Static initialization order was not guaranteed to be correct for node base
types. Now wrap all initialization in accessor functions to ensure the order
is correct.
Did not cause any known bug on Linux/macOS/Windows, but showed up on this
platform.
This optimizes device updates (during user edits or frame changes in
the viewport) by avoiding unnecessary computations. To achieve this,
we use a combination of the sockets' update flags as well as some new
flags passed to the various managers when tagging for an update to tell
exactly what the tagging is for (e.g. shader was modified, object was
removed, etc.).
Besides avoiding recomputations, we also avoid resending to the devices
unmodified data arrays, thus reducing bandwidth usage. For OptiX and
Embree, BVH packing was also multithreaded.
The performance improvements may vary depending on the used device (CPU
or GPU), and the content of the scene. Simple scenes (e.g. with no adaptive
subdivision or volumes) rendered using OptiX will benefit from this work
the most.
On average, for a variety of animated scenes, this gives a 3x speedup.
Reviewed By: #cycles, brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D9555
Branched path tracing is not supported for OptiX, and it would still use the
number of AA samples from there when branched path was enabled by the user
earlier but auto disabled and hidden in the UI when using OptiX.
Ref D10159
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various modified methods
on Nodes in favor of Node::is_modified which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
This encapsulates Node socket members behind a set of specific methods;
as such it is no longer possible to directly access Node class members
from exporters and parts of Cycles.
The methods are defined via the NODE_SOCKET_API macros in `graph/
node.h`, and are for getting or setting a specific socket's value, as
well as querying or modifying the state of its update flag.
The setters will check whether the value has changed and tag the socket
as modified appropriately. This will let us know how a Node has changed
and what to update, which is the first concrete step toward a more
granular scene update system.
Since the setters will tag the Node sockets as modified when passed
different data, this patch also removes the various `modified` methods
on Nodes in favor of `Node::is_modified` which checks the sockets'
update flags status.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8544
Gathers information for time spent in the various managers or object (Film, Camera, etc.) being updated in Scene::device_update.
The stats include the total time spent in the device_update methods as well as time spent in subroutines (e.g. bvh build, displacement, etc.).
This does not qualify as a full blown profiler, but is useful to identify potential bottleneck areas.
The stats can be enabled and printed by passing `--cycles-print-stats` on the command line to Cycles, or `-- --cycles-print-stats` to Blender.
Reviewed By: brecht
Maniphest Tasks: T79174
Differential Revision: https://developer.blender.org/D8596
The Pass struct is now a Node and the passes are moved from the Film
class to the Scene class.
The Pass Node only has `type` and `name` as sockets as those seem to be
the only properties settable by exporters (other properties are implicit
and depend on the pass type).
This is part of T79131.
Reviewed By: brecht
Differential Revision: https://developer.blender.org/D8591
By default it will now set the step size to the voxel size for smoke and
volume objects, and 1/10th the bounding box for procedural volume shaders.
New settings are:
* Scene render/preview step rate: to globally adjust detail and performance
* Material step rate: multiplied with auto detected per-object step size
* World step size: distance to steo for world shader
Differential Revision: https://developer.blender.org/D1777
This feature takes some inspiration from
"RenderMan: An Advanced Path Tracing Architecture for Movie Rendering" and
"A Hierarchical Automatic Stopping Condition for Monte Carlo Global Illumination"
The basic principle is as follows:
While samples are being added to a pixel, the adaptive sampler writes half
of the samples to a separate buffer. This gives it two separate estimates
of the same pixel, and by comparing their difference it estimates convergence.
Once convergence drops below a given threshold, the pixel is considered done.
When a pixel has not converged yet and needs more samples than the minimum,
its immediate neighbors are also set to take more samples. This is done in order
to more reliably detect sharp features such as caustics. A 3x3 box filter that
is run periodically over the tile buffer is used for that purpose.
After a tile has finished rendering, the values of all passes are scaled as if
they were rendered with the full number of samples. This way, any code operating
on these buffers, for example the denoiser, does not need to be changed for
per-pixel sample counts.
Reviewed By: brecht, #cycles
Differential Revision: https://developer.blender.org/D4686
This sampling pattern is particularly suited to adaptive sampling, and will
be used for that upcoming feature.
Based on "Progressive Multi-Jittered Sample Sequences" by Per Christensen,
Andrew Kensler and Charlie Kilpatrick.
Ref D4686
With upcoming light group passes, for them to sum up correctly to the combined
pass the clamping must be more fine grained.
This also has the advantage that if one light is particularly noisy, it does
not diminish the contribution from other lights which do not need as much
clamping.
Clamp values on existing scenes will need to be tweaked to get similar results,
there is no automatic conversion possible which would give the same results as
before.
Implemented by Lukas, with tweaks by Brecht.
Part of D4837
The White Noise node hashes the input and returns a random number in the
range [0, 1]. The input can be a 1D, 2D, 3D, or a 4D vector.
Reviewers: brecht, JacquesLucke
Differential Revision: https://developer.blender.org/D5550
Increasing the samplig dimensions like this is not optimal, I'm looking
into some deeper changes to reuse the random number and change the RR
probabilities, but this should fix the bug for now.
It is basically brute force volume scattering within the mesh, but part
of the SSS code for faster performance. The main difference with actual
volume scattering is that we assume the boundaries are diffuse and that
all lighting is coming through this boundary from outside the volume.
This gives much more accurate results for thin features and low density.
Some challenges remain however:
* Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help
here, but it's unclear still how much it helps in real world cases.
* Due to this being a volumetric method, geometry like eyes or mouth can
darken the skin on the outside. We may be able to reduce this effect,
or users can compensate for it by reducing the scattering radius in
such areas.
* Sharp corners are quite bright. This matches actual volume rendering
and results in some other renderers, but maybe not so much real world
objects.
Differential Revision: https://developer.blender.org/D3054
We are already using the AO distance, so might as well offer this extra
control over the intensity. Useful when an interior scene is supposed to
be significantly darker than the background shader.
* Remove tex_* and pixels_* functions, replace by mem_*.
* Add MEM_TEXTURE and MEM_PIXELS as memory types recognized by devices.
* No longer create device_memory and call mem_* directly, always go
through device_only_memory, device_vector and device_pixels.
We already detect this automatically based on shading nodes and per shader
settings, and performance of this option is ok now all devices.
Differential Revision: https://developer.blender.org/D2767
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.
For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.
Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.
This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.
Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.
Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner
Reviewed By: lukasstockner97, maiself, nirved, dingto
Subscribers: brecht
Differential Revision: https://developer.blender.org/D2586
This is a speed up option which is mainly useful for viewport. Gives nice speedup in
the barbershop scene of 2x when replacing GI with AO after 2nd bounce without loosing
too much details.
Reviewers: brecht
Subscribers: eyecandy, venomgfx
Differential Revision: https://developer.blender.org/D2383
In scenes with many lights, some of them might have a very small contribution to some pixels, but the shadow rays are traced anyways.
To avoid that, this patch adds probabilistic termination to light samples - if the contribution before checking for shadowing is below a user-defined threshold, the sample will be discarded with probability (1 - (contribution / threshold)) and otherwise kept, but weighted more to remain unbiased.
This is the same approach that's also used in path termination based on length.
Note that the rendering remains unbiased with this option, it just adds a bit of noise - but if the setting is used moderately, the speedup gained easily outweighs the additional noise.
Reviewers: #cycles
Subscribers: sergey, brecht
Differential Revision: https://developer.blender.org/D2217
After reformulation of SSS indirect rays it became possible to
try accessing dimension higher than was pre-calculated on scene
preparation.
This is because we're traversing rays backwards, which means we
are using higher dimensions first now.
At some point the idea was that we could have an optimization where we could
render multiple render layers without re-exporting the scene, by just updating
the layer bits. We are not doing this now and in practice with the available
render layer control like exclude layers it's not always possible anyway.
This makes it easier to support an arbitrary number of layers in the future
(hopefully this summer), and frees up some useful bits in the kernel.
Reviewed By: sergey, dingto
Differential Revision: https://developer.blender.org/D2020
Basically we can not use sharp closure as a substitude when filter glossy is
used. This is because we can not blur sharp reflection/refraction.
This is quite quick and not really clean implementation. Not really happy
with manual handling of original settings, but this is as good as we can do
in the quick patch. It's a good acknowledgment and we now can re-consider
some aspects of graph simplification to make such cases more natively
supported.
P.S. This failure would have been shown by our regression tests, so please,
bother a bit to run Cycles's test sweep before doing such optimizations.
I don't see a reason not to do this, and this also fixes update problems when 3D View rendering is running (no volume shader), and then a volume shader gets added.
This gives you "Multiple Importance", "Distance" and "Equiangular" choices.
What multiple importance sampling does is make things more robust to certain
types of noise at the cost of a bit more noise in cases where the individual
strategies are always better.
So if you've got a pretty dense volume that's lit from far away then distance
sampling is usually more efficient. If you've got a light inside or near the
volume then equiangular sampling is better. If you have a combination of both,
then the multiple importance sampling will be better.
* Volume multiple importace sampling support to combine equiangular and distance
sampling, for both homogeneous and heterogeneous volumes.
* Branched path "Sample All Direct Lights" and "Sample All Indirect Lights" now
apply to volumes as well as surfaces.
Implementation note:
For simplicity this is all done with decoupled ray marching, the only case we do
not use decoupled is for distance only sampling with one light sample. The
homogeneous case should still compile on the GPU because it only requires fixed
size storage, but the heterogeneous case will be trickier to get working.