Instead of treating Fermi GPU limits as default,
and overriding them for other devices,
we now nicely set them for each platform.
* Due to setting values for all platforms,
we don't have to offset the slot id for OpenCL anymore,
as the image manager wont add float images for OpenCL now.
* Bugfix: TEX_NUM_FLOAT_IMAGES was always 5, even for CPU,
so the code in svm_image.h clamped float textures with alpha on CPU after the 5th slot.
Reviewers: #cycles, brecht
Reviewed By: #cycles, brecht
Subscribers: brecht
Differential Revision: https://developer.blender.org/D1925
Supports both smoke/fire and point density textures now.
Reduces number of textures available for sm_20 and sm_21, but you have
to compromise somewhere on such a limited hardware.
Currently limited to linear interpolation only, and decoupled ray
marching is not supported yet. Think those could be considered just a
further improvement.
Some quick example:
https://developer.blender.org/F282934
Code is minimal and we can fully consider it a fix for missing
support of 3D textures with CUDA.
Reviewers: lukasstockner97, brecht, juicyfruit, dingto
Reviewed By: brecht, juicyfruit, dingto
Subscribers: mib2berlin
Differential Revision: https://developer.blender.org/D1806
This commit contains all the work related on the AMD megakernel split work
which was mainly done by Varun Sundar, George Kyriazis and Lenny Wang, plus
some help from Sergey Sharybin, Martijn Berger, Thomas Dinges and likely
someone else which we're forgetting to mention.
Currently only AMD cards are enabled for the new split kernel, but it is
possible to force split opencl kernel to be used by setting the following
environment variable: CYCLES_OPENCL_SPLIT_KERNEL_TEST=1.
Not all the features are supported yet, and that being said no motion blur,
camera blur, SSS and volumetrics for now. Also transparent shadows are
disabled on AMD device because of some compiler bug.
This kernel is also only implements regular path tracing and supporting
branched one will take a bit. Branched path tracing is exposed to the
interface still, which is a bit misleading and will be hidden there soon.
More feature will be enabled once they're ported to the split kernel and
tested.
Neither regular CPU nor CUDA has any difference, they're generating the
same exact code, which means no regressions/improvements there.
Based on the research paper:
https://research.nvidia.com/sites/default/files/publications/laine2013hpg_paper.pdf
Here's the documentation:
https://docs.google.com/document/d/1LuXW-CV-sVJkQaEGZlMJ86jZ8FmoPfecaMdR-oiWbUY/edit
Design discussion of the patch:
https://developer.blender.org/T44197
Differential Revision: https://developer.blender.org/D1200
This more a workaround for CUDA optimizer which can't optimize clamp(x, 0, 1)
into a single instruction and uses 4 instructions instead.
Original patch by @lockal with own modification:
Don't make changes outside of the kernel. They don't make any difference
anyway and term saturate() has a bit different meaning outside of kernel.
This gives around 2% of speedup in Barcelona file, but in more complex shader
setups with lots of math nodes with clamping speedup could be much nicer.
Subscribers: dingto
Projects: #cycles
Differential Revision: https://developer.blender.org/D1224
This way we can get rid of inefficient memory usage caused by BVH boundbox
part being unused by leaf nodes but still being allocated for them. Doing
such split allows to save 6 of float4 values for QBVH per leaf node and 3
of float4 values for regular BVH per leaf node.
This translates into following memory save using 01.01.01.G rendered
without hair:
Device memory size Device memory peak Global memory peak
Before the patch: 4957 5051 7668
With the patch: 4467 4562 7332
The measurements are done against current master. Still need to run speed tests
and it's hard to predict if it's faster or not: on the one hand leaf nodes are
now much more coherent in cache, on the other hand they're not so much coherent
with regular nodes anymore.
Reviewers: brecht, juicyfruit
Subscribers: venomgfx, eyecandy
Differential Revision: https://developer.blender.org/D1236
This inconsistency drove me totally crazy, it's really confusing
when it's inconsistent especially when you work on both Cycles and
Blender sides.
Shouldn;t cause merge PITA, it's whitespace changes only, Git should
be able to merge it nicely.
OpenCL doesn't let you to get address of vector components, which
is kinda annoying. On the other hand, maybe now compiler will have
more chances to optimize something out.
This way Cycles finally becomes feature-full on image projections
compared to Blender Internal and Gooseberry Project Team could
finally finish the movie.
After discussion with cambo here we decided it's better to choose arbitrary side of the box
(in this case it's X-axis) and use image from it. That's better than doing a blackness.
P.S. This is literally a corner case anyway.
* Added support for uchar4 attributes to Cycles' attribute system.
* This is used for Vertex Colors now, which saves some memory (4 unsigned characters, instead of 4 floats).
* GPU Texture Limit on sm_20 and sm_21 decreased from 95 to 94, because we need a new texture for the uchar4 attributes. This is no problem for sm_30 or newer.
Part of my GSoC 2014.
This makes the code a bit easier to understand, and might come in handy
if we want to reuse more Embree code.
Differential Revision: https://developer.blender.org/D482
Code by Brecht, with fixes by Lockal, Sergey and myself.
Instead of 95, we can use 145 images now. This only affects Kepler and above (sm30, sm_35 and sm_50).
This can be increased further if needed, but let's first test if this does not come with a performance impact.
Originally developed during my GSoC 2013.
All textures are sampled bi-linear currently with the exception of OSL there texture sampling is fixed and set to smart bi-cubic.
This patch adds user control to this setting.
Added:
- bits to DNA / RNA in the form of an enum for supporting multiple interpolations types
- changes to the image texture node drawing code ( add enum)
- to ImageManager (this needs to know to allocate second texture when interpolation type is different)
- to node compiler (pass on interpolation type)
- to device tex_alloc this also needs to get the concept of multiple interpolation types
- implementation for doing non interpolated lookup for cuda and cpu
- implementation where we pass this along to osl ( this makes OSL also do linear untill I add smartcubic to the interface / DNA/ RNA)
Reviewers: brecht, dingto
Reviewed By: brecht
CC: dingto, venomgfx
Differential Revision: https://developer.blender.org/D317
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.
Ref T37477.
Issue was caused by changed order of texture slots -- float textures
have got lower slots indices than byte textures. OpenCL was still assuming
byte textures goes before float.
Regular rendering now works tiled, and supports save buffers to save memory
during render and cache render results.
Brick texture node by Thomas.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Brick_Texture
Image texture Blended Box Mapping.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Textures#Image_Texturehttp://mango.blender.org/production/blended_box/
Various bug fixes by Sergey and Campbell.
* Fix for reading freed memory in some node setups.
* Fix incorrect memory read when synchronizing mesh motion.
* Fix crash appearing when direct light usage is different on different layers.
* Fix for vector pass gives wrong result in some circumstances.
* Fix for wrong resolution used for rendering Render Layer node.
* Option to cancel rendering when doing initial synchronization.
* No more texture limit when using CPU render.
* Many fixes for new tiled rendering.
existing "Equirectangular". This projection is useful to create light probes
from a chrome ball placed in a real scene. It expects as input a photograph of
the chrome ball, cropped so the ball just fits inside the image boundaries.
Example setup with panorama camera and mixing two (poor quality) photographs
from different viewpoints to avoid stretching and hide the photographer:
http://www.pasteall.org/pic/28036
and 5 float image textures. For CPU render this limit will be lifted later
on with image cache support. Patch by Mike Farnsworth.
Also changed color space option in image/environment texture node, to show
options Color and Non-Color Data, instead of sRGB and Linear, this is more
descriptive, and it was not really correct to equate Non-Color Data with
Linear.
By default lighting from the world is computed solely with indirect light
sampling. However for more complex environment maps this can be too noisy, as
sampling the BSDF may not easily find the highlights in the environment map
image. By enabling this option, the world background will be sampled as a lamp,
with lighter parts automatically given more samples.
Map Resolution specifies the size of the importance map (res x res). Before
rendering starts, an importance map is generated by "baking" a grayscale image
from the world shader. This will then be used to determine which parts of the
background are light and so should receive more samples than darker parts.
Higher resolutions will result in more accurate sampling but take more setup
time and memory.
Patch by Mike Farnsworth, thanks!
* Passes renamed to samples
* Camera lens radius renamed to aperature size/blades/rotation
* Glass and fresnel nodes input is now index of refraction
* Glossy and velvet fresnel socket removed
* Mix/add closure node renamed to mix/add shader node
* Blend weight node added for shader mixing weights
There is some version patching code for reading existing files, but it's not
perfect, so shaders may work a bit different.
be automated but need to think about how to do this, not so simply in a node
system. But guideline for now is, for color textures set to sRGB, for things like
bump or roughness map, set to Linear.