* Use common TextureInfo struct for all devices, except CUDA fermi.
* Move image sampling code to kernels/*/kernel_*_image.h files.
* Use arrays for data textures on Fermi too, so device_vector<Struct> works.
The issue was caused by light sample being evaluated to nan at some point.
This is root of the cause which is to be fixed, but is very hard to trace down
especially via ssh (the issue only happens on AVX2 release build). Will give it
a closer look when back to my AVX2 machine.
For until then this is a good check to have anyway, it corresponds to what's
happening in regular radiance sum.
The work size is still very conservative, and this doesn't help for progressive
refine. For that we will need to render multiple tiles at the same time. But this
should already help for denoising renders that require too much memory with big
tiles, and just generally soften the performance dropoff with small tiles.
Differential Revision: https://developer.blender.org/D2856
This was originally done with the first sample in the kernel for better
performance, but it doesn't work anymore with atomics. Any benefit was
very minor anyway, too small to measure it seems.
This is done by storing only a subset of PathRadiance, and by storing
direct light immediately in the main PathRadiance. Saves about 10% of
CUDA stack memory, and simplifies subsurface indirect ray code.
For the first bounce we now give each BSDF or BSSRDF a minimum sample weight,
which helps reduce noise for a typical case where you have a glossy BSDF with
a small weight due to Fresnel, but not necessarily small contribution relative
to a diffuse or transmission BSDF below.
We can probably find a better heuristic that also enables this on further
bounces, for example when looking through a perfect mirror, but I wasn't able
to find a robust one so far.
Similar to what we did for area lights previously, this should help
preserve stratification when using multiple BSDFs in theory. Improvements
are not easily noticeable in practice though, because the number of BSDFs
is usually low. Still nice to eliminate one sampling dimension.
Previously the Sobol pattern suffered from some correlation issues that
made the outline of objects like a smoke domain visible. This helps
simplify the code and also makes some other optimizations possible.
Rather than treating all ray types equally, we now always render 1 glossy
bounce and unlimited transmission bounces. This makes it possible to get
good looking results with low AO bounces settings, making it useful to
speed up interior renders for example.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D2818
Previously we used a 1D sequence to select a light, and another 2D sequence
to sample a point on the light. For multiple lights this meant each light
would get a random subset of a 2D stratified sequence, which is not
guaranteed to be stratified anymore.
Now we use only a 2D sequence, split into segments along the X axis, one for
each light. The samples that fall within a segment then each are a stratified
sequence, at least in the limit. So for example for two lights, we split up
the unit square into two segments [0,0.5[ x [0,1[ and [0.5,1[ x [0,1[.
This doesn't make much difference in most scenes, mainly helps if you have a
few large area lights or some types of HDR backgrounds.
This causes render differences in some scenes, for example fishy_cat
and pabellon scenes render brighter in a few spots. This is an old
bug, not due to recent RR changes.
Disabled forceinline for those architectures, which seems to be compiling
successfully more often.
There might be ~3% slowdown based on quick tests, but better be rendering
something rather than failing to compile kernels again and again.
Those architectures will be doomed for abandon once we'll switch to toolkit 9.
Empty BVH nodes are set to NaN which must be preserved all the way to the
tnear <= tfar test which can then give false for empty nodes. This needs
strict semantices and careful argument ordering for min() and max(), so
the second argument is used if either of the arguments is NaN.
Fixes T52635: crash in BVH traversal with SSE4.1.
Differential Revision: https://developer.blender.org/D2828
Fishy cat benchmark was rendering with wrong shadows. Cause is unclear,
adding printf or rearranging code seems to avoid this issue, possibly a
compiler bug. This reverts the fix and solves the OSL bug elsewhere.
This was needed when we accessed OSL closure memory after shader evaluation,
which could get overwritten by another shader evaluation. But all closures
are immediatley converted to ShaderClosure now, so no longer needed.