Since the kernel split work we're now having quite a few of new files, majority
of which are related on the kernel entry points. Keeping those files in the
root kernel folder will eventually make it really hard to follow which files are
actual implementation of Cycles kernel.
Those files are now moved to kernel/kernels/<device_type>. This way adding extra
entry points will be less noisy. It is also nice to have all device-specific
files grouped together.
Another change is in the way how split kernel invokes logic. Previously all the
logic was implemented directly in the .cl files, which makes it a bit tricky to
re-use the logic across other devices. Since we'll likely be looking into doing
same split work for CUDA devices eventually it makes sense to move logic from
.cl files to header files. Those files are stored in kernel/split. This does not
mean the header files will not give error messages when tried to be included
from other devices and their arguments will likely be changed, but having such
separation is a good start anyway.
There should be no functional changes.
Reviewers: juicyfruit, dingto
Differential Revision: https://developer.blender.org/D1314
Driver fails to compile kernel in reasonable time for those devices here,
so for easier testing of the OpenCL split kernel work disabling bake kernel
for now.
This required allocating some memory related on object transform needed
by ShaderData and currently it is done for all the platforms. Since we're
targeting full feature-complete platforms this is rather acceptable at
this point and in the future we'll do selective NO_HAIR/NO_SSS/NO_BLUR
kernels.
This is experimental still and in fact there're some major issues on
NVidia platform and it's not really clear if it's a bug in compiler,
some uninitizlied variable or other kind of issue.
This file was actually checking for features enabled on CPU and surely all
of them were enabled, so removing them does not cause any difference.
ideally we'll need to do runtime feature detection and just pass some stuff
as NULL to the kernel, or maybe also have variadic kernel entry points which
is also possible quite easily.
It's good for testing and seems to work quite reliably here.
This probably not totally cheap in terms of performance, but this we
could solve quite easily by selective kernel compilation once other
things are tested/proved to be reliable.
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.
Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.
Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.
This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.
More feature will be enabled once they're ported to the split kernel and
tested.
Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.
Based on the research paper:
https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf
Here's the documentation:
https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit
Design discussion of the patch:
https://developer.blender.org/T44197
Differential Revision: https://developer.blender.org/D1200
The goal is to be able to compile kernel with nodes which are actually needed
to render current scene, hence improving performance of the kernel,
The idea is:
- Have few node groups, starting with a group which contains nodes are used
really often, and then couple of groups which will be extension of this one.
- Have feature-based nodes disabling, so it's possible to disable nodes related
to features which are not used with the currently used nodes group.
This commit only lays down needed routines for this approach, actual split will
happen later after gathering statistics from bunch of production scenes.
This header was already included into some of the implementation files already,
and this change is needed for some upcoming changes in the way how kernel_types.h
works.
Now we calculate color in range 800..12000 using an approximation a/x+bx+c for R and G and ((at + b)t + c)t + d) for B.
Max absolute error for RGB for non-lut function is less than 0.0001, which is enough to get the same 8 bit/channel color as for OSL with a noticeable performance difference.
However there is a slight visible difference between previous non-OSL implementation because of lookup table interpolation and offset-by-one mistake.
The previous implementation gave black color outside of soft range (t > 12000), now it gives the same color as for 12000.
Also blackbody node without input connected is being converted to value input at shader compile time.
Reviewers: dingto, sergey
Reviewed By: dingto
Subscribers: nutel, brecht, juicyfruit
Differential Revision: https://developer.blender.org/D1280
This replaces sequential ray moving followed with scene intersection with
single BVH traversal, which gives us all possible intersections.
Only implemented for CPU, due to qsort and a bigger memory usage on GPU
which we rather avoid. GPU still uses the regular bvh volume intersection code, while CPU now uses the new code.
This improves render performance for scenes with:
a) Camera inside volume mesh
b) SSS mesh intersecting a volume mesh/domain
In simple volume files (not much geometry) performance is roughly the same
(slightly faster). In files with a lot of geometry, the performance
increase is larger. bmps.blend with a volume shader and camera inside the
mesh, it renders ~10% faster here.
Patch by Sergey and myself.
Differential Revision: https://developer.blender.org/D1264
This patch adds support for light portals: objects that help sampling the
environment light, therefore improving convergence. Using them tor other
lights in a unidirectional pathtracer is virtually useless.
The sampling is done with the area-preserving code already used for area lamps.
MIS is used both for combination of different portals and for combining portal-
and envmap-sampling.
The direction of portals is considered, they aren't used if the sampling point
is behind them.
Reviewers: sergey, dingto, #cycles
Reviewed By: dingto, #cycles
Subscribers: Lapineige, nutel, jtheninja, dsisco11, januz, vitorbalbio, candreacchio, TARDISMaker, lichtwerk, ace_dragon, marcog, mib2berlin, Tunge, lopataasdf, lordodin, sergey, dingto
Differential Revision: https://developer.blender.org/D1133
This more a workaround for CUDA optimizer which can't optimize clamp(x, 0, 1)
into a single instruction and uses 4 instructions instead.
Original patch by @lockal with own modification:
Don't make changes outside of the kernel. They don't make any difference
anyway and term saturate() has a bit different meaning outside of kernel.
This gives around 2% of speedup in Barcelona file, but in more complex shader
setups with lots of math nodes with clamping speedup could be much nicer.
Subscribers: dingto
Projects: #cycles
Differential Revision: https://developer.blender.org/D1224
This way we can get rid of inefficient memory usage caused by BVH boundbox
part being unused by leaf nodes but still being allocated for them. Doing
such split allows to save 6 of float4 values for QBVH per leaf node and 3
of float4 values for regular BVH per leaf node.
This translates into following memory save using 01.01.01.G rendered
without hair:
Device memory size Device memory peak Global memory peak
Before the patch: 4957 5051 7668
With the patch: 4467 4562 7332
The measurements are done against current master. Still need to run speed tests
and it's hard to predict if it's faster or not: on the one hand leaf nodes are
now much more coherent in cache, on the other hand they're not so much coherent
with regular nodes anymore.
Reviewers: brecht, juicyfruit
Subscribers: venomgfx, eyecandy
Differential Revision: https://developer.blender.org/D1236
Issue was caused by MSVC not being able to optimize some code out in the same
way as GCC/Clang does, so now that parts of code are explicitly unfolded in
order to help compilers out.
This makes speed loss much less drastic on my laptop. That's probably as good
as we can do with MSVC without investing infinite amount of time looking trying
to workaround the optimizer.
Originally we thought it's needed in order to distinguish builtin file from
filename which starts with '@', but the filepath is actually full path there
and it's unlikely to have file system where '@' is a proper root character.
Surprisingly this does not give visible speed differences, but it's still
nice to get rid of redundant check.
Our own implementation is in fact the same performance as in fast_math from
OpenShadingLanguage, but implementation from fast_math is using explicit madd
function, which increases chance of compiler deciding to use intrinsics.
This patch is based on some work done in D788 and re-formulation from Beckmann
implementation in OpenShadingLanguage.
Skipping texture lookup helps a lot on GPUs where it's more expensive to access
texture memory than to do some extra calculation in threads.
CPU code still uses lookup-table based approach since this seems to be still
faster (at least on computers i've got access to).
This change gives about 2% speedup on BMW scene with GTX560TI.