Code refactor: store RGB BSSRDF in a single closure.

Previously we stored each color channel in a single closure, which was
convenient for sampling a closure and channel together. But this doesn't
work so well for algorithms where we want to render multiple color
channels together.
This commit is contained in:
Brecht Van Lommel
2018-01-26 14:09:55 +01:00
parent 47a3bbcc34
commit ce4915cddb
6 changed files with 93 additions and 140 deletions

View File

@@ -22,11 +22,10 @@ CCL_NAMESPACE_BEGIN
typedef ccl_addr_space struct Bssrdf { typedef ccl_addr_space struct Bssrdf {
SHADER_CLOSURE_BASE; SHADER_CLOSURE_BASE;
float radius; float3 radius;
float3 albedo;
float sharpness; float sharpness;
float d;
float texture_blur; float texture_blur;
float albedo;
float roughness; float roughness;
} Bssrdf; } Bssrdf;
@@ -200,7 +199,7 @@ ccl_device_inline float bssrdf_burley_fitting(float A)
/* Scale mean free path length so it gives similar looking result /* Scale mean free path length so it gives similar looking result
* to Cubic and Gaussian models. * to Cubic and Gaussian models.
*/ */
ccl_device_inline float bssrdf_burley_compatible_mfp(float r) ccl_device_inline float3 bssrdf_burley_compatible_mfp(float3 r)
{ {
return 0.25f * M_1_PI_F * r; return 0.25f * M_1_PI_F * r;
} }
@@ -208,13 +207,14 @@ ccl_device_inline float bssrdf_burley_compatible_mfp(float r)
ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf) ccl_device void bssrdf_burley_setup(Bssrdf *bssrdf)
{ {
/* Mean free path length. */ /* Mean free path length. */
const float l = bssrdf_burley_compatible_mfp(bssrdf->radius); const float3 l = bssrdf_burley_compatible_mfp(bssrdf->radius);
/* Surface albedo. */ /* Surface albedo. */
const float A = bssrdf->albedo; const float3 A = bssrdf->albedo;
const float s = bssrdf_burley_fitting(A); const float3 s = make_float3(bssrdf_burley_fitting(A.x),
const float d = l / s; bssrdf_burley_fitting(A.y),
bssrdf_burley_fitting(A.z));
bssrdf->d = d; bssrdf->radius = l / s;
} }
ccl_device float bssrdf_burley_eval(const float d, float r) ccl_device float bssrdf_burley_eval(const float d, float r)
@@ -345,7 +345,7 @@ ccl_device_inline Bssrdf *bssrdf_alloc(ShaderData *sd, float3 weight)
ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type) ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
{ {
if(bssrdf->radius < BSSRDF_MIN_RADIUS) { if(max3(bssrdf->radius) < BSSRDF_MIN_RADIUS) {
/* revert to diffuse BSDF if radius too small */ /* revert to diffuse BSDF if radius too small */
int flag; int flag;
#ifdef __PRINCIPLED__ #ifdef __PRINCIPLED__
@@ -393,25 +393,60 @@ ccl_device int bssrdf_setup(Bssrdf *bssrdf, ClosureType type)
ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h) ccl_device void bssrdf_sample(const ShaderClosure *sc, float xi, float *r, float *h)
{ {
const Bssrdf *bssrdf = (const Bssrdf*)sc; const Bssrdf *bssrdf = (const Bssrdf*)sc;
float radius;
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID) /* Sample color channel and reuse random number. */
bssrdf_cubic_sample(bssrdf->radius, bssrdf->sharpness, xi, r, h); if(xi < 1.0f/3.0f) {
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID) xi *= 3.0f;
bssrdf_gaussian_sample(bssrdf->radius, xi, r, h); radius = bssrdf->radius.x;
else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID || sc->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/ }
bssrdf_burley_sample(bssrdf->d, xi, r, h); else if(xi < 2.0f/3.0f) {
xi = (xi - 1.0f/3.0f)*3.0f;
radius = bssrdf->radius.y;
}
else {
xi = (xi - 2.0f/3.0f)*3.0f;
radius = bssrdf->radius.z;
}
/* Sample BSSRDF. */
if(bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
bssrdf_cubic_sample(radius, bssrdf->sharpness, xi, r, h);
}
else if(bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID){
bssrdf_gaussian_sample(radius, xi, r, h);
}
else { /*if(bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID || bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
bssrdf_burley_sample(radius, xi, r, h);
}
}
ccl_device float bssrdf_channel_pdf(const Bssrdf *bssrdf, float radius, float r)
{
if(bssrdf->type == CLOSURE_BSSRDF_CUBIC_ID) {
return bssrdf_cubic_pdf(radius, bssrdf->sharpness, r);
}
else if(bssrdf->type == CLOSURE_BSSRDF_GAUSSIAN_ID) {
return bssrdf_gaussian_pdf(radius, r);
}
else { /*if(bssrdf->type == CLOSURE_BSSRDF_BURLEY_ID || bssrdf->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
return bssrdf_burley_pdf(radius, r);
}
}
ccl_device_forceinline float3 bssrdf_eval(const ShaderClosure *sc, float r)
{
const Bssrdf *bssrdf = (const Bssrdf*)sc;
return make_float3(
bssrdf_channel_pdf(bssrdf, bssrdf->radius.x, r),
bssrdf_channel_pdf(bssrdf, bssrdf->radius.y, r),
bssrdf_channel_pdf(bssrdf, bssrdf->radius.z, r));
} }
ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r) ccl_device_forceinline float bssrdf_pdf(const ShaderClosure *sc, float r)
{ {
const Bssrdf *bssrdf = (const Bssrdf*)sc; return average(bssrdf_eval(sc, r));
if(sc->type == CLOSURE_BSSRDF_CUBIC_ID)
return bssrdf_cubic_pdf(bssrdf->radius, bssrdf->sharpness, r);
else if(sc->type == CLOSURE_BSSRDF_GAUSSIAN_ID)
return bssrdf_gaussian_pdf(bssrdf->radius, r);
else /*if(sc->type == CLOSURE_BSSRDF_BURLEY_ID || sc->type == CLOSURE_BSSRDF_PRINCIPLED_ID)*/
return bssrdf_burley_pdf(bssrdf->d, r);
} }
CCL_NAMESPACE_END CCL_NAMESPACE_END

View File

@@ -333,7 +333,7 @@ ccl_device void kernel_branched_path_subsurface_scatter(KernelGlobals *kg,
/* set up random number generator */ /* set up random number generator */
uint lcg_state = lcg_state_init(state, 0x68bc21eb); uint lcg_state = lcg_state_init(state, 0x68bc21eb);
int num_samples = kernel_data.integrator.subsurface_samples; int num_samples = kernel_data.integrator.subsurface_samples * 3;
float num_samples_inv = 1.0f/num_samples; float num_samples_inv = 1.0f/num_samples;
uint bssrdf_rng_hash = cmj_hash(state->rng_hash, i); uint bssrdf_rng_hash = cmj_hash(state->rng_hash, i);

View File

@@ -23,11 +23,6 @@ CCL_NAMESPACE_BEGIN
* *
*/ */
/* TODO:
* - test using power heuristic for combing bssrdfs
* - try to reduce one sample model variance
*/
ccl_device_inline float3 subsurface_scatter_eval(ShaderData *sd, ccl_device_inline float3 subsurface_scatter_eval(ShaderData *sd,
const ShaderClosure *sc, const ShaderClosure *sc,
float disk_r, float disk_r,
@@ -63,12 +58,11 @@ ccl_device_inline float3 subsurface_scatter_eval(ShaderData *sd,
float sample_weight = (all)? 1.0f: sc->sample_weight * sample_weight_inv; float sample_weight = (all)? 1.0f: sc->sample_weight * sample_weight_inv;
/* compute pdf */ /* compute pdf */
float pdf = bssrdf_pdf(sc, r); float3 eval = bssrdf_eval(sc, r);
float disk_pdf = bssrdf_pdf(sc, disk_r); float pdf = bssrdf_pdf(sc, disk_r);
/* TODO power heuristic is not working correct here */ eval_sum += sc->weight * eval;
eval_sum += sc->weight*pdf; //*sample_weight*disk_pdf; pdf_sum += sample_weight * pdf;
pdf_sum += sample_weight*disk_pdf; //*sample_weight*disk_pdf;
} }
} }
@@ -190,20 +184,20 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
disk_N = sd->Ng; disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B); make_orthonormals(disk_N, &disk_T, &disk_B);
if(disk_u < 0.5f) { if(disk_v < 0.5f) {
pick_pdf_N = 0.5f; pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f; pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f; pick_pdf_B = 0.25f;
disk_u *= 2.0f; disk_v *= 2.0f;
} }
else if(disk_u < 0.75f) { else if(disk_v < 0.75f) {
float3 tmp = disk_N; float3 tmp = disk_N;
disk_N = disk_T; disk_N = disk_T;
disk_T = tmp; disk_T = tmp;
pick_pdf_N = 0.25f; pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f; pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f; pick_pdf_B = 0.25f;
disk_u = (disk_u - 0.5f)*4.0f; disk_v = (disk_v - 0.5f)*4.0f;
} }
else { else {
float3 tmp = disk_N; float3 tmp = disk_N;
@@ -212,15 +206,14 @@ ccl_device_inline int subsurface_scatter_multi_intersect(
pick_pdf_N = 0.25f; pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f; pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f; pick_pdf_B = 0.5f;
disk_u = (disk_u - 0.75f)*4.0f; disk_v = (disk_v - 0.75f)*4.0f;
} }
/* sample point on disk */ /* sample point on disk */
float phi = M_2PI_F * disk_u; float phi = M_2PI_F * disk_v;
float disk_r = disk_v; float disk_height, disk_r;
float disk_height;
bssrdf_sample(sc, disk_r, &disk_r, &disk_height); bssrdf_sample(sc, disk_u, &disk_r, &disk_height);
float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B; float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B;
@@ -359,20 +352,20 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, ccl_a
disk_N = sd->Ng; disk_N = sd->Ng;
make_orthonormals(disk_N, &disk_T, &disk_B); make_orthonormals(disk_N, &disk_T, &disk_B);
if(disk_u < 0.5f) { if(disk_v < 0.5f) {
pick_pdf_N = 0.5f; pick_pdf_N = 0.5f;
pick_pdf_T = 0.25f; pick_pdf_T = 0.25f;
pick_pdf_B = 0.25f; pick_pdf_B = 0.25f;
disk_u *= 2.0f; disk_v *= 2.0f;
} }
else if(disk_u < 0.75f) { else if(disk_v < 0.75f) {
float3 tmp = disk_N; float3 tmp = disk_N;
disk_N = disk_T; disk_N = disk_T;
disk_T = tmp; disk_T = tmp;
pick_pdf_N = 0.25f; pick_pdf_N = 0.25f;
pick_pdf_T = 0.5f; pick_pdf_T = 0.5f;
pick_pdf_B = 0.25f; pick_pdf_B = 0.25f;
disk_u = (disk_u - 0.5f)*4.0f; disk_v = (disk_v - 0.5f)*4.0f;
} }
else { else {
float3 tmp = disk_N; float3 tmp = disk_N;
@@ -381,15 +374,14 @@ ccl_device void subsurface_scatter_step(KernelGlobals *kg, ShaderData *sd, ccl_a
pick_pdf_N = 0.25f; pick_pdf_N = 0.25f;
pick_pdf_T = 0.25f; pick_pdf_T = 0.25f;
pick_pdf_B = 0.5f; pick_pdf_B = 0.5f;
disk_u = (disk_u - 0.75f)*4.0f; disk_v = (disk_v - 0.75f)*4.0f;
} }
/* sample point on disk */ /* sample point on disk */
float phi = M_2PI_F * disk_u; float phi = M_2PI_F * disk_v;
float disk_r = disk_v; float disk_height, disk_r;
float disk_height;
bssrdf_sample(sc, disk_r, &disk_r, &disk_height); bssrdf_sample(sc, disk_u, &disk_r, &disk_height);
float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B; float3 disk_P = (disk_r*cosf(phi)) * disk_T + (disk_r*sinf(phi)) * disk_B;

View File

@@ -72,36 +72,12 @@ public:
float texture_blur = params.texture_blur; float texture_blur = params.texture_blur;
/* create one closure per color channel */ /* create one closure per color channel */
Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(weight.x, 0.0f, 0.0f)); Bssrdf *bssrdf = bssrdf_alloc(sd, weight);
if(bssrdf) { if(bssrdf) {
bssrdf->sample_weight = sample_weight; bssrdf->sample_weight = sample_weight * 3.0f;
bssrdf->radius = radius.x; bssrdf->radius = radius;
bssrdf->albedo = albedo;
bssrdf->texture_blur = texture_blur; bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.x;
bssrdf->sharpness = sharpness;
bssrdf->N = params.N;
bssrdf->roughness = params.roughness;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.y;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.y;
bssrdf->sharpness = sharpness;
bssrdf->N = params.N;
bssrdf->roughness = params.roughness;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.z;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.z;
bssrdf->sharpness = sharpness; bssrdf->sharpness = sharpness;
bssrdf->N = params.N; bssrdf->N = params.N;
bssrdf->roughness = params.roughness; bssrdf->roughness = params.roughness;

View File

@@ -54,7 +54,7 @@ ccl_device_noinline bool kernel_split_branched_path_subsurface_indirect_light_it
branched_state->lcg_state = lcg_state_init_addrspace(&branched_state->path_state, branched_state->lcg_state = lcg_state_init_addrspace(&branched_state->path_state,
0x68bc21eb); 0x68bc21eb);
} }
int num_samples = kernel_data.integrator.subsurface_samples; int num_samples = kernel_data.integrator.subsurface_samples * 3;
float num_samples_inv = 1.0f/num_samples; float num_samples_inv = 1.0f/num_samples;
uint bssrdf_rng_hash = cmj_hash(branched_state->path_state.rng_hash, i); uint bssrdf_rng_hash = cmj_hash(branched_state->path_state.rng_hash, i);

View File

@@ -191,40 +191,12 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
float texture_blur = 0.0f; float texture_blur = 0.0f;
/* create one closure per color channel */ /* create one closure per color channel */
Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(subsurf_weight.x, 0.0f, 0.0f)); Bssrdf *bssrdf = bssrdf_alloc(sd, subsurf_weight);
if(bssrdf) { if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight; bssrdf->sample_weight = subsurf_sample_weight * 3.0f;
bssrdf->radius = radius.x; bssrdf->radius = radius;
bssrdf->albedo = subsurface_color;
bssrdf->texture_blur = texture_blur; bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.x;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
bssrdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, subsurf_weight.y, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight;
bssrdf->radius = radius.y;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.y;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
bssrdf->roughness = roughness;
/* setup bsdf */
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)CLOSURE_BSSRDF_PRINCIPLED_ID);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, subsurf_weight.z));
if(bssrdf) {
bssrdf->sample_weight = subsurf_sample_weight;
bssrdf->radius = radius.z;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = subsurface_color.z;
bssrdf->sharpness = sharpness; bssrdf->sharpness = sharpness;
bssrdf->N = N; bssrdf->N = N;
bssrdf->roughness = roughness; bssrdf->roughness = roughness;
@@ -803,34 +775,12 @@ ccl_device void svm_node_closure_bsdf(KernelGlobals *kg, ShaderData *sd, float *
float texture_blur = param2; float texture_blur = param2;
/* create one closure per color channel */ /* create one closure per color channel */
Bssrdf *bssrdf = bssrdf_alloc(sd, make_float3(weight.x, 0.0f, 0.0f)); Bssrdf *bssrdf = bssrdf_alloc(sd, weight);
if(bssrdf) { if(bssrdf) {
bssrdf->sample_weight = sample_weight; bssrdf->sample_weight = sample_weight * 3.0f;
bssrdf->radius = radius.x; bssrdf->radius = radius;
bssrdf->albedo = albedo;
bssrdf->texture_blur = texture_blur; bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.x;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, weight.y, 0.0f));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.y;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.y;
bssrdf->sharpness = sharpness;
bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);
}
bssrdf = bssrdf_alloc(sd, make_float3(0.0f, 0.0f, weight.z));
if(bssrdf) {
bssrdf->sample_weight = sample_weight;
bssrdf->radius = radius.z;
bssrdf->texture_blur = texture_blur;
bssrdf->albedo = albedo.z;
bssrdf->sharpness = sharpness; bssrdf->sharpness = sharpness;
bssrdf->N = N; bssrdf->N = N;
sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type); sd->flag |= bssrdf_setup(bssrdf, (ClosureType)type);