This is done using the existing Emission node and closure (we may add a volume
emission node, not clear yet if it will be needed).
Volume emission only supports indirect light sampling which means it's not very
efficient to make small or far away bright light sources. Using direct light
sampling and MIS would be tricky and probably won't be added anytime soon. Other
renderers don't support this either as far as I know, lamps and ray visibility
tricks may be used instead.
This works pretty much as you would expect, overlapping volume objects gives
a more dense volume. What did change is that world volume shaders are now
active everywhere, they are no longer excluded inside objects.
This may not be desirable and we need to think of better control over this.
In some cases you clearly want it to happen, for example if you are rendering
a fire in a foggy environment. In other cases like the inside of a house you
may not want any fog, but it doesn't seem possible in general for the renderer
to automatically determine what is inside or outside of the house.
This is implemented using a simple fixed size array of shader/object ID pairs,
limited to max 15 overlapping objects. The closures from all shaders are put
into a single closure array, exactly the same as if an add shader was used to
combine them.
This is the simplest possible volume rendering case, constant density inside
the volume and no scattering or emission. My plan is to tweak, verify and commit
more volume rendering effects one by one, doing it all at once makes it
difficult to verify correctness and track down bugs.
Documentation is here:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Materials/Volume
Currently this hooks into path tracing in 3 ways, which should get us pretty
far until we add more advanced light sampling. These 3 hooks are repeated in
the path tracing, branched path tracing and transparent shadow code:
* Determine active volume shader at start of the path
* Change active volume shader on transmission through a surface
* Light attenuation over line segments between camera, surfaces and background
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
* Henyey-Greenstein scattering closure implementation.
* Rename transparent to absorption node and isotropic to scatter node.
* Volume density is folded into the closure weights.
* OSL support for volume closures and nodes.
* This commit has no user visible changes, there is no volume render code yet.
This is work by "storm", Stuart Broadfoot, Thomas Dinges and myself.
This to avoids build conflicts with libc++ on FreeBSD, these __ prefixed values
are reserved for compilers. I apologize to anyone who has patches or branches
and has to go through the pain of merging this change, it may be easiest to do
these same replacements in your code and then apply/merge the patch.
Ref T37477.
* Remove support for CUDA Toolkit 4.x, only Toolkit 5.0 and above are supported now.
* Remove support for sm_1x cards (< Fermi) for good. We didn't officially support those cards for a few releases already, now remove some special code that was still there.
A new hair bsdf node, with two closure options, is added. These closures allow the generation of the reflective and transmission components of hair. The node allows control of the highlight colour, roughness and angular shift.
Llimitations include:
-No glint or fresnel adjustments.
-The 'offset' is un-used when triangle primitives are used.
New features:
* Bump mapping now works with SSS
* Texture Blur factor for SSS, see the documentation for details:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#Subsurface_Scattering
Work in progress for feedback:
Initial implementation of the "BSSRDF Importance Sampling" paper, which uses
a different importance sampling method. It gives better quality results in
many ways, with the availability of both Cubic and Gaussian falloff functions,
but also tends to be more noisy when using the progressive integrator and does
not give great results with some geometry. It works quite well for the
non-progressive integrator and is often less noisy there.
This code may still change a lot, so unless you're testing it may be best to
stick to the Compatible falloff function.
Skin test render and file that takes advantage of the gaussian falloff:
http://www.pasteall.org/pic/show.php?id=57661http://www.pasteall.org/pic/show.php?id=57662http://www.pasteall.org/blend/23501
* Non-Progressive integrator is now available on the GPU (CUDA, sm_20 and above).
Implementation details:
* kernel_path_trace() has been split up into two functions:
kernel_path_trace_non_progressive() and kernel_path_trace_progressive().
* We compile two CUDA kernel entry functions (in kernel.cu) for the two integrators, they are still inside one .cubin file but due to the kernel separation there should be no performance problem. I tested with the BMW file on my Geforce 540M and the render times were the same for 100 samples (1.57 min in my case).
This is part of my GSoC project, SVN merge of r59032 + manual merge of UI changes for this from my branch.
* Render Passes are now available for Subsurface Scattering (Direct, Indirect and Color pass).
This is part of my GSoC project, SVN merge of r58587, r58828 and r58835.
* Added a Ray Depth output to the Light Path node, which gives the user access to the current bounce.
This can be used to limit the maximum ray bounce on a per shader basis. Another use case is to restrict light influence with this, to have a lamp only contribute to the direct lighting.
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/More#Light_Path
This is part of my GSoC 2013 project. SVN merge of r58091 and r58772 from soc-2013-dingto.
* Add CUDA compiler version detection to cmake/scons/runtime
* Remove noinline in kernel_shader.h and reenable --use_fast_math if CUDA 5.x
is used, these were workarounds for CUDA 4.2 bugs
* Change max number of registers to 32 for sm 2.x (based on performance tests
from Martijn Berger and confirmed here), and also for NVidia OpenCL.
Overall it seems that with these changes and the latest CUDA 5.0 download, that
performance is as good as or better than the 2.67b release with the scenes and
graphics cards I tested.
for Apple OpenCL on OS X 10.8 and simple AO render.
Also environment variable CYCLES_OPENCL_TEST can now be set to CPU, GPU,
ACCELERATOR, DEFAULT or ALL values to test particuler devices.
Code is added to restrict the pixel size of strands in cycles. It works best with ribbon primitives and a preset for these is included. It uses distance dependent expansion of the strands and then stochastic strand removal to give a fading. To prevent a slowdown for triangle mesh objects in the BVH an extra visibility flag has been added. It is also only applied for camera rays.
The strand width settings are also changed, so that the particle size is not included in the width calculation. Instead there is a separate particle system parameter for width scaling.
well as I would like, but it works, just add a subsurface scattering node and
you can use it like any other BSDF.
It is using fully raytraced sampling compatible with progressive rendering
and other more advanced rendering algorithms we might used in the future, and
it uses no extra memory so it's suitable for complex scenes.
Disadvantage is that it can be quite noisy and slow. Two limitations that will
be solved are that it does not work with bump mapping yet, and that the falloff
function used is a simple cubic function, it's not using the real BSSRDF
falloff function yet.
The node has a color input, along with a scattering radius for each RGB color
channel along with an overall scale factor for the radii.
There is also no GPU support yet, will test if I can get that working later.
Node Documentation:
http://wiki.blender.org/index.php/Doc:2.6/Manual/Render/Cycles/Nodes/Shaders#BSSRDF
Implementation notes:
http://wiki.blender.org/index.php/Dev:2.6/Source/Render/Cycles/Subsurface_Scattering
makes CPU kernel compilation much faster when using MSVC.
Sideeffect of this change is that CPU rendering is few percent
faster now. CUDA rendering is the same speed.
should be no functional changes yet. UV, tangent and intercept are now stored
as attributes, with the intention to add more like multiple uv's, vertex
colors, generated coordinates and motion vectors later.
Things got a bit messy due to having both triangle and curve data in the same
mesh data structure, which also gives us two sets of attributes. This will get
cleaned up when we split the mesh class.
for not finding it in review.
Also removed the hard limits on motion blur shutter time, soft limits are still
the same but it can be useful to set things lower/higher in some cases.
Patch [#33445] - Experimental Cycles Hair Rendering (CPU only)
This patch allows hair data to be exported to cycles and introduces a new line segment primitive to render with.
The UI appears under the particle tab and there is a new hair info node available.
It is only available under the experimental feature set and for cpu rendering.
operator< had wrong brackets, changed it now to be more clear.
Fix#33404: crash GPU rendering with OSL option still enabled. There was a check
to disable OSL in this case, but it shouldn't have modified scene->params because
this is used for comparison in scene->modified().
Also some simple OSL optimization, passing thread data pointer directly instead
of via thread local storage, and creating ustrings for attribute lookup.
This commit makes BKE_image_acquire_ibuf referencing result, which means once
some area requested for image buffer, it'll be guaranteed this buffer wouldn't
be freed by image signal.
To de-reference buffer BKE_image_release_ibuf should now always be used.
To make referencing working correct we can not rely on result of
image_get_ibuf_threadsafe called outside from thread lock. This is so because
we need to guarantee getting image buffer from list of loaded buffers and it's
referencing happens atomic. Without lock here it is possible that between call
of image_get_ibuf_threadsafe and referencing the buffer IMA_SIGNAL_FREE would
be called. Image signal handling too is blocking now to prevent such a
situation.
Threads are locking by spinlock, which are faster than mutexes. There were some
slowdown reports in the past about render slowdown when using OSX on Xeon CPU.
It shouldn't happen with spin locks, but more tests on different hardware would
be really welcome. So far can not see speed regressions on own computers.
This commit also removes BKE_image_get_ibuf, because it was not so intuitive
when get_ibuf and acquire_ibuf should be used.
Thanks to Ton and Brecht for discussion/review :)
transmission pass and filter glossy option.
The BSDF closure class is now more similar to the SVM closures, and includes
some flags and labels that are needed to properly categorize the BSDF's for
render passes. Phong closure is gone for the moment, needs to be adapated to
the new structure still.
objects in the scene will also cause motion blur.
This change does come with a bit of a slow down to the CPU rendering kernel even
with motion blur disabled, due to extra overhead in handling of object matrices.
It's a few percentages on simpler scenes, not so noticeable on more complex ones.
With motion blur enabled rendering is of course also slower as would be expected,
though from testing especially GPU rendering handles it quite well.
This does not support motion blur from deforming objects yet, only translation,
scale and rotation. Deformation blur is probably for another release.
It's using the Ward BSDF currently, which has some energy loss so might be a bit
dark. More/better BSDF options can be implemented later.
Patch by Mike Farnsworth, some modifications by me. Currently it's not possible yet
to set a custom tangent, that will follow as part of per-bsdf normals patch.