In fact this was an existing issue when exceeding the number of available
closure, but it's more common now that we set the number to 0 for shadows
and emission
Goal is to reduce OpenCL kernel recompilations.
Currently viewport renders are still set to use 64 closures as this seems to
be faster and we don't want to cause a performance regression there. Needs
to be investigated.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D2775
The algorithm averages normals from nearby surfaces. It uses the same
sampling strategy as BSSRDFs, casting rays along the normal and two
orthogonal axes, and combining the samples with MIS.
The main concern here is that we are introducing raytracing inside
shader evaluation, which could be quite bad for GPU performance and
stack memory usage. In practice it doesn't seem so bad though.
Note that using this feature can easily slow down renders 20%, and
that if you care about performance then it's better to use a bevel
modifier. Mainly this is useful for baking, and for cases where the
mesh topology makes it difficult for the bevel modifier to work well.
Differential Revision: https://developer.blender.org/D2803
This causes some difference in the classroom scene, where ray visibility
tricks are used and break the MIS balance. Otherwise there doesn't seem
to be much effect, but better to use the right formulas. Problem originally
identified by Lukas.
With a Titan Xp, reduces path trace local memory from 1092MB to 840MB.
Benchmark performance was within 1% with both RX 480 and Titan Xp.
Original patch was implemented by Sergey.
Differential Revision: https://developer.blender.org/D2249
We are already using the AO distance, so might as well offer this extra
control over the intensity. Useful when an interior scene is supposed to
be significantly darker than the background shader.
* Use common TextureInfo struct for all devices, except CUDA fermi.
* Move image sampling code to kernels/*/kernel_*_image.h files.
* Use arrays for data textures on Fermi too, so device_vector<Struct> works.
The issue was caused by light sample being evaluated to nan at some point.
This is root of the cause which is to be fixed, but is very hard to trace down
especially via ssh (the issue only happens on AVX2 release build). Will give it
a closer look when back to my AVX2 machine.
For until then this is a good check to have anyway, it corresponds to what's
happening in regular radiance sum.
The work size is still very conservative, and this doesn't help for progressive
refine. For that we will need to render multiple tiles at the same time. But this
should already help for denoising renders that require too much memory with big
tiles, and just generally soften the performance dropoff with small tiles.
Differential Revision: https://developer.blender.org/D2856
This was originally done with the first sample in the kernel for better
performance, but it doesn't work anymore with atomics. Any benefit was
very minor anyway, too small to measure it seems.
This is done by storing only a subset of PathRadiance, and by storing
direct light immediately in the main PathRadiance. Saves about 10% of
CUDA stack memory, and simplifies subsurface indirect ray code.
For the first bounce we now give each BSDF or BSSRDF a minimum sample weight,
which helps reduce noise for a typical case where you have a glossy BSDF with
a small weight due to Fresnel, but not necessarily small contribution relative
to a diffuse or transmission BSDF below.
We can probably find a better heuristic that also enables this on further
bounces, for example when looking through a perfect mirror, but I wasn't able
to find a robust one so far.
Similar to what we did for area lights previously, this should help
preserve stratification when using multiple BSDFs in theory. Improvements
are not easily noticeable in practice though, because the number of BSDFs
is usually low. Still nice to eliminate one sampling dimension.