Cycles: Add support for bindless textures.

This adds support for CUDA Texture objects (also known as Bindless textures) for Kepler GPUs (Geforce 6xx and above).
This is used for all 2D/3D textures, data still uses arrays as before.

User benefits:
* No more limits of image textures on Kepler.
 We had 5 float4 and 145 byte4 slots there before, now we have 1024 float4 and 1024 byte4.
 This can be extended further if we need to (just change the define).

* Single channel textures slots (byte and float) are now supported on Kepler as well (1024 slots for each type).

ToDo / Issues:
* 3D textures don't work yet, at least don't show up during render. I have no idea whats wrong yet.
* Dynamically allocate bindless_mapping array?

I hope Fermi still works fine, but that should be tested on a Fermi card before pushing to master.

Part of my GSoC 2016.

Reviewers: sergey, #cycles, brecht

Subscribers: swerner, jtheninja, brecht, sergey

Differential Revision: https://developer.blender.org/D1999
This commit is contained in:
Thomas Dinges
2016-05-19 12:47:41 +02:00
parent 03f846ea12
commit c9f1ed1e4c
10 changed files with 311 additions and 290 deletions

View File

@@ -54,7 +54,7 @@ public:
bool display_device; bool display_device;
bool advanced_shading; bool advanced_shading;
bool pack_images; bool pack_images;
bool extended_images; /* flag for GPU and Multi device */ bool has_bindless_textures; /* flag for GPU and Multi device */
bool use_split_kernel; /* Denotes if the device is going to run cycles using split-kernel */ bool use_split_kernel; /* Denotes if the device is going to run cycles using split-kernel */
vector<DeviceInfo> multi_devices; vector<DeviceInfo> multi_devices;
@@ -66,7 +66,7 @@ public:
display_device = false; display_device = false;
advanced_shading = true; advanced_shading = true;
pack_images = false; pack_images = false;
extended_images = false; has_bindless_textures = false;
use_split_kernel = false; use_split_kernel = false;
} }
}; };
@@ -230,6 +230,7 @@ public:
(void)interpolation; /* Ignored. */ (void)interpolation; /* Ignored. */
(void)extension; /* Ignored. */ (void)extension; /* Ignored. */
}; };
virtual void tex_free(device_memory& /*mem*/) {}; virtual void tex_free(device_memory& /*mem*/) {};
/* pixel memory */ /* pixel memory */

View File

@@ -85,10 +85,10 @@ public:
CUcontext cuContext; CUcontext cuContext;
CUmodule cuModule; CUmodule cuModule;
map<device_ptr, bool> tex_interp_map; map<device_ptr, bool> tex_interp_map;
map<device_ptr, uint> tex_bindless_map;
int cuDevId; int cuDevId;
int cuDevArchitecture; int cuDevArchitecture;
bool first_error; bool first_error;
bool use_texture_storage;
struct PixelMem { struct PixelMem {
GLuint cuPBO; GLuint cuPBO;
@@ -99,6 +99,10 @@ public:
map<device_ptr, PixelMem> pixel_mem_map; map<device_ptr, PixelMem> pixel_mem_map;
/* Bindless Textures */
device_vector<uint> bindless_mapping;
bool need_bindless_mapping;
CUdeviceptr cuda_device_ptr(device_ptr mem) CUdeviceptr cuda_device_ptr(device_ptr mem)
{ {
return (CUdeviceptr)mem; return (CUdeviceptr)mem;
@@ -176,12 +180,13 @@ public:
{ {
first_error = true; first_error = true;
background = background_; background = background_;
use_texture_storage = true;
cuDevId = info.num; cuDevId = info.num;
cuDevice = 0; cuDevice = 0;
cuContext = 0; cuContext = 0;
need_bindless_mapping = false;
/* intialize */ /* intialize */
if(cuda_error(cuInit(0))) if(cuda_error(cuInit(0)))
return; return;
@@ -211,11 +216,6 @@ public:
cuDeviceComputeCapability(&major, &minor, cuDevId); cuDeviceComputeCapability(&major, &minor, cuDevId);
cuDevArchitecture = major*100 + minor*10; cuDevArchitecture = major*100 + minor*10;
/* In order to use full 6GB of memory on Titan cards, use arrays instead
* of textures. On earlier cards this seems slower, but on Titan it is
* actually slightly faster in tests. */
use_texture_storage = (cuDevArchitecture < 300);
cuda_pop_context(); cuda_pop_context();
} }
@@ -223,6 +223,10 @@ public:
{ {
task_pool.stop(); task_pool.stop();
if(info.has_bindless_textures) {
tex_free(bindless_mapping);
}
cuda_assert(cuCtxDestroy(cuContext)); cuda_assert(cuCtxDestroy(cuContext));
} }
@@ -400,6 +404,15 @@ public:
return (result == CUDA_SUCCESS); return (result == CUDA_SUCCESS);
} }
void load_bindless_mapping()
{
if(info.has_bindless_textures && need_bindless_mapping) {
tex_free(bindless_mapping);
tex_alloc("__bindless_mapping", bindless_mapping, INTERPOLATION_NONE, EXTENSION_REPEAT);
need_bindless_mapping = false;
}
}
void mem_alloc(device_memory& mem, MemoryType /*type*/) void mem_alloc(device_memory& mem, MemoryType /*type*/)
{ {
cuda_push_context(); cuda_push_context();
@@ -479,126 +492,99 @@ public:
{ {
VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes."; VLOG(1) << "Texture allocate: " << name << ", " << mem.memory_size() << " bytes.";
string bind_name = name; /* Check if we are on sm_30 or above.
if(mem.data_depth > 1) { * We use arrays and bindles textures for storage there */
/* Kernel uses different bind names for 2d and 3d float textures, bool has_bindless_textures = info.has_bindless_textures;
* so we have to adjust couple of things here.
*/
vector<string> tokens;
string_split(tokens, name, "_");
bind_name = string_printf("__tex_image_%s_3d_%s",
tokens[2].c_str(),
tokens[3].c_str());
}
/* determine format */ /* General variables for both architectures */
CUarray_format_enum format; string bind_name = name;
size_t dsize = datatype_size(mem.data_type); size_t dsize = datatype_size(mem.data_type);
size_t size = mem.memory_size(); size_t size = mem.memory_size();
bool use_texture = (interpolation != INTERPOLATION_NONE) || use_texture_storage;
if(use_texture) { CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP;
switch(extension) {
case EXTENSION_REPEAT:
address_mode = CU_TR_ADDRESS_MODE_WRAP;
break;
case EXTENSION_EXTEND:
address_mode = CU_TR_ADDRESS_MODE_CLAMP;
break;
case EXTENSION_CLIP:
address_mode = CU_TR_ADDRESS_MODE_BORDER;
break;
default:
assert(0);
break;
}
switch(mem.data_type) { CUfilter_mode filter_mode;
case TYPE_UCHAR: format = CU_AD_FORMAT_UNSIGNED_INT8; break; if(interpolation == INTERPOLATION_CLOSEST) {
case TYPE_UINT: format = CU_AD_FORMAT_UNSIGNED_INT32; break; filter_mode = CU_TR_FILTER_MODE_POINT;
case TYPE_INT: format = CU_AD_FORMAT_SIGNED_INT32; break; }
case TYPE_FLOAT: format = CU_AD_FORMAT_FLOAT; break; else {
default: assert(0); return; filter_mode = CU_TR_FILTER_MODE_LINEAR;
}
CUarray_format_enum format;
switch(mem.data_type) {
case TYPE_UCHAR: format = CU_AD_FORMAT_UNSIGNED_INT8; break;
case TYPE_UINT: format = CU_AD_FORMAT_UNSIGNED_INT32; break;
case TYPE_INT: format = CU_AD_FORMAT_SIGNED_INT32; break;
case TYPE_FLOAT: format = CU_AD_FORMAT_FLOAT; break;
default: assert(0); return;
}
/* General variables for Fermi */
CUtexref texref = NULL;
if(!has_bindless_textures) {
if(mem.data_depth > 1) {
/* Kernel uses different bind names for 2d and 3d float textures,
* so we have to adjust couple of things here.
*/
vector<string> tokens;
string_split(tokens, name, "_");
bind_name = string_printf("__tex_image_%s_3d_%s",
tokens[2].c_str(),
tokens[3].c_str());
} }
CUtexref texref = NULL;
cuda_push_context(); cuda_push_context();
cuda_assert(cuModuleGetTexRef(&texref, cuModule, bind_name.c_str())); cuda_assert(cuModuleGetTexRef(&texref, cuModule, bind_name.c_str()));
cuda_pop_context();
if(!texref) { if(!texref) {
cuda_pop_context();
return; return;
} }
}
if(interpolation != INTERPOLATION_NONE) { /* Data Storage */
CUarray handle = NULL; if(interpolation == INTERPOLATION_NONE) {
if(has_bindless_textures) {
mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem);
if(mem.data_depth > 1) { cuda_push_context();
CUDA_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width; CUdeviceptr cumem;
desc.Height = mem.data_height; size_t cubytes;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
cuda_assert(cuArray3DCreate(&handle, &desc)); cuda_assert(cuModuleGetGlobal(&cumem, &cubytes, cuModule, bind_name.c_str()));
if(cubytes == 8) {
/* 64 bit device pointer */
uint64_t ptr = mem.device_pointer;
cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes));
} }
else { else {
CUDA_ARRAY_DESCRIPTOR desc; /* 32 bit device pointer */
uint32_t ptr = (uint32_t)mem.device_pointer;
desc.Width = mem.data_width; cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes));
desc.Height = mem.data_height;
desc.Format = format;
desc.NumChannels = mem.data_elements;
cuda_assert(cuArrayCreate(&handle, &desc));
} }
if(!handle) { cuda_pop_context();
cuda_pop_context();
return;
}
if(mem.data_depth > 1) {
CUDA_MEMCPY3D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = handle;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = (void*)mem.data_pointer;
param.srcPitch = mem.data_width*dsize*mem.data_elements;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
cuda_assert(cuMemcpy3D(&param));
}
else if(mem.data_height > 1) {
CUDA_MEMCPY2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = handle;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = (void*)mem.data_pointer;
param.srcPitch = mem.data_width*dsize*mem.data_elements;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
cuda_assert(cuMemcpy2D(&param));
}
else
cuda_assert(cuMemcpyHtoA(handle, 0, (void*)mem.data_pointer, size));
cuda_assert(cuTexRefSetArray(texref, handle, CU_TRSA_OVERRIDE_FORMAT));
if(interpolation == INTERPOLATION_CLOSEST) {
cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT));
}
else if(interpolation == INTERPOLATION_LINEAR) {
cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_LINEAR));
}
else {/* CUBIC and SMART are unsupported for CUDA */
cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_LINEAR));
}
cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_NORMALIZED_COORDINATES));
mem.device_pointer = (device_ptr)handle;
mem.device_size = size;
stats.mem_alloc(size);
} }
else { else {
cuda_pop_context();
mem_alloc(mem, MEM_READ_ONLY); mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem); mem_copy_to(mem);
@@ -607,23 +593,137 @@ public:
cuda_assert(cuTexRefSetAddress(NULL, texref, cuda_device_ptr(mem.device_pointer), size)); cuda_assert(cuTexRefSetAddress(NULL, texref, cuda_device_ptr(mem.device_pointer), size));
cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT)); cuda_assert(cuTexRefSetFilterMode(texref, CU_TR_FILTER_MODE_POINT));
cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_READ_AS_INTEGER)); cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_READ_AS_INTEGER));
cuda_pop_context();
}
}
/* Texture Storage */
else {
CUarray handle = NULL;
cuda_push_context();
if(mem.data_depth > 1) {
CUDA_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
cuda_assert(cuArray3DCreate(&handle, &desc));
}
else {
CUDA_ARRAY_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Format = format;
desc.NumChannels = mem.data_elements;
cuda_assert(cuArrayCreate(&handle, &desc));
} }
CUaddress_mode address_mode = CU_TR_ADDRESS_MODE_WRAP; if(!handle) {
switch(extension) { cuda_pop_context();
case EXTENSION_REPEAT: return;
address_mode = CU_TR_ADDRESS_MODE_WRAP;
break;
case EXTENSION_EXTEND:
address_mode = CU_TR_ADDRESS_MODE_CLAMP;
break;
case EXTENSION_CLIP:
address_mode = CU_TR_ADDRESS_MODE_BORDER;
break;
default:
assert(0);
break;
} }
/* Allocate 3D, 2D or 1D memory */
if(mem.data_depth > 1) {
CUDA_MEMCPY3D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = handle;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = (void*)mem.data_pointer;
param.srcPitch = mem.data_width*dsize*mem.data_elements;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
cuda_assert(cuMemcpy3D(&param));
}
else if(mem.data_height > 1) {
CUDA_MEMCPY2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = CU_MEMORYTYPE_ARRAY;
param.dstArray = handle;
param.srcMemoryType = CU_MEMORYTYPE_HOST;
param.srcHost = (void*)mem.data_pointer;
param.srcPitch = mem.data_width*dsize*mem.data_elements;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
cuda_assert(cuMemcpy2D(&param));
}
else
cuda_assert(cuMemcpyHtoA(handle, 0, (void*)mem.data_pointer, size));
/* Fermi and Kepler */
mem.device_pointer = (device_ptr)handle;
mem.device_size = size;
stats.mem_alloc(size);
/* Bindless Textures - Kepler */
if(has_bindless_textures) {
int flat_slot = 0;
if(string_startswith(name, "__tex_image")) {
int pos = string(name).rfind("_");
flat_slot = atoi(name + pos + 1);
}
else {
assert(0);
}
CUDA_RESOURCE_DESC resDesc;
memset(&resDesc, 0, sizeof(resDesc));
resDesc.resType = CU_RESOURCE_TYPE_ARRAY;
resDesc.res.array.hArray = handle;
resDesc.flags = 0;
CUDA_TEXTURE_DESC texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = address_mode;
texDesc.addressMode[1] = address_mode;
texDesc.addressMode[2] = address_mode;
texDesc.filterMode = filter_mode;
texDesc.flags = CU_TRSF_NORMALIZED_COORDINATES;
CUtexObject tex = 0;
cuda_assert(cuTexObjectCreate(&tex, &resDesc, &texDesc, NULL));
/* Safety check */
if((uint)tex > UINT_MAX) {
assert(0);
}
/* Resize once */
if(flat_slot >= bindless_mapping.size())
bindless_mapping.resize(4096); /*TODO(dingto): Make this a variable */
/* Set Mapping and tag that we need to (re-)upload to device */
bindless_mapping.get_data()[flat_slot] = (uint)tex;
tex_bindless_map[mem.device_pointer] = (uint)tex;
need_bindless_mapping = true;
}
/* Regular Textures - Fermi */
else {
cuda_assert(cuTexRefSetArray(texref, handle, CU_TRSA_OVERRIDE_FORMAT));
cuda_assert(cuTexRefSetFilterMode(texref, filter_mode));
cuda_assert(cuTexRefSetFlags(texref, CU_TRSF_NORMALIZED_COORDINATES));
}
cuda_pop_context();
}
/* Fermi, Data and Image Textures */
if(!has_bindless_textures) {
cuda_push_context();
cuda_assert(cuTexRefSetAddressMode(texref, 0, address_mode)); cuda_assert(cuTexRefSetAddressMode(texref, 0, address_mode));
cuda_assert(cuTexRefSetAddressMode(texref, 1, address_mode)); cuda_assert(cuTexRefSetAddressMode(texref, 1, address_mode));
if(mem.data_depth > 1) { if(mem.data_depth > 1) {
@@ -634,31 +734,8 @@ public:
cuda_pop_context(); cuda_pop_context();
} }
else {
mem_alloc(mem, MEM_READ_ONLY);
mem_copy_to(mem);
cuda_push_context();
CUdeviceptr cumem;
size_t cubytes;
cuda_assert(cuModuleGetGlobal(&cumem, &cubytes, cuModule, bind_name.c_str()));
if(cubytes == 8) {
/* 64 bit device pointer */
uint64_t ptr = mem.device_pointer;
cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes));
}
else {
/* 32 bit device pointer */
uint32_t ptr = (uint32_t)mem.device_pointer;
cuda_assert(cuMemcpyHtoD(cumem, (void*)&ptr, cubytes));
}
cuda_pop_context();
}
/* Fermi and Kepler */
tex_interp_map[mem.device_pointer] = (interpolation != INTERPOLATION_NONE); tex_interp_map[mem.device_pointer] = (interpolation != INTERPOLATION_NONE);
} }
@@ -670,6 +747,12 @@ public:
cuArrayDestroy((CUarray)mem.device_pointer); cuArrayDestroy((CUarray)mem.device_pointer);
cuda_pop_context(); cuda_pop_context();
/* Free CUtexObject (Bindless Textures) */
if(info.has_bindless_textures && tex_bindless_map[mem.device_pointer]) {
uint flat_slot = tex_bindless_map[mem.device_pointer];
cuTexObjectDestroy(flat_slot);
}
tex_interp_map.erase(tex_interp_map.find(mem.device_pointer)); tex_interp_map.erase(tex_interp_map.find(mem.device_pointer));
mem.device_pointer = 0; mem.device_pointer = 0;
@@ -1111,6 +1194,9 @@ public:
RenderTile tile; RenderTile tile;
bool branched = task->integrator_branched; bool branched = task->integrator_branched;
/* Upload Bindless Mapping */
load_bindless_mapping();
/* keep rendering tiles until done */ /* keep rendering tiles until done */
while(task->acquire_tile(this, tile)) { while(task->acquire_tile(this, tile)) {
@@ -1134,6 +1220,9 @@ public:
} }
} }
else if(task->type == DeviceTask::SHADER) { else if(task->type == DeviceTask::SHADER) {
/* Upload Bindless Mapping */
load_bindless_mapping();
shader(*task); shader(*task);
cuda_push_context(); cuda_push_context();
@@ -1269,7 +1358,7 @@ void device_cuda_info(vector<DeviceInfo>& devices)
info.num = num; info.num = num;
info.advanced_shading = (major >= 2); info.advanced_shading = (major >= 2);
info.extended_images = (major >= 3); info.has_bindless_textures = (major >= 3);
info.pack_images = false; info.pack_images = false;
/* if device has a kernel timeout, assume it is used for display */ /* if device has a kernel timeout, assume it is used for display */

View File

@@ -352,7 +352,7 @@ static bool device_multi_add(vector<DeviceInfo>& devices, DeviceType type, bool
info.advanced_shading = with_advanced_shading; info.advanced_shading = with_advanced_shading;
info.pack_images = false; info.pack_images = false;
info.extended_images = true; info.has_bindless_textures = true;
foreach(DeviceInfo& subinfo, devices) { foreach(DeviceInfo& subinfo, devices) {
if(subinfo.type == type) { if(subinfo.type == type) {
@@ -376,7 +376,7 @@ static bool device_multi_add(vector<DeviceInfo>& devices, DeviceType type, bool
if(subinfo.display_device) if(subinfo.display_device)
info.display_device = true; info.display_device = true;
info.pack_images = info.pack_images || subinfo.pack_images; info.pack_images = info.pack_images || subinfo.pack_images;
info.extended_images = info.extended_images && subinfo.extended_images; info.has_bindless_textures = info.has_bindless_textures && subinfo.has_bindless_textures;
num_added++; num_added++;
} }
} }

View File

@@ -29,7 +29,7 @@ CCL_NAMESPACE_BEGIN
/* Return position normalized to 0..1 in mesh bounds */ /* Return position normalized to 0..1 in mesh bounds */
#ifdef __KERNEL_GPU__ #if defined(__KERNEL_GPU__) && __CUDA_ARCH__ < 300
ccl_device float4 volume_image_texture_3d(int id, float x, float y, float z) ccl_device float4 volume_image_texture_3d(int id, float x, float y, float z)
{ {
float4 r; float4 r;
@@ -65,7 +65,13 @@ ccl_device float volume_attribute_float(KernelGlobals *kg, const ShaderData *sd,
{ {
float3 P = volume_normalized_position(kg, sd, sd->P); float3 P = volume_normalized_position(kg, sd, sd->P);
#ifdef __KERNEL_GPU__ #ifdef __KERNEL_GPU__
# if __CUDA_ARCH__ >= 300
CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
float f = kernel_tex_image_interp_3d_float(tex, P.x, P.y, P.z);
float4 r = make_float4(f, f, f, 1.0);
# else
float4 r = volume_image_texture_3d(id, P.x, P.y, P.z); float4 r = volume_image_texture_3d(id, P.x, P.y, P.z);
# endif
#else #else
float4 r; float4 r;
if(sd->flag & SD_VOLUME_CUBIC) if(sd->flag & SD_VOLUME_CUBIC)
@@ -84,7 +90,12 @@ ccl_device float3 volume_attribute_float3(KernelGlobals *kg, const ShaderData *s
{ {
float3 P = volume_normalized_position(kg, sd, sd->P); float3 P = volume_normalized_position(kg, sd, sd->P);
#ifdef __KERNEL_GPU__ #ifdef __KERNEL_GPU__
# if __CUDA_ARCH__ >= 300
CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
float4 r = kernel_tex_image_interp_3d_float4(tex, P.x, P.y, P.z);
# else
float4 r = volume_image_texture_3d(id, P.x, P.y, P.z); float4 r = volume_image_texture_3d(id, P.x, P.y, P.z);
# endif
#else #else
float4 r; float4 r;
if(sd->flag & SD_VOLUME_CUBIC) if(sd->flag & SD_VOLUME_CUBIC)

View File

@@ -67,20 +67,29 @@ typedef texture<uchar4, 2, cudaReadModeNormalizedFloat> texture_image_uchar4;
/* Macros to handle different memory storage on different devices */ /* Macros to handle different memory storage on different devices */
/* In order to use full 6GB of memory on Titan cards, use arrays instead /* On Fermi cards (4xx and 5xx), we use regular textures for both data and images.
* of textures. On earlier cards this seems slower, but on Titan it is * On Kepler (6xx) and above, we use Bindless Textures for images and arrays for data.
* actually slightly faster in tests. */ *
* Arrays are necessary in order to use the full VRAM on newer cards, and it's slightly faster.
* Using Arrays on Fermi turned out to be slower.*/
/* Fermi */
#if __CUDA_ARCH__ < 300 #if __CUDA_ARCH__ < 300
# define __KERNEL_CUDA_TEX_STORAGE__ # define __KERNEL_CUDA_TEX_STORAGE__
#endif
#ifdef __KERNEL_CUDA_TEX_STORAGE__
# define kernel_tex_fetch(t, index) tex1Dfetch(t, index) # define kernel_tex_fetch(t, index) tex1Dfetch(t, index)
# define kernel_tex_image_interp(t, x, y) tex2D(t, x, y)
# define kernel_tex_image_interp_3d(t, x, y, z) tex3D(t, x, y, z)
/* Kepler */
#else #else
# define kernel_tex_fetch(t, index) t[(index)] # define kernel_tex_fetch(t, index) t[(index)]
# define kernel_tex_image_interp_float4(t, x, y) tex2D<float4>(t, x, y)
# define kernel_tex_image_interp_float(t, x, y) tex2D<float>(t, x, y)
# define kernel_tex_image_interp_3d_float4(t, x, y, z) tex3D<float4>(t, x, y, z)
# define kernel_tex_image_interp_3d_float(t, x, y, z) tex3D<float>(t, x, y, z)
#endif #endif
#define kernel_tex_image_interp(t, x, y) tex2D(t, x, y)
#define kernel_tex_image_interp_3d(t, x, y, z) tex3D(t, x, y, z)
#define kernel_data __data #define kernel_data __data

View File

@@ -72,6 +72,8 @@ KERNEL_TEX(float, texture_float, __lookup_table)
/* sobol */ /* sobol */
KERNEL_TEX(uint, texture_uint, __sobol_directions) KERNEL_TEX(uint, texture_uint, __sobol_directions)
#ifdef __KERNEL_CUDA__
# if __CUDA_ARCH__ < 300
/* full-float image */ /* full-float image */
KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_000) KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_000)
KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_001) KERNEL_IMAGE_TEX(float4, texture_image_float4, __tex_image_float4_001)
@@ -174,66 +176,12 @@ KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_089)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_090) KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_090)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_091) KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_091)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_092) KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_092)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_093)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_094)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_095)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_096)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_097)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_098)
/* Kepler and above */ # else
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_099) /* bindless textures */
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_100) KERNEL_TEX(uint, texture_uint, __bindless_mapping)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_101) # endif
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_102) #endif
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_103)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_104)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_105)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_106)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_107)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_108)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_109)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_110)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_111)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_112)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_113)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_114)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_115)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_116)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_117)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_118)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_119)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_120)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_121)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_122)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_123)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_124)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_125)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_126)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_127)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_128)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_129)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_130)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_131)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_132)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_133)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_134)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_135)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_136)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_137)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_138)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_139)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_140)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_141)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_142)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_143)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_144)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_145)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_146)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_147)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_148)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_149)
KERNEL_IMAGE_TEX(uchar4, texture_image_uchar4, __tex_image_byte4_150)
/* packed image (opencl) */ /* packed image (opencl) */
KERNEL_TEX(uchar4, texture_uchar4, __tex_image_byte4_packed) KERNEL_TEX(uchar4, texture_uchar4, __tex_image_byte4_packed)

View File

@@ -18,11 +18,15 @@ CCL_NAMESPACE_BEGIN
/* Float4 textures on various devices. */ /* Float4 textures on various devices. */
#if defined(__KERNEL_CPU__) #if defined(__KERNEL_CPU__)
#define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_CPU # define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_CPU
#elif defined(__KERNEL_CUDA__) #elif defined(__KERNEL_CUDA__)
#define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_CUDA # if __CUDA_ARCH__ < 300
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_CUDA
# else
# define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER
# endif
#else #else
#define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_OPENCL # define TEX_NUM_FLOAT4_IMAGES TEX_NUM_FLOAT4_IMAGES_OPENCL
#endif #endif
#ifdef __KERNEL_OPENCL__ #ifdef __KERNEL_OPENCL__
@@ -151,6 +155,7 @@ ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y,
#else #else
float4 r; float4 r;
# if __CUDA_ARCH__ < 300
/* not particularly proud of this massive switch, what are the /* not particularly proud of this massive switch, what are the
* alternatives? * alternatives?
* - use a single big 1D texture, and do our own lookup/filtering * - use a single big 1D texture, and do our own lookup/filtering
@@ -254,72 +259,19 @@ ccl_device float4 svm_image_texture(KernelGlobals *kg, int id, float x, float y,
case 90: r = kernel_tex_image_interp(__tex_image_byte4_090, x, y); break; case 90: r = kernel_tex_image_interp(__tex_image_byte4_090, x, y); break;
case 91: r = kernel_tex_image_interp(__tex_image_byte4_091, x, y); break; case 91: r = kernel_tex_image_interp(__tex_image_byte4_091, x, y); break;
case 92: r = kernel_tex_image_interp(__tex_image_byte4_092, x, y); break; case 92: r = kernel_tex_image_interp(__tex_image_byte4_092, x, y); break;
# if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ >= 300)
case 93: r = kernel_tex_image_interp(__tex_image_byte4_093, x, y); break;
case 94: r = kernel_tex_image_interp(__tex_image_byte4_094, x, y); break;
case 95: r = kernel_tex_image_interp(__tex_image_byte4_095, x, y); break;
case 96: r = kernel_tex_image_interp(__tex_image_byte4_096, x, y); break;
case 97: r = kernel_tex_image_interp(__tex_image_byte4_097, x, y); break;
case 98: r = kernel_tex_image_interp(__tex_image_byte4_098, x, y); break;
case 99: r = kernel_tex_image_interp(__tex_image_byte4_099, x, y); break;
case 100: r = kernel_tex_image_interp(__tex_image_byte4_100, x, y); break;
case 101: r = kernel_tex_image_interp(__tex_image_byte4_101, x, y); break;
case 102: r = kernel_tex_image_interp(__tex_image_byte4_102, x, y); break;
case 103: r = kernel_tex_image_interp(__tex_image_byte4_103, x, y); break;
case 104: r = kernel_tex_image_interp(__tex_image_byte4_104, x, y); break;
case 105: r = kernel_tex_image_interp(__tex_image_byte4_105, x, y); break;
case 106: r = kernel_tex_image_interp(__tex_image_byte4_106, x, y); break;
case 107: r = kernel_tex_image_interp(__tex_image_byte4_107, x, y); break;
case 108: r = kernel_tex_image_interp(__tex_image_byte4_108, x, y); break;
case 109: r = kernel_tex_image_interp(__tex_image_byte4_109, x, y); break;
case 110: r = kernel_tex_image_interp(__tex_image_byte4_110, x, y); break;
case 111: r = kernel_tex_image_interp(__tex_image_byte4_111, x, y); break;
case 112: r = kernel_tex_image_interp(__tex_image_byte4_112, x, y); break;
case 113: r = kernel_tex_image_interp(__tex_image_byte4_113, x, y); break;
case 114: r = kernel_tex_image_interp(__tex_image_byte4_114, x, y); break;
case 115: r = kernel_tex_image_interp(__tex_image_byte4_115, x, y); break;
case 116: r = kernel_tex_image_interp(__tex_image_byte4_116, x, y); break;
case 117: r = kernel_tex_image_interp(__tex_image_byte4_117, x, y); break;
case 118: r = kernel_tex_image_interp(__tex_image_byte4_118, x, y); break;
case 119: r = kernel_tex_image_interp(__tex_image_byte4_119, x, y); break;
case 120: r = kernel_tex_image_interp(__tex_image_byte4_120, x, y); break;
case 121: r = kernel_tex_image_interp(__tex_image_byte4_121, x, y); break;
case 122: r = kernel_tex_image_interp(__tex_image_byte4_122, x, y); break;
case 123: r = kernel_tex_image_interp(__tex_image_byte4_123, x, y); break;
case 124: r = kernel_tex_image_interp(__tex_image_byte4_124, x, y); break;
case 125: r = kernel_tex_image_interp(__tex_image_byte4_125, x, y); break;
case 126: r = kernel_tex_image_interp(__tex_image_byte4_126, x, y); break;
case 127: r = kernel_tex_image_interp(__tex_image_byte4_127, x, y); break;
case 128: r = kernel_tex_image_interp(__tex_image_byte4_128, x, y); break;
case 129: r = kernel_tex_image_interp(__tex_image_byte4_129, x, y); break;
case 130: r = kernel_tex_image_interp(__tex_image_byte4_130, x, y); break;
case 131: r = kernel_tex_image_interp(__tex_image_byte4_131, x, y); break;
case 132: r = kernel_tex_image_interp(__tex_image_byte4_132, x, y); break;
case 133: r = kernel_tex_image_interp(__tex_image_byte4_133, x, y); break;
case 134: r = kernel_tex_image_interp(__tex_image_byte4_134, x, y); break;
case 135: r = kernel_tex_image_interp(__tex_image_byte4_135, x, y); break;
case 136: r = kernel_tex_image_interp(__tex_image_byte4_136, x, y); break;
case 137: r = kernel_tex_image_interp(__tex_image_byte4_137, x, y); break;
case 138: r = kernel_tex_image_interp(__tex_image_byte4_138, x, y); break;
case 139: r = kernel_tex_image_interp(__tex_image_byte4_139, x, y); break;
case 140: r = kernel_tex_image_interp(__tex_image_byte4_140, x, y); break;
case 141: r = kernel_tex_image_interp(__tex_image_byte4_141, x, y); break;
case 142: r = kernel_tex_image_interp(__tex_image_byte4_142, x, y); break;
case 143: r = kernel_tex_image_interp(__tex_image_byte4_143, x, y); break;
case 144: r = kernel_tex_image_interp(__tex_image_byte4_144, x, y); break;
case 145: r = kernel_tex_image_interp(__tex_image_byte4_145, x, y); break;
case 146: r = kernel_tex_image_interp(__tex_image_byte4_146, x, y); break;
case 147: r = kernel_tex_image_interp(__tex_image_byte4_147, x, y); break;
case 148: r = kernel_tex_image_interp(__tex_image_byte4_148, x, y); break;
case 149: r = kernel_tex_image_interp(__tex_image_byte4_149, x, y); break;
case 150: r = kernel_tex_image_interp(__tex_image_byte4_150, x, y); break;
# endif
default: default:
kernel_assert(0); kernel_assert(0);
return make_float4(0.0f, 0.0f, 0.0f, 0.0f); return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
} }
# else
CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
if(id < 2048) /* TODO(dingto): Make this a variable */
r = kernel_tex_image_interp_float4(tex, x, y);
else {
float f = kernel_tex_image_interp_float(tex, x, y);
r = make_float4(f, f, f, 1.0);
}
# endif
#endif #endif
#ifdef __KERNEL_SSE2__ #ifdef __KERNEL_SSE2__

View File

@@ -42,10 +42,21 @@ ccl_device void svm_node_tex_voxel(KernelGlobals *kg,
tfm.w = read_node_float(kg, offset); tfm.w = read_node_float(kg, offset);
co = transform_point(&tfm, co); co = transform_point(&tfm, co);
} }
float4 r;
# if defined(__KERNEL_GPU__) # if defined(__KERNEL_GPU__)
float4 r = volume_image_texture_3d(id, co.x, co.y, co.z); # if __CUDA_ARCH__ >= 300
# else CUtexObject tex = kernel_tex_fetch(__bindless_mapping, id);
float4 r = kernel_tex_image_interp_3d(id, co.x, co.y, co.z); if(id < 2048) /* TODO(dingto): Make this a variable */
r = kernel_tex_image_interp_3d_float4(tex, co.x, co.y, co.z);
else {
float f = kernel_tex_image_interp_3d_float(tex, co.x, co.y, co.z);
r = make_float4(f, f, f, 1.0);
}
# else /* __CUDA_ARCH__ >= 300 */
r = volume_image_texture_3d(id, co.x, co.y, co.z);
# endif
# else /* __KERNEL_GPU__ */
r = kernel_tex_image_interp_3d(id, co.x, co.y, co.z);
# endif # endif
#else #else
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f); float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);

View File

@@ -49,7 +49,7 @@ ImageManager::ImageManager(const DeviceInfo& info)
tex_image_byte_start = TEX_IMAGE_BYTE_START_CPU; tex_image_byte_start = TEX_IMAGE_BYTE_START_CPU;
} }
/* CUDA (Fermi) */ /* CUDA (Fermi) */
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && !info.extended_images) { else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && !info.has_bindless_textures) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA; tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA; tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA; tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA;
@@ -59,7 +59,7 @@ ImageManager::ImageManager(const DeviceInfo& info)
tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA; tex_image_byte_start = TEX_IMAGE_BYTE_START_CUDA;
} }
/* CUDA (Kepler and above) */ /* CUDA (Kepler and above) */
else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && info.extended_images) { else if((info.type == DEVICE_CUDA || info.type == DEVICE_MULTI) && info.has_bindless_textures) {
tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER; tex_num_images[IMAGE_DATA_TYPE_BYTE4] = TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER;
tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER; tex_num_images[IMAGE_DATA_TYPE_FLOAT4] = TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER;
tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER; tex_num_images[IMAGE_DATA_TYPE_FLOAT] = TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER;
@@ -294,7 +294,7 @@ int ImageManager::add_image(const string& filename,
if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4) if(type == IMAGE_DATA_TYPE_FLOAT || type == IMAGE_DATA_TYPE_FLOAT4)
is_float = true; is_float = true;
/* No float and byte textures on GPU yet */ /* No single channel textures on Fermi GPUs, use available slots */
if(type == IMAGE_DATA_TYPE_FLOAT && tex_num_images[type] == 0) if(type == IMAGE_DATA_TYPE_FLOAT && tex_num_images[type] == 0)
type = IMAGE_DATA_TYPE_FLOAT4; type = IMAGE_DATA_TYPE_FLOAT4;
if(type == IMAGE_DATA_TYPE_BYTE && tex_num_images[type] == 0) if(type == IMAGE_DATA_TYPE_BYTE && tex_num_images[type] == 0)

View File

@@ -40,10 +40,10 @@ CCL_NAMESPACE_BEGIN
#define TEX_IMAGE_BYTE_START_CUDA (TEX_NUM_FLOAT4_IMAGES_CUDA + TEX_NUM_BYTE4_IMAGES_CUDA + TEX_NUM_BYTE_IMAGES_CUDA) #define TEX_IMAGE_BYTE_START_CUDA (TEX_NUM_FLOAT4_IMAGES_CUDA + TEX_NUM_BYTE4_IMAGES_CUDA + TEX_NUM_BYTE_IMAGES_CUDA)
/* CUDA (KEPLER and above) */ /* CUDA (KEPLER and above) */
#define TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER 145 #define TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER 1024
#define TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER 5 #define TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER 1024
#define TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER 0 #define TEX_NUM_FLOAT_IMAGES_CUDA_KEPLER 1024
#define TEX_NUM_BYTE_IMAGES_CUDA_KEPLER 0 #define TEX_NUM_BYTE_IMAGES_CUDA_KEPLER 1024
#define TEX_IMAGE_BYTE4_START_CUDA_KEPLER TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER #define TEX_IMAGE_BYTE4_START_CUDA_KEPLER TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER
#define TEX_IMAGE_FLOAT_START_CUDA_KEPLER (TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER) #define TEX_IMAGE_FLOAT_START_CUDA_KEPLER (TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER)
#define TEX_IMAGE_BYTE_START_CUDA_KEPLER (TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE_IMAGES_CUDA_KEPLER) #define TEX_IMAGE_BYTE_START_CUDA_KEPLER (TEX_NUM_FLOAT4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE4_IMAGES_CUDA_KEPLER + TEX_NUM_BYTE_IMAGES_CUDA_KEPLER)