Make volume stack allocated conditionally, potentially based on the
actual nested level of objects in the scene.
Currently the nested level is estimated by number of volume objects.
This is a non-expensive check which is probably enough in practice
to get almost perfect memory usage and performance.
The conditional allocation is a bit tricky.
For the CPU we declare and define maximum possible volume stack,
because there are only that many integrator states on the CPU.
On the GPU we declare outer SoA to have all volume stack elements,
but only allocate actually needed ones. The actually used volume
stack size is passed as a pre-processor, which seems to be easiest
and fastest for the GPU state copy.
There seems to be no speed regression in the demo files on RTX6000.
Note that scenes with high nested level of volume will now be slower
but correct.
Differential Revision: https://developer.blender.org/D12759
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.
Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.
Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycleshttps://wiki.blender.org/wiki/Source/Render/Cycles
Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)
For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.
Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
The goal: allow to easily use AO approximation in scenes which combines
both small and large scale objects.
The idea: use per-object AO distance which will allow to override world
settings. Instancer object will "propagate" its AO distance to all its
instances unless the instance defines own distance (this allows to
modify AO distance in the shot files, without requiring to modify props
used in the shots.
Available from the new Fats GI Approximation panel in object properties.
Differential Revision: https://developer.blender.org/D12112
Offset rays from the flat surface to match where they would be for a smooth
surface as specified by the normals. In the shading panel there is now a
Shading Offset (existing option) and Geometry Offset (new).
The Geometry Offset works as follows:
* 0: disabled
* 0.001: only terminated triangles (normal points to the light, geometry
doesn't) are affected
* 0.1 (default): triangles at grazing angles are affected, and the effect
fades out
* 1: all triangles are affected
Limitations:
* The artifact is still visible in some cases, it could be that some quads
require to be treated specifically as quads.
* Inconsistent normals cause artifacts.
* If small objects cast shadows to a big low poly surface, the shadows can
appear to be in a wrong place - because the surface moved slightly above
the geometry. This can be noticed only at grazing angles to light.
* Approximated surfaces of two non-intersecting low-poly objects can overlap
that causes off-the-wall shadows.
Generally, using one or a few levels of subdivision can get rid of artifacts
faster than before.
Differential Revision: https://developer.blender.org/D11065
This issue originates from a missing BVH packing for visibility data
when it is modified.
To fix this, this adds update flags to the managers to carry the
modified visibility information from the Objects' modified flag to the
GeometryManager.
Another set of flags is added to determine which data need to be packed:
geometry, vertices, or visibility. Those flags are then used when
packing the primivites.
Reviewed By: brecht
Maniphest Tasks: T87929
Differential Revision: https://developer.blender.org/D11219
As a rather premature optimization from rBbbe6d4492823, Object bounds
were only computed when either the Object or its Geometry were modified.
Prior to rB42198e9eb03b, this would work, as the Geometry was tagged as
modified if the Object's transform was also modified.
Since this tagging is not done anymore due to side effects, and since at
the time bounds are computed Objects were already processed and tag as
unmodified, the check on the modified status was always false.
For now remove this check, so the bounds are always unconditionally
updated. If this ever becomes a performance problem in large scenes with
motion blur, we will then try to find a way to nicely optimize it.
This would only affect BHV2 as OptiX and Embree handle object bounds
themselves.
In order to update the BVH when only the transformations are changing,
we would tag the Object's Geometry as modified. However, when
displacement is used, and the vertices were not themselves modified,
this would cause us to redo the displacement on already displaced
vertices.
To fix this, use a specific update flag for detecting and notifying that
transformations were modified.
Regression caused by rBbbe6d44928235cd4a5cfbeaf1a1de78ed861bb92.
Static initialization order was not guaranteed to be correct for node base
types. Now wrap all initialization in accessor functions to ensure the order
is correct.
Did not cause any known bug on Linux/macOS/Windows, but showed up on this
platform.
This crash is caused by accessing object data in the kernel at an out of bound index from a deleted instance.
Cycles represents instances as Object nodes sharing the same Geometry node, so we need to tag the GeometryManager for an update if some objects are added or removed as no geometry might have been added or removed in order to properly update the BVH and its associated data arrays.
Regression caused by rBbbe6d4492823.
This optimizes device updates (during user edits or frame changes in
the viewport) by avoiding unnecessary computations. To achieve this,
we use a combination of the sockets' update flags as well as some new
flags passed to the various managers when tagging for an update to tell
exactly what the tagging is for (e.g. shader was modified, object was
removed, etc.).
Besides avoiding recomputations, we also avoid resending to the devices
unmodified data arrays, thus reducing bandwidth usage. For OptiX and
Embree, BVH packing was also multithreaded.
The performance improvements may vary depending on the used device (CPU
or GPU), and the content of the scene. Simple scenes (e.g. with no adaptive
subdivision or volumes) rendered using OptiX will benefit from this work
the most.
On average, for a variety of animated scenes, this gives a 3x speedup.
Reviewed By: #cycles, brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D9555
This is relatively expensive and as per the OSL spec, this value is not
expected to be meaningful for non-light shaders. This makes viewport updates
a little faster.
As a side effect also fixes T82723, viewport refresh issue with volume density.
The NanoVDB sampling implementation behaves different from dense texture sampling, so this
adds a small offset to the voxel indices to correct for that.
Also removes the need to modify the sampling coordinates by moving all the necessary
transformations into the image transform. See also T81454.
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various modified methods
on Nodes in favor of Node::is_modified which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
The existing code for this was incomplete. Each instance can now have a set
of attributes stored separately from geometry attributes. Geometry attributes
take precedence over instance attributes.
Ref D2057
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various `modified` methods
on Nodes in favor of `Node::is_modified` which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
Gathers information for time spent in the various managers or object (Film, Camera, etc.) being updated in Scene::device_update.
The stats include the total time spent in the device_update methods as well as time spent in subroutines (e.g. bvh build, displacement, etc.).
This does not qualify as a full blown profiler, but is useful to identify potential bottleneck areas.
The stats can be enabled and printed by passing `--cycles-print-stats` on the command line to Cycles, or `-- --cycles-print-stats` to Blender.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8596
This splits the volume related data (properties for rendering and attributes) of the Mesh node
into a new `Volume` node type.
This `Volume` node derives from the `Mesh` class since we generate a mesh for the bounds of the
volume, as such we can safely work on `Volumes` as if they were `Meshes`, e.g. for BVH creation.
However such code should still check for the geometry type of the object to be `MESH` or `VOLUME`
which may be bug prone if this is forgotten.
This is part of T79131.
Reviewed By: brecht
Maniphest Tasks: T79131
Differential Revision: https://developer.blender.org/D8538
Don't apply the matrix transform optimization in this case, curve points and
radius can't represent non-uniform scale the way is possible with triangle
meshes and vertices.
This would cause abrupt change if objects had e.g. motion blur in one frame
and not in the next.
Also removing the curve system manager which only stored a few curve intersection
settings. These are all changes towards making shape and subdivision settings
per-object instead of per-scene, but there is more work to do here.
Ref T73778
Depends on D8013
Maniphest Tasks: T73778
Differential Revision: https://developer.blender.org/D8014
The kernel did not work correctly when these were disabled anyway. The
optimized BVH traversal for the no instances case was also only used on
the CPU, so no longer makes sense to keep.
Ref T73778
Depends on D8010
Maniphest Tasks: T73778
Differential Revision: https://developer.blender.org/D8011
A new user parameter can be used to shift the shadow terminator
towards the light source. With it, one can hide some of the
artifacts that appear on coarse meshes with smooth shading.
Note that this technique is not engery conserving.
This is based on the work by the Appleseed renderer team.
Differential Revision: https://developer.blender.org/D7634
* Space: volume density and step size in object or world space
* Step Size: override automatic step size
* Clipping: values below this are ignored for tighter volume bounds
The last two are Cycles only currently.
Ref T73201
By default it will now set the step size to the voxel size for smoke and
volume objects, and 1/10th the bounding box for procedural volume shaders.
New settings are:
* Scene render/preview step rate: to globally adjust detail and performance
* Material step rate: multiplied with auto detected per-object step size
* World step size: distance to steo for world shader
Differential Revision: https://developer.blender.org/D1777
The object color property is added as an additional output in
the Object Info node.
Reviewers: brecht
Differential Revision: https://developer.blender.org/D5554
This commit adds a sample-based profiler that runs during CPU rendering and collects statistics on time spent in different parts of the kernel (ray intersection, shader evaluation etc.) as well as time spent per material and object.
The results are currently not exposed in the user interface or per Python yet, to see the stats on the console pass the "--cycles-print-stats" argument to Cycles (e.g. "./blender -- --cycles-print-stats").
Unfortunately, there is no clear way to extend this functionality to CUDA or OpenCL, so it is CPU-only for now.
Reviewers: brecht, sergey, swerner
Reviewed By: brecht, swerner
Differential Revision: https://developer.blender.org/D3892
This allows for extra output passes that encode automatic object and material masks
for the entire scene. It is an implementation of the Cryptomatte standard as
introduced by Psyop. A good future extension would be to add a manifest to the
export and to do plenty of testing to ensure that it is fully compatible with other
renderers and compositing programs that use Cryptomatte.
Internally, it adds the ability for Cycles to have several passes of the same type
that are distinguished by their name.
Differential Revision: https://developer.blender.org/D3538
This save a little memory and copying in the kernel by storing only a 4x3
matrix instead of a 4x4 matrix. We already did this in a few places, and
those don't need to be special exceptions anymore now.
This is in preparation of making Transform affine only, and also gives us
a little extra type safety so we don't accidentally treat it as a regular
4x4 matrix.