ClangFormat: apply to source, most of intern
Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
This commit is contained in:
@@ -16,255 +16,280 @@
|
||||
|
||||
CCL_NAMESPACE_BEGIN
|
||||
|
||||
#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__) || defined(__BAKING__)
|
||||
#if defined(__BRANCHED_PATH__) || defined(__SUBSURFACE__) || defined(__SHADOW_TRICKS__) || \
|
||||
defined(__BAKING__)
|
||||
/* branched path tracing: connect path directly to position on one or more lights and add it to L */
|
||||
ccl_device_noinline void kernel_branched_path_surface_connect_light(
|
||||
KernelGlobals *kg,
|
||||
ShaderData *sd,
|
||||
ShaderData *emission_sd,
|
||||
ccl_addr_space PathState *state,
|
||||
float3 throughput,
|
||||
float num_samples_adjust,
|
||||
PathRadiance *L,
|
||||
int sample_all_lights)
|
||||
KernelGlobals *kg,
|
||||
ShaderData *sd,
|
||||
ShaderData *emission_sd,
|
||||
ccl_addr_space PathState *state,
|
||||
float3 throughput,
|
||||
float num_samples_adjust,
|
||||
PathRadiance *L,
|
||||
int sample_all_lights)
|
||||
{
|
||||
#ifdef __EMISSION__
|
||||
/* sample illumination from lights to find path contribution */
|
||||
if(!(sd->flag & SD_BSDF_HAS_EVAL))
|
||||
return;
|
||||
# ifdef __EMISSION__
|
||||
/* sample illumination from lights to find path contribution */
|
||||
if (!(sd->flag & SD_BSDF_HAS_EVAL))
|
||||
return;
|
||||
|
||||
Ray light_ray;
|
||||
BsdfEval L_light;
|
||||
bool is_lamp;
|
||||
Ray light_ray;
|
||||
BsdfEval L_light;
|
||||
bool is_lamp;
|
||||
|
||||
# ifdef __OBJECT_MOTION__
|
||||
light_ray.time = sd->time;
|
||||
# ifdef __OBJECT_MOTION__
|
||||
light_ray.time = sd->time;
|
||||
# endif
|
||||
|
||||
if (sample_all_lights) {
|
||||
/* lamp sampling */
|
||||
for (int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
|
||||
if (UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce)))
|
||||
continue;
|
||||
|
||||
int num_samples = ceil_to_int(num_samples_adjust * light_select_num_samples(kg, i));
|
||||
float num_samples_inv = num_samples_adjust /
|
||||
(num_samples * kernel_data.integrator.num_all_lights);
|
||||
uint lamp_rng_hash = cmj_hash(state->rng_hash, i);
|
||||
|
||||
for (int j = 0; j < num_samples; j++) {
|
||||
float light_u, light_v;
|
||||
path_branched_rng_2D(
|
||||
kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_branched_rng_light_termination(
|
||||
kg, lamp_rng_hash, state, j, num_samples);
|
||||
|
||||
LightSample ls;
|
||||
if (lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
|
||||
/* The sampling probability returned by lamp_light_sample assumes that all lights were sampled.
|
||||
* However, this code only samples lamps, so if the scene also had mesh lights, the real probability is twice as high. */
|
||||
if (kernel_data.integrator.pdf_triangles != 0.0f)
|
||||
ls.pdf *= 2.0f;
|
||||
|
||||
if (direct_emission(
|
||||
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L,
|
||||
state,
|
||||
throughput * num_samples_inv,
|
||||
&L_light,
|
||||
shadow,
|
||||
num_samples_inv,
|
||||
is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput * num_samples_inv, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* mesh light sampling */
|
||||
if (kernel_data.integrator.pdf_triangles != 0.0f) {
|
||||
int num_samples = ceil_to_int(num_samples_adjust *
|
||||
kernel_data.integrator.mesh_light_samples);
|
||||
float num_samples_inv = num_samples_adjust / num_samples;
|
||||
|
||||
for (int j = 0; j < num_samples; j++) {
|
||||
float light_u, light_v;
|
||||
path_branched_rng_2D(
|
||||
kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_branched_rng_light_termination(
|
||||
kg, state->rng_hash, state, j, num_samples);
|
||||
|
||||
/* only sample triangle lights */
|
||||
if (kernel_data.integrator.num_all_lights)
|
||||
light_u = 0.5f * light_u;
|
||||
|
||||
LightSample ls;
|
||||
if (light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
/* Same as above, probability needs to be corrected since the sampling was forced to select a mesh light. */
|
||||
if (kernel_data.integrator.num_all_lights)
|
||||
ls.pdf *= 2.0f;
|
||||
|
||||
if (direct_emission(
|
||||
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L,
|
||||
state,
|
||||
throughput * num_samples_inv,
|
||||
&L_light,
|
||||
shadow,
|
||||
num_samples_inv,
|
||||
is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput * num_samples_inv, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* sample one light at random */
|
||||
float light_u, light_v;
|
||||
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_state_rng_light_termination(kg, state);
|
||||
|
||||
LightSample ls;
|
||||
if (light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
/* sample random light */
|
||||
if (direct_emission(
|
||||
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L,
|
||||
state,
|
||||
throughput * num_samples_adjust,
|
||||
&L_light,
|
||||
shadow,
|
||||
num_samples_adjust,
|
||||
is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput * num_samples_adjust, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
# endif
|
||||
|
||||
if(sample_all_lights) {
|
||||
/* lamp sampling */
|
||||
for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
|
||||
if(UNLIKELY(light_select_reached_max_bounces(kg, i, state->bounce)))
|
||||
continue;
|
||||
|
||||
int num_samples = ceil_to_int(num_samples_adjust*light_select_num_samples(kg, i));
|
||||
float num_samples_inv = num_samples_adjust/(num_samples*kernel_data.integrator.num_all_lights);
|
||||
uint lamp_rng_hash = cmj_hash(state->rng_hash, i);
|
||||
|
||||
for(int j = 0; j < num_samples; j++) {
|
||||
float light_u, light_v;
|
||||
path_branched_rng_2D(kg, lamp_rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_branched_rng_light_termination(kg, lamp_rng_hash, state, j, num_samples);
|
||||
|
||||
LightSample ls;
|
||||
if(lamp_light_sample(kg, i, light_u, light_v, sd->P, &ls)) {
|
||||
/* The sampling probability returned by lamp_light_sample assumes that all lights were sampled.
|
||||
* However, this code only samples lamps, so if the scene also had mesh lights, the real probability is twice as high. */
|
||||
if(kernel_data.integrator.pdf_triangles != 0.0f)
|
||||
ls.pdf *= 2.0f;
|
||||
|
||||
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L, state, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput*num_samples_inv, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* mesh light sampling */
|
||||
if(kernel_data.integrator.pdf_triangles != 0.0f) {
|
||||
int num_samples = ceil_to_int(num_samples_adjust*kernel_data.integrator.mesh_light_samples);
|
||||
float num_samples_inv = num_samples_adjust/num_samples;
|
||||
|
||||
for(int j = 0; j < num_samples; j++) {
|
||||
float light_u, light_v;
|
||||
path_branched_rng_2D(kg, state->rng_hash, state, j, num_samples, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_branched_rng_light_termination(kg, state->rng_hash, state, j, num_samples);
|
||||
|
||||
/* only sample triangle lights */
|
||||
if(kernel_data.integrator.num_all_lights)
|
||||
light_u = 0.5f*light_u;
|
||||
|
||||
LightSample ls;
|
||||
if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
/* Same as above, probability needs to be corrected since the sampling was forced to select a mesh light. */
|
||||
if(kernel_data.integrator.num_all_lights)
|
||||
ls.pdf *= 2.0f;
|
||||
|
||||
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L, state, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput*num_samples_inv, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
/* sample one light at random */
|
||||
float light_u, light_v;
|
||||
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
float terminate = path_state_rng_light_termination(kg, state);
|
||||
|
||||
LightSample ls;
|
||||
if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
/* sample random light */
|
||||
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L, state, throughput*num_samples_adjust, &L_light, shadow, num_samples_adjust, is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput*num_samples_adjust, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/* branched path tracing: bounce off or through surface to with new direction stored in ray */
|
||||
ccl_device bool kernel_branched_path_surface_bounce(
|
||||
KernelGlobals *kg,
|
||||
ShaderData *sd,
|
||||
const ShaderClosure *sc,
|
||||
int sample,
|
||||
int num_samples,
|
||||
ccl_addr_space float3 *throughput,
|
||||
ccl_addr_space PathState *state,
|
||||
PathRadianceState *L_state,
|
||||
ccl_addr_space Ray *ray,
|
||||
float sum_sample_weight)
|
||||
ccl_device bool kernel_branched_path_surface_bounce(KernelGlobals *kg,
|
||||
ShaderData *sd,
|
||||
const ShaderClosure *sc,
|
||||
int sample,
|
||||
int num_samples,
|
||||
ccl_addr_space float3 *throughput,
|
||||
ccl_addr_space PathState *state,
|
||||
PathRadianceState *L_state,
|
||||
ccl_addr_space Ray *ray,
|
||||
float sum_sample_weight)
|
||||
{
|
||||
/* sample BSDF */
|
||||
float bsdf_pdf;
|
||||
BsdfEval bsdf_eval;
|
||||
float3 bsdf_omega_in;
|
||||
differential3 bsdf_domega_in;
|
||||
float bsdf_u, bsdf_v;
|
||||
path_branched_rng_2D(kg, state->rng_hash, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
||||
int label;
|
||||
/* sample BSDF */
|
||||
float bsdf_pdf;
|
||||
BsdfEval bsdf_eval;
|
||||
float3 bsdf_omega_in;
|
||||
differential3 bsdf_domega_in;
|
||||
float bsdf_u, bsdf_v;
|
||||
path_branched_rng_2D(
|
||||
kg, state->rng_hash, state, sample, num_samples, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
||||
int label;
|
||||
|
||||
label = shader_bsdf_sample_closure(kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
|
||||
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
||||
label = shader_bsdf_sample_closure(
|
||||
kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
||||
|
||||
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
||||
return false;
|
||||
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
||||
return false;
|
||||
|
||||
/* modify throughput */
|
||||
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
||||
/* modify throughput */
|
||||
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
||||
|
||||
#ifdef __DENOISING_FEATURES__
|
||||
state->denoising_feature_weight *= sc->sample_weight / (sum_sample_weight * num_samples);
|
||||
#endif
|
||||
# ifdef __DENOISING_FEATURES__
|
||||
state->denoising_feature_weight *= sc->sample_weight / (sum_sample_weight * num_samples);
|
||||
# endif
|
||||
|
||||
/* modify path state */
|
||||
path_state_next(kg, state, label);
|
||||
/* modify path state */
|
||||
path_state_next(kg, state, label);
|
||||
|
||||
/* setup ray */
|
||||
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
|
||||
ray->D = normalize(bsdf_omega_in);
|
||||
ray->t = FLT_MAX;
|
||||
#ifdef __RAY_DIFFERENTIALS__
|
||||
ray->dP = sd->dP;
|
||||
ray->dD = bsdf_domega_in;
|
||||
#endif
|
||||
#ifdef __OBJECT_MOTION__
|
||||
ray->time = sd->time;
|
||||
#endif
|
||||
/* setup ray */
|
||||
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng);
|
||||
ray->D = normalize(bsdf_omega_in);
|
||||
ray->t = FLT_MAX;
|
||||
# ifdef __RAY_DIFFERENTIALS__
|
||||
ray->dP = sd->dP;
|
||||
ray->dD = bsdf_domega_in;
|
||||
# endif
|
||||
# ifdef __OBJECT_MOTION__
|
||||
ray->time = sd->time;
|
||||
# endif
|
||||
|
||||
#ifdef __VOLUME__
|
||||
/* enter/exit volume */
|
||||
if(label & LABEL_TRANSMIT)
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
#endif
|
||||
# ifdef __VOLUME__
|
||||
/* enter/exit volume */
|
||||
if (label & LABEL_TRANSMIT)
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
# endif
|
||||
|
||||
/* branch RNG state */
|
||||
path_state_branch(state, sample, num_samples);
|
||||
/* branch RNG state */
|
||||
path_state_branch(state, sample, num_samples);
|
||||
|
||||
/* set MIS state */
|
||||
state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX);
|
||||
state->ray_pdf = bsdf_pdf;
|
||||
#ifdef __LAMP_MIS__
|
||||
state->ray_t = 0.0f;
|
||||
#endif
|
||||
/* set MIS state */
|
||||
state->min_ray_pdf = fminf(bsdf_pdf, FLT_MAX);
|
||||
state->ray_pdf = bsdf_pdf;
|
||||
# ifdef __LAMP_MIS__
|
||||
state->ray_t = 0.0f;
|
||||
# endif
|
||||
|
||||
return true;
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* path tracing: connect path directly to position on a light and add it to L */
|
||||
ccl_device_inline void kernel_path_surface_connect_light(KernelGlobals *kg,
|
||||
ShaderData *sd, ShaderData *emission_sd, float3 throughput, ccl_addr_space PathState *state,
|
||||
PathRadiance *L)
|
||||
ShaderData *sd,
|
||||
ShaderData *emission_sd,
|
||||
float3 throughput,
|
||||
ccl_addr_space PathState *state,
|
||||
PathRadiance *L)
|
||||
{
|
||||
PROFILING_INIT(kg, PROFILING_CONNECT_LIGHT);
|
||||
PROFILING_INIT(kg, PROFILING_CONNECT_LIGHT);
|
||||
|
||||
#ifdef __EMISSION__
|
||||
if(!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)))
|
||||
return;
|
||||
if (!(kernel_data.integrator.use_direct_light && (sd->flag & SD_BSDF_HAS_EVAL)))
|
||||
return;
|
||||
|
||||
#ifdef __SHADOW_TRICKS__
|
||||
if(state->flag & PATH_RAY_SHADOW_CATCHER) {
|
||||
kernel_branched_path_surface_connect_light(kg,
|
||||
sd,
|
||||
emission_sd,
|
||||
state,
|
||||
throughput,
|
||||
1.0f,
|
||||
L,
|
||||
1);
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
# ifdef __SHADOW_TRICKS__
|
||||
if (state->flag & PATH_RAY_SHADOW_CATCHER) {
|
||||
kernel_branched_path_surface_connect_light(kg, sd, emission_sd, state, throughput, 1.0f, L, 1);
|
||||
return;
|
||||
}
|
||||
# endif
|
||||
|
||||
/* sample illumination from lights to find path contribution */
|
||||
float light_u, light_v;
|
||||
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
/* sample illumination from lights to find path contribution */
|
||||
float light_u, light_v;
|
||||
path_state_rng_2D(kg, state, PRNG_LIGHT_U, &light_u, &light_v);
|
||||
|
||||
Ray light_ray;
|
||||
BsdfEval L_light;
|
||||
bool is_lamp;
|
||||
Ray light_ray;
|
||||
BsdfEval L_light;
|
||||
bool is_lamp;
|
||||
|
||||
#ifdef __OBJECT_MOTION__
|
||||
light_ray.time = sd->time;
|
||||
#endif
|
||||
# ifdef __OBJECT_MOTION__
|
||||
light_ray.time = sd->time;
|
||||
# endif
|
||||
|
||||
LightSample ls;
|
||||
if(light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
float terminate = path_state_rng_light_termination(kg, state);
|
||||
if(direct_emission(kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
LightSample ls;
|
||||
if (light_sample(kg, light_u, light_v, sd->time, sd->P, state->bounce, &ls)) {
|
||||
float terminate = path_state_rng_light_termination(kg, state);
|
||||
if (direct_emission(
|
||||
kg, sd, emission_sd, &ls, state, &light_ray, &L_light, &is_lamp, terminate)) {
|
||||
/* trace shadow ray */
|
||||
float3 shadow;
|
||||
|
||||
if(!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (!shadow_blocked(kg, sd, emission_sd, state, &light_ray, &shadow)) {
|
||||
/* accumulate */
|
||||
path_radiance_accum_light(L, state, throughput, &L_light, shadow, 1.0f, is_lamp);
|
||||
}
|
||||
else {
|
||||
path_radiance_accum_total_light(L, state, throughput, &L_light);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -276,87 +301,87 @@ ccl_device bool kernel_path_surface_bounce(KernelGlobals *kg,
|
||||
PathRadianceState *L_state,
|
||||
ccl_addr_space Ray *ray)
|
||||
{
|
||||
PROFILING_INIT(kg, PROFILING_SURFACE_BOUNCE);
|
||||
PROFILING_INIT(kg, PROFILING_SURFACE_BOUNCE);
|
||||
|
||||
/* no BSDF? we can stop here */
|
||||
if(sd->flag & SD_BSDF) {
|
||||
/* sample BSDF */
|
||||
float bsdf_pdf;
|
||||
BsdfEval bsdf_eval;
|
||||
float3 bsdf_omega_in;
|
||||
differential3 bsdf_domega_in;
|
||||
float bsdf_u, bsdf_v;
|
||||
path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
||||
int label;
|
||||
/* no BSDF? we can stop here */
|
||||
if (sd->flag & SD_BSDF) {
|
||||
/* sample BSDF */
|
||||
float bsdf_pdf;
|
||||
BsdfEval bsdf_eval;
|
||||
float3 bsdf_omega_in;
|
||||
differential3 bsdf_domega_in;
|
||||
float bsdf_u, bsdf_v;
|
||||
path_state_rng_2D(kg, state, PRNG_BSDF_U, &bsdf_u, &bsdf_v);
|
||||
int label;
|
||||
|
||||
label = shader_bsdf_sample(kg, sd, bsdf_u, bsdf_v, &bsdf_eval,
|
||||
&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
||||
label = shader_bsdf_sample(
|
||||
kg, sd, bsdf_u, bsdf_v, &bsdf_eval, &bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
|
||||
|
||||
if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
||||
return false;
|
||||
if (bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
|
||||
return false;
|
||||
|
||||
/* modify throughput */
|
||||
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
||||
/* modify throughput */
|
||||
path_radiance_bsdf_bounce(kg, L_state, throughput, &bsdf_eval, bsdf_pdf, state->bounce, label);
|
||||
|
||||
/* set labels */
|
||||
if(!(label & LABEL_TRANSPARENT)) {
|
||||
state->ray_pdf = bsdf_pdf;
|
||||
/* set labels */
|
||||
if (!(label & LABEL_TRANSPARENT)) {
|
||||
state->ray_pdf = bsdf_pdf;
|
||||
#ifdef __LAMP_MIS__
|
||||
state->ray_t = 0.0f;
|
||||
state->ray_t = 0.0f;
|
||||
#endif
|
||||
state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf);
|
||||
}
|
||||
state->min_ray_pdf = fminf(bsdf_pdf, state->min_ray_pdf);
|
||||
}
|
||||
|
||||
/* update path state */
|
||||
path_state_next(kg, state, label);
|
||||
/* update path state */
|
||||
path_state_next(kg, state, label);
|
||||
|
||||
/* setup ray */
|
||||
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
|
||||
ray->D = normalize(bsdf_omega_in);
|
||||
/* setup ray */
|
||||
ray->P = ray_offset(sd->P, (label & LABEL_TRANSMIT) ? -sd->Ng : sd->Ng);
|
||||
ray->D = normalize(bsdf_omega_in);
|
||||
|
||||
if(state->bounce == 0)
|
||||
ray->t -= sd->ray_length; /* clipping works through transparent */
|
||||
else
|
||||
ray->t = FLT_MAX;
|
||||
if (state->bounce == 0)
|
||||
ray->t -= sd->ray_length; /* clipping works through transparent */
|
||||
else
|
||||
ray->t = FLT_MAX;
|
||||
|
||||
#ifdef __RAY_DIFFERENTIALS__
|
||||
ray->dP = sd->dP;
|
||||
ray->dD = bsdf_domega_in;
|
||||
ray->dP = sd->dP;
|
||||
ray->dD = bsdf_domega_in;
|
||||
#endif
|
||||
|
||||
#ifdef __VOLUME__
|
||||
/* enter/exit volume */
|
||||
if(label & LABEL_TRANSMIT)
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
/* enter/exit volume */
|
||||
if (label & LABEL_TRANSMIT)
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
#endif
|
||||
return true;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
#ifdef __VOLUME__
|
||||
else if(sd->flag & SD_HAS_ONLY_VOLUME) {
|
||||
if(!path_state_volume_next(kg, state)) {
|
||||
return false;
|
||||
}
|
||||
else if (sd->flag & SD_HAS_ONLY_VOLUME) {
|
||||
if (!path_state_volume_next(kg, state)) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if(state->bounce == 0)
|
||||
ray->t -= sd->ray_length; /* clipping works through transparent */
|
||||
else
|
||||
ray->t = FLT_MAX;
|
||||
if (state->bounce == 0)
|
||||
ray->t -= sd->ray_length; /* clipping works through transparent */
|
||||
else
|
||||
ray->t = FLT_MAX;
|
||||
|
||||
/* setup ray position, direction stays unchanged */
|
||||
ray->P = ray_offset(sd->P, -sd->Ng);
|
||||
#ifdef __RAY_DIFFERENTIALS__
|
||||
ray->dP = sd->dP;
|
||||
/* setup ray position, direction stays unchanged */
|
||||
ray->P = ray_offset(sd->P, -sd->Ng);
|
||||
# ifdef __RAY_DIFFERENTIALS__
|
||||
ray->dP = sd->dP;
|
||||
# endif
|
||||
|
||||
/* enter/exit volume */
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
/* enter/exit volume */
|
||||
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
else {
|
||||
/* no bsdf or volume? */
|
||||
return false;
|
||||
}
|
||||
else {
|
||||
/* no bsdf or volume? */
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
CCL_NAMESPACE_END
|
||||
|
Reference in New Issue
Block a user