(1.0f - (nearest.dist - data->solid) / data->smooth); (1.0f - (nearest.dist - data->solid) / data->smooth);
/* Uses particle velocity as initial velocity for smoke. */ /* Uses particle velocity as initial velocity for smoke. */
if (mfs->flags & FLUID_FLOW_INITVELOCITY && (mfs->psys->part->phystype != PART_PHYS_NO)) { if (mfs->flags & FLUID_FLOW_INITVELOCITY && (mfs->psys->part->phystype != PART_PHYS_NO)) {
madd_v3_v3fl( madd_v3_v3fl(
&em->velocity[index * 3], &data->particle_vel[nearest.index * 3], mfs->vel_multi); &bb->velocity[index * 3], &data->particle_vel[nearest.index * 3], mfs->vel_multi);
} }
} }
} }
@@ -1526,7 +1529,7 @@ static void emit_from_particles_task_cb(void *__restrict userdata,
static void emit_from_particles(Object *flow_ob, static void emit_from_particles(Object *flow_ob,
FluidDomainSettings *mds, FluidDomainSettings *mds,
FluidFlowSettings *mfs, FluidFlowSettings *mfs,
EmissionMap *em, FluidObjectBB *bb,
Depsgraph *depsgraph, Depsgraph *depsgraph,
Scene *scene, Scene *scene,
float dt) float dt)
@@ -1623,13 +1626,13 @@ static void emit_from_particles(Object *flow_ob,
} }
/* calculate emission map bounds */ /* calculate emission map bounds */
em_boundInsert(em, pos); bb_boundInsert(bb, pos);
valid_particles++; valid_particles++;
} }
/* set emission map */ /* set emission map */
clamp_bounds_in_domain(mds, em->min, em->max, NULL, NULL, bounds_margin, dt); clamp_bounds_in_domain(mds, bb->min, bb->max, NULL, NULL, bounds_margin, dt);
em_allocateData(em, mfs->flags & FLUID_FLOW_INITVELOCITY, true); bb_allocateData(bb, mfs->flags & FLUID_FLOW_INITVELOCITY, true);
if (!(mfs->flags & FLUID_FLOW_USE_PART_SIZE)) { if (!(mfs->flags & FLUID_FLOW_USE_PART_SIZE)) {
for (p = 0; p < valid_particles; p++) { for (p = 0; p < valid_particles; p++) {
@@ -1639,12 +1642,12 @@ static void emit_from_particles(Object *flow_ob,
int badcell = 0; int badcell = 0;
/* 1. get corresponding cell */ /* 1. get corresponding cell */
cell[0] = floor(particle_pos[p * 3]) - em->min[0]; cell[0] = floor(particle_pos[p * 3]) - bb->min[0];
cell[1] = floor(particle_pos[p * 3 + 1]) - em->min[1]; cell[1] = floor(particle_pos[p * 3 + 1]) - bb->min[1];
cell[2] = floor(particle_pos[p * 3 + 2]) - em->min[2]; cell[2] = floor(particle_pos[p * 3 + 2]) - bb->min[2];
/* check if cell is valid (in the domain boundary) */ /* check if cell is valid (in the domain boundary) */
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
if ((cell[i] > em->res[i] - 1) || (cell[i] < 0)) { if ((cell[i] > bb->res[i] - 1) || (cell[i] < 0)) {
badcell = 1; badcell = 1;
break; break;
} }
@@ -1653,12 +1656,12 @@ static void emit_from_particles(Object *flow_ob,
continue; continue;
} }
/* get cell index */ /* get cell index */
index = manta_get_index(cell[0], em->res[0], cell[1], em->res[1], cell[2]); index = manta_get_index(cell[0], bb->res[0], cell[1], bb->res[1], cell[2]);
/* Add influence to emission map */ /* Add influence to emission map */
em->influence[index] = 1.0f; bb->influence[index] = 1.0f;
/* Uses particle velocity as initial velocity for smoke */ /* Uses particle velocity as initial velocity for smoke */
if (mfs->flags & FLUID_FLOW_INITVELOCITY && (psys->part->phystype != PART_PHYS_NO)) { if (mfs->flags & FLUID_FLOW_INITVELOCITY && (psys->part->phystype != PART_PHYS_NO)) {
madd_v3_v3fl(&em->velocity[index * 3], &particle_vel[p * 3], mfs->vel_multi); madd_v3_v3fl(&bb->velocity[index * 3], &particle_vel[p * 3], mfs->vel_multi);
} }
} // particles loop } // particles loop
} }
@@ -1667,9 +1670,9 @@ static void emit_from_particles(Object *flow_ob,
/* setup loop bounds */ /* setup loop bounds */
for (int i = 0; i < 3; i++) { for (int i = 0; i < 3; i++) {
min[i] = em->min[i]; min[i] = bb->min[i];
max[i] = em->max[i]; max[i] = bb->max[i];
res[i] = em->res[i]; res[i] = bb->res[i];
} }
BLI_kdtree_3d_balance(tree); BLI_kdtree_3d_balance(tree);
@@ -1677,7 +1680,7 @@ static void emit_from_particles(Object *flow_ob,
EmitFromParticlesData data = { EmitFromParticlesData data = {
.mfs = mfs, .mfs = mfs,
.tree = tree, .tree = tree,
.em = em, .bb = bb,
.particle_vel = particle_vel, .particle_vel = particle_vel,
.min = min, .min = min,
.max = max, .max = max,
@@ -1991,7 +1994,7 @@ typedef struct EmitFromDMData {
int defgrp_index; int defgrp_index;
BVHTreeFromMesh *tree; BVHTreeFromMesh *tree;
EmissionMap *em; FluidObjectBB *bb;
bool has_velocity; bool has_velocity;
float *vert_vel; float *vert_vel;
@@ -2004,16 +2007,16 @@ static void emit_from_mesh_task_cb(void *__restrict userdata,
const TaskParallelTLS *__restrict UNUSED(tls)) const TaskParallelTLS *__restrict UNUSED(tls))
{ {
EmitFromDMData *data = userdata; EmitFromDMData *data = userdata;
EmissionMap *em = data->em; FluidObjectBB *bb = data->bb;
for (int x = data->min[0]; x < data->max[0]; x++) { for (int x = data->min[0]; x < data->max[0]; x++) {
for (int y = data->min[1]; y < data->max[1]; y++) { for (int y = data->min[1]; y < data->max[1]; y++) {
const int index = manta_get_index( const int index = manta_get_index(
x - em->min[0], em->res[0], y - em->min[1], em->res[1], z - em->min[2]); x - bb->min[0], bb->res[0], y - bb->min[1], bb->res[1], z - bb->min[2]);
const float ray_start[3] = {((float)x) + 0.5f, ((float)y) + 0.5f, ((float)z) + 0.5f}; const float ray_start[3] = {((float)x) + 0.5f, ((float)y) + 0.5f, ((float)z) + 0.5f};
/* Compute emission only for flow objects that produce fluid (i.e. skip outflow objects). /* Compute emission only for flow objects that produce fluid (i.e. skip outflow objects).
* Result in em->influence. Also computes initial velocities. Result in em->velocity. */ * Result in bb->influence. Also computes initial velocities. Result in bb->velocity. */
if ((data->mfs->behavior == FLUID_FLOW_BEHAVIOR_GEOMETRY) || if ((data->mfs->behavior == FLUID_FLOW_BEHAVIOR_GEOMETRY) ||
(data->mfs->behavior == FLUID_FLOW_BEHAVIOR_INFLOW)) { (data->mfs->behavior == FLUID_FLOW_BEHAVIOR_INFLOW)) {
sample_mesh(data->mfs, sample_mesh(data->mfs,
@@ -2021,8 +2024,8 @@ static void emit_from_mesh_task_cb(void *__restrict userdata,
data->mloop, data->mloop,
data->mlooptri, data->mlooptri,
data->mloopuv, data->mloopuv,
em->influence, bb->influence,
em->velocity, bb->velocity,
index, index,
data->mds->base_res, data->mds->base_res,
data->flow_center, data->flow_center,
@@ -2037,9 +2040,9 @@ static void emit_from_mesh_task_cb(void *__restrict userdata,
(float)z); (float)z);
} }
/* Calculate levelset values from meshes. Result in em->distances. */ /* Calculate levelset values from meshes. Result in bb->distances. */
update_distances(index, update_distances(index,
em->distances, bb->distances,
data->tree, data->tree,
ray_start, ray_start,
data->mfs->surface_distance, data->mfs->surface_distance,
@@ -2049,7 +2052,7 @@ static void emit_from_mesh_task_cb(void *__restrict userdata,
} }
static void emit_from_mesh( static void emit_from_mesh(
Object *flow_ob, FluidDomainSettings *mds, FluidFlowSettings *mfs, EmissionMap *em, float dt) Object *flow_ob, FluidDomainSettings *mds, FluidFlowSettings *mfs, FluidObjectBB *bb, float dt)
{ {
if (mfs->mesh) { if (mfs->mesh) {
Mesh *me = NULL; Mesh *me = NULL;
@@ -2128,7 +2131,7 @@ static void emit_from_mesh(
} }
/* Calculate emission map bounds. */ /* Calculate emission map bounds. */
em_boundInsert(em, mvert[i].co); bb_boundInsert(bb, mvert[i].co);
} }
mul_m4_v3(flow_ob->obmat, flow_center); mul_m4_v3(flow_ob->obmat, flow_center);
manta_pos_to_cell(mds, flow_center); manta_pos_to_cell(mds, flow_center);
@@ -2136,14 +2139,14 @@ static void emit_from_mesh(
/* Set emission map. /* Set emission map.
* Use 3 cell diagonals as margin (3 * 1.732 = 5.196). */ * Use 3 cell diagonals as margin (3 * 1.732 = 5.196). */
int bounds_margin = (int)ceil(5.196); int bounds_margin = (int)ceil(5.196);
clamp_bounds_in_domain(mds, em->min, em->max, NULL, NULL, bounds_margin, dt); clamp_bounds_in_domain(mds, bb->min, bb->max, NULL, NULL, bounds_margin, dt);
em_allocateData(em, mfs->flags & FLUID_FLOW_INITVELOCITY, true); bb_allocateData(bb, mfs->flags & FLUID_FLOW_INITVELOCITY, true);
/* Setup loop bounds. */ /* Setup loop bounds. */
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
min[i] = em->min[i]; min[i] = bb->min[i];
max[i] = em->max[i]; max[i] = bb->max[i];
res[i] = em->res[i]; res[i] = bb->res[i];
} }
if (BKE_bvhtree_from_mesh_get(&tree_data, me, BVHTREE_FROM_LOOPTRI, 4)) { if (BKE_bvhtree_from_mesh_get(&tree_data, me, BVHTREE_FROM_LOOPTRI, 4)) {
@@ -2158,7 +2161,7 @@ static void emit_from_mesh(
.dvert = dvert, .dvert = dvert,
.defgrp_index = defgrp_index, .defgrp_index = defgrp_index,
.tree = &tree_data, .tree = &tree_data,
.em = em, .bb = bb,
.has_velocity = has_velocity, .has_velocity = has_velocity,
.vert_vel = vert_vel, .vert_vel = vert_vel,
.flow_center = flow_center, .flow_center = flow_center,
@@ -2192,7 +2195,7 @@ static void emit_from_mesh(
* \{ */ * \{ */
static void adaptive_domain_adjust( static void adaptive_domain_adjust(
FluidDomainSettings *mds, Object *ob, EmissionMap *emaps, uint numflowobj, float dt) FluidDomainSettings *mds, Object *ob, FluidObjectBB *bb_maps, uint numflowobj, float dt)
{ {
/* calculate domain shift for current frame */ /* calculate domain shift for current frame */
int new_shift[3] = {0}; int new_shift[3] = {0};
@@ -2341,14 +2344,14 @@ static void adaptive_domain_adjust(
/* also apply emission maps */ /* also apply emission maps */
for (int i = 0; i < numflowobj; i++) { for (int i = 0; i < numflowobj; i++) {
EmissionMap *em = &emaps[i]; FluidObjectBB *bb = &bb_maps[i];
for (x = em->min[0]; x < em->max[0]; x++) { for (x = bb->min[0]; x < bb->max[0]; x++) {
for (y = em->min[1]; y < em->max[1]; y++) { for (y = bb->min[1]; y < bb->max[1]; y++) {
for (z = em->min[2]; z < em->max[2]; z++) { for (z = bb->min[2]; z < bb->max[2]; z++) {
int index = manta_get_index( int index = manta_get_index(
x - em->min[0], em->res[0], y - em->min[1], em->res[1], z - em->min[2]); x - bb->min[0], bb->res[0], y - bb->min[1], bb->res[1], z - bb->min[2]);
float max_den = em->influence[index]; float max_den = bb->influence[index];
/* density bounds */ /* density bounds */
if (max_den >= mds->adapt_threshold) { if (max_den >= mds->adapt_threshold) {
@@ -2677,7 +2680,7 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
int frame, int frame,
float dt) float dt)
{ {
EmissionMap *emaps = NULL; FluidObjectBB *bb_maps = NULL;
Object **flowobjs = NULL; Object **flowobjs = NULL;
uint numflowobj = 0, flow_index = 0; uint numflowobj = 0, flow_index = 0;
bool is_first_frame = (frame == mds->cache_frame_start); bool is_first_frame = (frame == mds->cache_frame_start);
@@ -2689,7 +2692,7 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
update_flowsflags(mds, flowobjs, numflowobj); update_flowsflags(mds, flowobjs, numflowobj);
/* Initialize emission maps for each flow. */ /* Initialize emission maps for each flow. */
emaps = MEM_callocN(sizeof(struct EmissionMap) * numflowobj, "manta_flow_maps"); bb_maps = MEM_callocN(sizeof(struct FluidObjectBB) * numflowobj, "fluid_flow_bb_maps");
/* Prepare flow emission maps. */ /* Prepare flow emission maps. */
for (flow_index = 0; flow_index < numflowobj; flow_index++) { for (flow_index = 0; flow_index < numflowobj; flow_index++) {
@@ -2706,7 +2709,7 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
if ((mmd2->type & MOD_FLUID_TYPE_FLOW) && mmd2->flow) { if ((mmd2->type & MOD_FLUID_TYPE_FLOW) && mmd2->flow) {
FluidFlowSettings *mfs = mmd2->flow; FluidFlowSettings *mfs = mmd2->flow;
int subframes = mfs->subframes; int subframes = mfs->subframes;
EmissionMap *em = &emaps[flow_index]; FluidObjectBB *bb = &bb_maps[flow_index];
bool use_velocity = mfs->flags & FLUID_FLOW_INITVELOCITY; bool use_velocity = mfs->flags & FLUID_FLOW_INITVELOCITY;
bool is_static = is_static_object(flowobj); bool is_static = is_static_object(flowobj);
@@ -2764,7 +2767,7 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
for (subframe = subframes; subframe >= 0; subframe--) { for (subframe = subframes; subframe >= 0; subframe--) {
/* Temporary emission map used when subframes are enabled, i.e. at least one subframe. */ /* Temporary emission map used when subframes are enabled, i.e. at least one subframe. */
EmissionMap em_temp = {NULL}; FluidObjectBB bb_temp = {NULL};
/* Set scene time */ /* Set scene time */
/* Handle emission subframe */ /* Handle emission subframe */
@@ -2811,19 +2814,19 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
/* Emission from particles. */ /* Emission from particles. */
if (mfs->source == FLUID_FLOW_SOURCE_PARTICLES) { if (mfs->source == FLUID_FLOW_SOURCE_PARTICLES) {
if (subframes) { if (subframes) {
emit_from_particles(flowobj, mds, mfs, &em_temp, depsgraph, scene, subframe_dt); emit_from_particles(flowobj, mds, mfs, &bb_temp, depsgraph, scene, subframe_dt);
} }
else { else {
emit_from_particles(flowobj, mds, mfs, em, depsgraph, scene, subframe_dt); emit_from_particles(flowobj, mds, mfs, bb, depsgraph, scene, subframe_dt);
} }
} }
/* Emission from mesh. */ /* Emission from mesh. */
else if (mfs->source == FLUID_FLOW_SOURCE_MESH) { else if (mfs->source == FLUID_FLOW_SOURCE_MESH) {
if (subframes) { if (subframes) {
emit_from_mesh(flowobj, mds, mfs, &em_temp, subframe_dt); emit_from_mesh(flowobj, mds, mfs, &bb_temp, subframe_dt);
} }
else { else {
emit_from_mesh(flowobj, mds, mfs, em, subframe_dt); emit_from_mesh(flowobj, mds, mfs, bb, subframe_dt);
} }
} }
else { else {
@@ -2834,8 +2837,8 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
* the temp map with the original emission map. */ * the temp map with the original emission map. */
if (subframes) { if (subframes) {
/* Combine emission maps. */ /* Combine emission maps. */
em_combineMaps(em, &em_temp, !(mfs->flags & FLUID_FLOW_ABSOLUTE), sample_size); bb_combineMaps(bb, &bb_temp, !(mfs->flags & FLUID_FLOW_ABSOLUTE), sample_size);
em_freeData(&em_temp); bb_freeData(&bb_temp);
} }
} }
} }
@@ -2851,7 +2854,7 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
/* Adjust domain size if needed. Only do this once for every frame. */ /* Adjust domain size if needed. Only do this once for every frame. */
if (mds->type == FLUID_DOMAIN_TYPE_GAS && mds->flags & FLUID_DOMAIN_USE_ADAPTIVE_DOMAIN) { if (mds->type == FLUID_DOMAIN_TYPE_GAS && mds->flags & FLUID_DOMAIN_USE_ADAPTIVE_DOMAIN) {
adaptive_domain_adjust(mds, ob, emaps, numflowobj, dt); adaptive_domain_adjust(mds, ob, bb_maps, numflowobj, dt);
} }
float *phi_in = manta_get_phi_in(mds->fluid); float *phi_in = manta_get_phi_in(mds->fluid);
@@ -2967,23 +2970,23 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
} }
} }
EmissionMap *em = &emaps[flow_index]; FluidObjectBB *bb = &bb_maps[flow_index];
float *velocity_map = em->velocity; float *velocity_map = bb->velocity;
float *emission_map = em->influence; float *emission_map = bb->influence;
float *distance_map = em->distances; float *distance_map = bb->distances;
int gx, gy, gz, ex, ey, ez, dx, dy, dz; int gx, gy, gz, ex, ey, ez, dx, dy, dz;
size_t e_index, d_index; size_t e_index, d_index;
/* Loop through every emission map cell. */ /* Loop through every emission map cell. */
for (gx = em->min[0]; gx < em->max[0]; gx++) { for (gx = bb->min[0]; gx < bb->max[0]; gx++) {
for (gy = em->min[1]; gy < em->max[1]; gy++) { for (gy = bb->min[1]; gy < bb->max[1]; gy++) {
for (gz = em->min[2]; gz < em->max[2]; gz++) { for (gz = bb->min[2]; gz < bb->max[2]; gz++) {
/* Compute emission map index. */ /* Compute emission map index. */
ex = gx - em->min[0]; ex = gx - bb->min[0];
ey = gy - em->min[1]; ey = gy - bb->min[1];
ez = gz - em->min[2]; ez = gz - bb->min[2];
e_index = manta_get_index(ex, em->res[0], ey, em->res[1], ez); e_index = manta_get_index(ex, bb->res[0], ey, bb->res[1], ez);
/* Get domain index. */ /* Get domain index. */
dx = gx - mds->res_min[0]; dx = gx - mds->res_min[0];
@@ -3086,13 +3089,13 @@ static void update_flowsfluids(struct Depsgraph *depsgraph,
} }
} }
} /* End of flow emission map loop. */ } /* End of flow emission map loop. */
em_freeData(em); bb_freeData(bb);
} /* End of flow object loop. */ } /* End of flow object loop. */
} }
BKE_collision_objects_free(flowobjs); BKE_collision_objects_free(flowobjs);
if (emaps) { if (bb_maps) {
MEM_freeN(emaps); MEM_freeN(bb_maps);
} }
} }