Add support back for reinstancePhysics mesh, a frequently requested feature in the BGE forums.
from what I can tell Sumo supported this but bullet never did.
Currently only accessible via python at the moment.
- rigid body, dynamic, static types work.
- instanced physics meshes are modified too.
- compound shapes are not supported.
Physics mesh can be re-instanced from...
* shape keys & armature deformations
* subsurf (any other modifiers too)
* RAS_TexVert's (can be modified from python)
Moved the reinstancePhysicsMesh functions from RAS_MeshObject into KX_GameObject since the physics data is stored here.
video and blend file demo.
http://www.graphicall.org/ftp/ideasman42/reinstance.ogvhttp://www.graphicall.org/ftp/ideasman42/reinstance_demo.blend
* Diffuse/specular ramps works again.
* Wire is now a material type next to Surface and Halo.
* Removed Volume material type option until it is actually there.
* Some button layout tweaks.
Logic Panel:
- world settings (moved from world)
... that includes physic engine selection + gravity
- game player (from gamesettings, it wasn't wrapped)
- stereo/dome (from gamesettings, it wasn't wrapped)
... separated stereom into stereoflag and stereomode
- properties
... (didn't touch it)
Buttons Game Panel:
(wip panel)
- Physics (moved from Logic Panel)
... it will be a datablock in the future (right Campbell ?)
- Material Physics (not currently implemented)
... a datablock link to the materials of an object + the dynamic physic variables
* NOTE:
in readfile.c::do_version I couldn't do if(scene->world). There is something wrong with scenes with an unlinked world. So so far we are ignoring the old values....
* removed radiosity render code, DNA and RNA (left in radio render pass options), we'll get GI to replace this probably, better allow baking to vertex colors for people who used this.
* removed deprecated solid physics library, sumo integrations and qhull, a dependency
* removed ODE, was no longer being build or supported
* remove BEOS and AMIGA defines and references in Makefiles.
Note that the animation conversion from existing 2.4x blend files doesnt yet set the Action pointer in the actuator so the only way to test is to use the python api to set the new converted action active on the actuator because there is no user interface.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r19820:HEAD
Notes:
* Game and sequencer RNA, and sequencer header are now out of date
a bit after changes in trunk.
* I didn't know how to port these bugfixes, most likely they are
not needed anymore.
* Fix "duplicate strip" always increase the user count for ipo.
* IPO pinning on sequencer strips was lost during Undo.
+ fixed Python method, PyArg_ParseTuple already checks for errors, no returning of NULL, thanks Campbell too)
+ added linear/angular spring for each of the 6DOFs of a generic 6dof constraint. This makes the generic 6dof constraint very versatile.
http://blenderartists.org/forum/showpost.php?p=1382653&postcount=102
(todo: expose this setting in World setting GUI)
Expose contact processing threshold in Advanced GUI, next to rigid body margin, called CPT.
Default to 1, makes rigid body stacking a bit more stable, smaller values makes sliding easier (at the cost of easier jittering).
Disabled for 'dynamic' objects that don't rotate, because characters etc. always need smooth sliding.
SCA_RandomActuator: The random generator was shared between replicas and not deleted. Added ref counting between replicas to allow deletion at the end.
KX_Camera: The scenegraph node was not deleted for temporary cameras (ImageMirror and shadow), causing 500 bytes leak per frame and per shadow light.
KX_GameActuator: Global dictionary buffer was not deleted after saving.
KX_MotionState: The motion state for compound child was not deleted
KX_ReplaceMeshActuator: The mesh was unnecessarily converted for each actuator and not deleted, causing large memleak.
After these fix, YoFrankie runs without memleak.
Four new buttons in World settings to control frame rate:
fps: Nominal frame rate in frame per second.
Also sets the physics timestep = 1/fps
phys: Maximum number of physics timestep per game frame in case
the actual fps is less than nominal. This allows the
physics to keep up with real time even if the graphics slows
down the game.
sub: Fixed number of simulation substeps per physic timestep.
Improves the precision of the physics simulation. Useful for
fast moving objects for example.
log: Maximum number of logic steps per game frame in case the
actual fps is less than nominal. This allows the logic
system to follow the physics simulation.
Upper bound = phys
(setting the value higher than phys has no effect).
On games with heavy logic system, it is useful to set this
value to 1, to keep logic time under control.
All these values were already accessible from Python except phys:
GameLogic.getMaxPhysicsFrame():
Gets the maximum number of physics frame per render frame.
GameLogic.setMaxPhysicsFrame(phys):
Sets the maximum number of physics timestep that are executed per render frame.
Higher value allows physics to keep up with realtime even if graphics slows down the game.
Physics timestep is fixed and equal to 1/tickrate (see setLogicTicRate)
maxphysics/ticrate is the maximum delay of the renderer that physics can compensate.
phys: integer
Compound shape control
======================
1) GUI control
It is now possible to control which child shape is added to
a parent compound shape in the Physics buttons. The "Compound"
shape button becomes "Add to parent" on child objects and
determines whether the child shape is to be added to the top
parent compound shape when the game is stated.
Notes: * "Compound" is only available to top parent objects
(objects without parent).
* Nesting of compound shape is not possible: a child
object with "Add to parent" button set will be added
to the top parent compound shape, regardless of its
position in the parent-child hierarchy and even if its
immediate parent doesn't have the "Add to parent" button set.
2) runtime control
It is now possible to control the compound shape at runtime:
The SetParent actuator has a new "Compound" button that indicates
whether the object shape should be added to the compound shape
of the parent object, provided the parent has a compound shape
of course. If not, the object retain it's individual state
while parented.
Similarly, the KX_GameObject.setParent() python function has
a new compound parameter.
Notes: * When an object is dynamically added to a compound
shape, it looses temporarily all its physics capability
to the benefit of the parent: it cannot register collisions
and the characteristics of its shape are lost (ghost, sensor,
dynamic, etc.).
* Nested compound shape is not supported: if the object
being parented is already a compound shape, it is not
added to the compound parent (as if the Compound option
was not set in the actuator or the setParent function).
* To ensure compatibility with old blend files, the Blender
subversion is changed to 2.48.5 and the old blend files
are automatically converted to match the old behavior:
all children of a Compound object will have the "Add to
parent" button set automatically.
Child ghost control
===================
It is now possible to control if an object should becomes ghost
or solid when parented. This is only applicable if the object
is not added to the parent compound shape (see above).
A new "Ghost" button is available on the SetParent actuator to
that effect. Similarly the KX_GameObject.setParent() python function
has a new compound parameter.
Notes: * This option is not applicable to sensor objects: they stay
ghost all the time.
* Make sure the child object does not enter in collision with
the parent shape when the Ghost option if off and the parent is
dynamic: the collision creates a reaction force but the parent
cannot escape the child, so the force builds up and produces
eratic movements.
* The collision capability of an ordinary object (dynamic or static)
is limited when it is parented: it becomes automatically static
and can only detect dynamic and sensor objects.
* A sensor object retain its full collision capability when parented:
it can detect static and dynamic object.
Python control
==============
KX_GameObject.setParent(parent,compound,ghost):
Sets this object's parent.
Control the shape status with the optional compound and ghost parameters:
compound=1: the object shape should be added to the parent compound shape (default)
compound=0: the object should keep its individual shape.
In that case you can control if it should be ghost or not:
ghost=1 if the object should be made ghost while parented (default)
ghost=0 if the object should be solid while parented
Note: if the object type is sensor, it stays ghost regardless of ghost parameter
parent: KX_GameObject reference or string (object name w/o OB prefix)
A new type of "Sensor" physics object is available in the GE for advanced
collision management. It's called Sensor for its similarities with the
physics objects that underlie the Near and Radar sensors.
Like the Near and Radar object it is:
- static and ghost
- invisible by default
- always active to ensure correct collision detection
- capable of detecting both static and dynamic objects
- ignoring collision with their parent
- capable of broadphase filtering based on:
* Actor option: the collisioning object must have the Actor flag set to be detected
* property/material: as specified in the collision sensors attached to it
Broadphase filtering is important for performance reason: the collision points
will be computed only for the objects that pass the broahphase filter.
- automatically removed from the simulation when no collision sensor is active on it
Unlike the Near and Radar object it can:
- take any shape, including triangle mesh
- be made visible for debugging (just use the Visible actuator)
- have multiple collision sensors using it
Other than that, the sensor objects are ordinary objects. You can move them
freely or parent them. When parented to a dynamic object, they can provide
advanced collision control to this object.
The type of collision capability depends on the shape:
- box, sphere, cylinder, cone, convex hull provide volume detection.
- triangle mesh provides surface detection but you can give some volume
to the suface by increasing the margin in the Advanced Settings panel.
The margin applies on both sides of the surface.
Performance tip:
- Sensor objects perform better than Near and Radar: they do less synchronizations
because of the Scenegraph optimizations and they can have multiple collision sensors
on them (with different property filtering for example).
- Always prefer simple shape (box, sphere) to complex shape whenever possible.
- Always use broadphase filtering (avoid collision sensor with empty propery/material)
- Use collision sensor only when you need them. When no collision sensor is active
on the sensor object, it is removed from the simulation and consume no CPU.
Known limitations:
- When running Blender in debug mode, you will see one warning line of the console:
"warning btCollisionDispatcher::needsCollision: static-static collision!"
In release mode this message is not printed.
- Collision margin has no effect on sphere, cone and cylinder shape.
Other performance improvements:
- Remove unnecessary interpolation for Near and Radar objects and by extension
sensor objects.
- Use direct matrix copy instead of quaternion to synchronize orientation.
Other bug fix:
- Fix Near/Radar position error on newly activated objects. This was causing
several detection problems in YoFrankie
- Fix margin not passed correctly to gImpact shape.
- Disable force/velocity actions on static objects
This commit completes the support for modifiers in the BGE.
- The physic shape is generated according to the derived mesh.
This is true for all types of shapes and all types of
objects except soft body.
- Optimization for static derived mesh (mesh with modifiers
but no armature and no shape keys). Replicas will share
the derived mesh and the display list: less memory and
faster rendering. With this optimization, the static
derived mesh will render as fast as if the modifiers were
applied.
Known Limits:
- Sharing of mesh and display list is only possible between
in-game replicas or dupligroup. If you want to instantiate
multiple objects with modifiers, use dupligroup to ensure
best memory and GPU utilization.
- rayCast() will interact with the derived mesh as follow:
Hit position and hit normal are the real values according
to the derived mesh but the KX_PolyProxy object refers to
the original mesh. You should use it only to retrieve the
material.
- Dynamic derived mesh have very poor performance:
They use direct openGL calls for rendering (no support
for display list and vertex array) and they dont't share
the derived mesh memory. Always apply modifiers on dynamic
mesh for best performance.
- Time dependent modifiers are not supported.
- Modifiers are not supported for Bullet soft body.
This commit extends the technique of dynamic linked list to the logic
system to eliminate as much as possible temporaries, map lookup or
full scan. The logic engine is now free of memory allocation, which is
an important stability factor.
The overhead of the logic system is reduced by a factor between 3 and 6
depending on the logic setup. This is the speed-up you can expect on
a logic setup using simple bricks. Heavy bricks like python controllers
and ray sensors will still take about the same time to execute so the
speed up will be less important.
The core of the logic engine has been much reworked but the functionality
is still the same except for one thing: the priority system on the
execution of controllers. The exact same remark applies to actuators but
I'll explain for controllers only:
Previously, it was possible, with the "executePriority" attribute to set
a controller to run before any other controllers in the game. Other than
that, the sequential execution of controllers, as defined in Blender was
guaranteed by default.
With the new system, the sequential execution of controllers is still
guaranteed but only within the controllers of one object. the user can
no longer set a controller to run before any other controllers in the
game. The "executePriority" attribute controls the execution of controllers
within one object. The priority is a small number starting from 0 for the
first controller and incrementing for each controller.
If this missing feature is a must, a special method can be implemented
to set a controller to run before all other controllers.
Other improvements:
- Systematic use of reference in parameter passing to avoid unnecessary data copy
- Use pre increment in iterator instead of post increment to avoid temporary allocation
- Use const char* instead of STR_String whenever possible to avoid temporary allocation
- Fix reference counting bugs (memory leak)
- Fix a crash in certain cases of state switching and object deletion
- Minor speed up in property sensor
- Removal of objects during the game is a lot faster
Use dynamic linked list to handle scenegraph rather than dumb scan
of the whole tree. The performance improvement depends on the fraction
of moving objects. If most objects are static, the speed up is
considerable. The following table compares the time spent on
scenegraph before and after this commit on a scene with 10000 objects
in various configuratons:
Scenegraph time (ms) Before After
(includes culling)
All objects static, 8.8 1.7
all visible but small fraction
in the view frustrum
All objects static, 7,5 0.01
all invisible.
All objects moving, 14.1 8.4
all visible but small fraction
in the view frustrum
This tables shows that static and invisible objects take no CPU at all
for scenegraph and culling. In the general case, this commit will
speed up the scenegraph between 2x and 5x. Compared to 2.48a, it should
be between 4x and 10x faster. Further speed up is possible by making
the scenegraph cache-friendly.
Next round of performance improvement will be on the rasterizer: use
the same dynamic linked list technique for the mesh slots.
Realtime modifiers applied on mesh objects will be supported in
the game engine with the following limitations:
- Only real time modifiers are supported (basically all of them!)
- Virtual modifiers resulting from parenting are not supported:
armature, curve, lattice. You can still use these modifiers
(armature is really not recommended) but in non parent mode.
The BGE has it's own parenting capability for armature.
- Modifiers are computed on the host (using blender modifier
stack).
- Modifiers are statically evaluated: any possible time dependency
in the modifiers is not supported (don't know enough about
modifiers to be more specific).
- Modifiers are reevaluated if the underlying mesh is deformed
due to shape action or armature action. Beware that this is
very CPU intensive; modifiers should really be used for static
objects only.
- Physics is still based on the original mesh: if you have a
mirror modifier, the physic shape will be limited to one half
of the resulting object. Therefore, the modifiers should
preferably be used on graphic objects.
- Scripts have no access to the modified mesh.
- Modifiers that are based on objects interaction (boolean,..)
will not be dependent on the objects position in the GE.
What you see in the 3D view is what you get in the GE regardless
on the object position, velocity, etc.
Besides that, the feature is compatible with all the BGE features
that affect meshes: armature action, shape action, relace mesh,
VideoTexture, add object, dupligroup.
Known problems:
- This feature is a bit hacky: the BGE uses the derived mesh draw
functions to display the object. This drawing method is a
bit slow and is not 100% compatible with the BGE. There may
be some problems in multi-texture mode: the multi-texture
coordinates are not sent to the GPU.
Texface and GLSL on the other hand should be fully supported.
- Culling is still based on the extend of the original mesh.
If you have a modifer that extends the size of the mesh,
the object may disappear while still in the view frustrum.
- Derived mesh is not shared between replicas.
The derived mesh is allocated and computed for each object
with modifiers, regardless if they are static replicas.
- Display list are not created on objects with modifiers.
I should be able to fix the above problems before release.
However, the feature is already useful for game development.
Once you are ready to release the game, you can apply the modifiers
to get back display list support and mesh sharing capability.
MSVC, scons, Cmake, makefile updated.
Enjoy
/benoit
This changes how the BGE classes and Python work together, which hasnt changed since blender went opensource.
The main difference is PyObjectPlus - the base class for most game engine classes, no longer inherit from PyObject, and cannot be cast to a PyObject.
This has the advantage that the BGE does not have to keep 2 reference counts valid for C++ and Python.
Previously C++ classes would never be freed while python held a reference, however this reference could be problematic eg: a GameObject that isnt in a scene anymore should not be used by python, doing so could even crash blender in some cases.
Instead PyObjectPlus has a member "PyObject *m_proxy" which is lazily initialized when python needs it. m_proxy reference counts are managed by python, though it should never be freed while the C++ class exists since it holds a reference to avoid making and freeing it all the time.
When the C++ class is free'd it sets the m_proxy reference to NULL, If python accesses this variable it will raise a RuntimeError, (check the isValid attribute to see if its valid without raising an error).
- This replaces the m_zombie bool and IsZombie() tests added recently.
In python return values that used to be..
return value->AddRef();
Are now
return value->GetProxy();
or...
return value->NewProxy(true); // true means python owns this C++ value which will be deleted when the PyObject is freed
Hiding faces is a editing option like selection and should not change rendering, it wasn't even working right because meshes without UVs ignored it.
I thought this was needed for compatibility with old files but just noticed this messes up 2 of the files in demos-2.42.zip
Clamp objects min/max velocity.
Accessed with bullet physics from the advanced button with dynamic and rigid body objects.
- useful for preventing unstable physics in cases where objects move too fast.
- can add linear velocity with the motion actuator to give smooth motion transitions, without moving too fast.
- minimum velocity means objects don't stop moving.
- python scripts can adjust these values speedup or throttle velocity in the existing direction.
Also made copy properties from an object with no properties work (in case you want to clear all props)
Added occlusion culling capability in the BGE.
More info: http://wiki.blender.org/index.php/Dev:Ref/Release_Notes/2.49/Game_Engine#BGE_Scenegraph_improvement
MSVC, scons, cmake, Makefile updated.
Other minor performance improvements:
- The rasterizer was computing the openGL model matrix of the objects too many times
- DBVT view frustrum culling was not properly culling behind the near plane:
Large objects behind the camera were sent to the GPU
- Remove all references to mesh split/join feature as it is not yet functional
- Only try and remove light objects from the light list.
- Only loop over mesh verts once when getting the bounding box
- dont return None from python attribute localInertia when theres no physics objects. better return a vector still.
- add names to send message PyArg_ParseTuple functions.
This commit contains a number of performance improvements for the
BGE in the Scenegraph (parent relation between objects in the
scene) and view frustrum culling.
The scenegraph improvement consists in avoiding position update
if the object has not moved since last update and the removal
of redundant updates and synchronization with the physics engine.
The view frustrum culling improvement consists in using the DBVT
broadphase facility of Bullet to build a tree of graphical objects
in the scene. The elements of the tree are Aabb boxes (Aligned
Axis Bounding Boxes) enclosing the objects. This provides good
precision in closed and opened scenes. This new culling system
is enabled by default but just in case, it can be disabled with
a button in the World settings. There is no do_version in this
commit but it will be added before the 2.49 release. For now you
must manually enable the DBVT culling option in World settings
when you open an old file.
The above improvements speed up scenegraph and culling up to 5x.
However, this performance improvement is only visible when
you have hundreds or thousands of objects.
The main interest of the DBVT tree is to allow easy occlusion
culling and automatic LOD system. This will be the object of further
improvements.
Notes:
* Sequence transform strip uses G.scene global, this is commented
out now, should be fixed.
* Etch-a-ton code was most difficult to merge. The files already in
2.5 got merged, but no new files were added. Calls to these files
are commented out with "XXX etch-a-ton". editarmature.c and
transform_snap.c were complex to merge. Martin, please check?
* Game engine compiles and links again here for scons/make/cmake
(player still fails to link).
* Where possible use vec.setValue(x,y,z) to assign values to a vector instead of vec= MT_Vector3(x,y,z), for MT_Point and MT_Matrix types too.
* Comparing TexVerts was creating 10 MT_Vector types - instead compare as floats.
* Added SG_Spatial::SetWorldFromLocalTransform() since the local transform is use for world transform in some cases.
* removed some unneeded vars from UpdateChildCoordinates functions
* Py API - Mouse, Ray, Radar sensors - use PyObjectFrom(vec) rather then filling the lists in each function. Use METH_NOARGS for get*() functions.
- variables that shadow vers declared earlier
- Py_Fatal print an error to the stderr
- gcc was complaining about the order of initialized vars (for classes)
- const return values for ints and bools didnt do anything.
- braces for ambiguous if statements
Use 'const char *' rather then the C++ 'STR_String' type for the attribute identifier of python attributes.
Each attribute and method access from python was allocating and freeing the string.
A simple test with getting an attribute a loop shows this speeds up attribute lookups a bit over 2x.
svn merge https://svn.blender.org/svnroot/bf-blender/trunk/blender -r12987:17416
Issues:
* GHOST/X11 had conflicting changes. Some code was added in 2.5, which was
later added in trunk also, but reverted partially, specifically revision
16683. I have left out this reversion in the 2.5 branch since I think it is
needed there.
http://projects.blender.org/plugins/scmsvn/viewcvs.php?view=rev&root=bf-blender&revision=16683
* Scons had various conflicting changes, I decided to go with trunk version
for everything except priorities and some library renaming.
* In creator.c, there were various fixes and fixes for fixes related to the -w
-W and -p options. In 2.5 -w and -W is not coded yet, and -p is done
differently. Since this is changed so much, and I don't think those fixes
would be needed in 2.5, I've left them out.
* Also in creator.c: there was code for a python bugfix where the screen was not
initialized when running with -P. The code that initializes the screen there
I had to disable, that can't work in 2.5 anymore but left it commented as a
reminder.
Further I had to disable some new function calls. using src/ and python/, as
was done already in this branch, disabled function calls:
* bpath.c: error reporting
* BME_conversions.c: editmesh conversion functions.
* SHD_dynamic: disabled almost completely, there is no python/.
* KX_PythonInit.cpp and Ketsji/ build files: Mathutils is not there, disabled.
* text.c: clipboard copy call.
* object.c: OB_SUPPORT_MATERIAL.
* DerivedMesh.c and subsurf_ccg, stipple_quarttone.
Still to be done:
* Go over files and functions that were moved to a different location but could
still use changes that were done in trunk.