Also pass by value and don't write back now that it is just a hash for seeding
and no longer an LCG state. Together this makes CUDA a tiny bit faster in my
tests, but mainly simplifies code.
Image textures were being packed into a single buffer for OpenCL, which
limited the amount of memory available for images to the size of one
buffer (usually 4gb on AMD hardware). By packing textures into multiple
buffers that limit is removed, while simultaneously reducing the number
of buffers that need to be passed to each kernel.
Benchmarks were within 2%.
Fixes T51554.
Differential Revision: https://developer.blender.org/D2745
Since all the shadow catchers are already assumed to be in the footage,
the shadows they cast on each other are already in the footage too. So
don't just let shadow catchers skip self, but all shadow catchers.
Another justification is that it should not matter if the shadow catcher
is modeled as one object or multiple separate objects, the resulting
render should be the same.
Differential Revision: https://developer.blender.org/D2763
Tweaked the path radiance summing and alpha to accommodate for possible contribution of
light by transparent surface bounces happening prior to shadow catcher intersection.
This commit will change the way how shadow catcher results looks when was behind semi
transparent object, but the old result seemed to be fully wrong: there were big artifacts
when alpha-overing the result on some actual footage.
The problem here was that when a "invalid" path is generated by the panoramic camera, it was tagged
as RAY_TO_REGENERATE with the intention of generating a new path in kernel_buffer_update.
However, since that state was not handled in kernel_queue_enqueue, kernel_buffer_update did not
process the path which resulted in an infinite loop.
Unlike regular path tracing, branched path tracing is usually used with lower
sample counts, at least for primary rays. This means that are less samples for
the GPU to work on in parallel and rendering is slower. As there is less work
overall there is also more inactive threads during rendering with BPT. This
patch makes use of those inactive rays to render branched samples in parallel
with other samples.
Each thread that is preparing for a branched sample will attempt to find an
inactive thread and if one is found the state for the sample is copied to that
thread. Potentially, if there are enough inactive threads, 100s of branched
samples could be generated from the same originating thread and ran in
parallel giving large speed ups.
Gives 70% faster render for pavillion midday scene. 20-60% faster on BMW
with car paint replaced with SSS/volumes.
Denoise commit introduced kernel_write_result() which saves light passes, so
no need to call both kernel_write_result() and kernel_write_light_passes() from
the split kernel.
Weirdly enough. kernel_write_result() does not take care about debug passes.
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.
To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.
Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.
Finally, thanks to all the people who supported this project:
- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
that could and/or should work better!
Reduce thread divergence in kernel_shader_eval.
Rays are sorted in blocks of 2048 according to shader->id.
On R9 290 Classroom is ~30% faster, and Pabellon Barcelone is ~8% faster.
No sorting for CUDA split kernel.
Reviewers: sergey, maiself
Reviewed By: maiself
Differential Revision: https://developer.blender.org/D2598
This implements branched path tracing for the split kernel.
General approach is to store the ray state at a branch point, trace the
branched ray as normal, then restore the state as necessary before iterating
to the next part of the path. A state machine is used to advance the indirect
loop state, which avoids the need to add any new kernels. Each iteration the
state machine recreates as much state as possible from the stored ray to keep
overall storage down.
Its kind of hard to keep all the different integration loops in sync, so this
needs lots of testing to make sure everything is working correctly. We should
probably start trying to deduplicate the integration loops more now.
Nonbranched BMW is ~2% slower, while classroom is ~2% faster, other scenes
could use more testing still.
Reviewers: sergey, nirved
Reviewed By: nirved
Subscribers: Blendify, bliblubli
Differential Revision: https://developer.blender.org/D2611
The idea is to make include statements more explicit and obvious where the
file is coming from, additionally reducing chance of wrong header being
picked up.
For example, it was not obvious whether bvh.h was refferring to builder
or traversal, whenter node.h is a generic graph node or a shader node
and cases like that.
Surely this might look obvious for the active developers, but after some
time of not touching the code it becomes less obvious where file is coming
from.
This was briefly mentioned in T50824 and seems @brecht is fine with such
explicitness, but need to agree with all active developers before committing
this.
Please note that this patch is lacking changes related on GPU/OpenCL
support. This will be solved if/when we all agree this is a good idea to move
forward.
Reviewers: brecht, lukasstockner97, maiself, nirved, dingto, juicyfruit, swerner
Reviewed By: lukasstockner97, maiself, nirved, dingto
Subscribers: brecht
Differential Revision: https://developer.blender.org/D2586
Simplifies code quite a bit, making it shorter and easier to extend.
Currently no functional changes for users, but is required for the
upcoming work of shadow catcher support with OpenCL.
It uses an idea of accumulating all possible light reachable across the
light path (without taking shadow blocked into account) and accumulating
total shaded light across the path. Dividing second figure by first one
seems to be giving good estimate of the shadow.
In fact, to my knowledge, it's something really similar to what is
happening in the denoising branch, so we are aligned here which is good.
The workflow is following:
- Create an object which matches real-life object on which shadow is
to be catched.
- Create approximate similar material on that object.
This is needed to make indirect light properly affecting CG objects
in the scene.
- Mark object as Shadow Catcher in the Object properties.
Ideally, after doing that it will be possible to render the image and
simply alpha-over it on top of real footage.
Reduces memory allocation for split kernel.
This allows for faster rendering due to bigger global size,
specially when GPU memory is limited.
Perfromance results:
R9 290 total render time
Before After Change
BMW 4:37 4:34 -1.1 %
Classroom 14:43 14:30 -1.5 %
Fishy Cat 11:20 11:04 -2.4 %
Koro 12:11 12:04 -1.0 %
Pabellon Barcelona 22:01 20:44 -5.8 %
Pabellon Barcelona(*) 15:32 15:09 -2.5 %
(*) without glossy connected to volume
Decoupled ray marching is not supported yet.
Transparent shadows are always enabled for volume rendering.
Changes in kernel/bvh and kernel/geom are from Sergey.
This simiplifies code significantly, and prepares it for
record-all transparent shadow function in split kernel.
By calculating the size of the state buffer in the kernel rather than the host
less code is needed and the size actually reflects the requested features.
Will also be a little faster in some cases because of larger global work size.
Because the split kernel can render multiple samples in parallel it is
necessary to have everything initialized before rendering of any samples
begins. The code that normally handles initialization of
`rng_state` (`kernel_path_trace_setup()`) only does so for the first sample,
which was causing artifacts in the split kernel due to uninitialized
`rng_state` for some samples.
Note that because the split kernel can render samples in parallel this
means that the split kernel is incompatible with the LCG.
This was only needed for the previous implementation of parallel samples. As
we don't have that any more it can be removed.
Real reason for removal tho is this: `per_sample_output_buffers` was being
calculated too small and artifacts resulted. The tile buffer is already
the correct size and calculating the size for `per_sample_output_buffers`
is a bit difficult with the current layout of the code. As
`per_sample_output_buffers` was only needed for `sum_all_radiance`,
removing that kernel and writing output to the tile buffer directly
fixes the artifacts.