Files
blender/intern/cycles/kernel/shaders/node_voronoi_texture.osl
OmarSquircleArt 23564583a4 Shading: Extend Noise node to other dimenstions.
This patch extends perlin noise to operate in 1D, 2D, 3D, and 4D
space. The noise code has also been refactored to be more readable.

The Color output and distortion patterns changed, so this patch
breaks backward compatibility. This is due to the fact that we
now use random offsets as noise seeds, as opposed to swizzling
and constants offsets.

Reviewers: brecht, JacquesLucke

Differential Revision: https://developer.blender.org/D5560
2019-09-04 17:54:32 +02:00

173 lines
4.2 KiB
Plaintext

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "stdosl.h"
color cellnoise_color(point p)
{
float r = cellnoise(p);
float g = cellnoise(point(p[1], p[0], p[2]));
float b = cellnoise(point(p[1], p[2], p[0]));
return color(r, g, b);
}
void voronoi_m(point p, string metric, float e, float da[4], point pa[4])
{
/* Compute the distance to and the position of the four closest neighbors to p.
*
* The neighbors are randomly placed, 1 each in a 3x3x3 grid (Worley pattern).
* The distances and points are returned in ascending order, i.e. da[0] and pa[0] will
* contain the distance to the closest point and its coordinates respectively.
*/
int xx, yy, zz, xi, yi, zi;
xi = (int)floor(p[0]);
yi = (int)floor(p[1]);
zi = (int)floor(p[2]);
da[0] = 1e10;
da[1] = 1e10;
da[2] = 1e10;
da[3] = 1e10;
for (xx = xi - 1; xx <= xi + 1; xx++) {
for (yy = yi - 1; yy <= yi + 1; yy++) {
for (zz = zi - 1; zz <= zi + 1; zz++) {
point ip = point(xx, yy, zz);
point vp = (point)cellnoise_color(ip);
point pd = p - (vp + ip);
float d = 0.0;
if (metric == "distance") {
d = dot(pd, pd);
}
else if (metric == "manhattan") {
d = fabs(pd[0]) + fabs(pd[1]) + fabs(pd[2]);
}
else if (metric == "chebychev") {
d = max(fabs(pd[0]), max(fabs(pd[1]), fabs(pd[2])));
}
else if (metric == "minkowski") {
d = pow(pow(fabs(pd[0]), e) + pow(fabs(pd[1]), e) + pow(fabs(pd[2]), e), 1.0 / e);
}
vp += point(xx, yy, zz);
if (d < da[0]) {
da[3] = da[2];
da[2] = da[1];
da[1] = da[0];
da[0] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = pa[0];
pa[0] = vp;
}
else if (d < da[1]) {
da[3] = da[2];
da[2] = da[1];
da[1] = d;
pa[3] = pa[2];
pa[2] = pa[1];
pa[1] = vp;
}
else if (d < da[2]) {
da[3] = da[2];
da[2] = d;
pa[3] = pa[2];
pa[2] = vp;
}
else if (d < da[3]) {
da[3] = d;
pa[3] = vp;
}
}
}
}
}
/* Voronoi */
shader node_voronoi_texture(
int use_mapping = 0,
matrix mapping = matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
string coloring = "intensity",
string metric = "distance",
string feature = "F1",
float Exponent = 1.0,
float Scale = 5.0,
point Vector = P,
output float Fac = 0.0,
output color Color = 0.0)
{
point p = Vector;
if (use_mapping)
p = transform(mapping, p);
/* compute distance and point coordinate of 4 nearest neighbours */
float da[4];
point pa[4];
/* compute distance and point coordinate of 4 nearest neighbours */
voronoi_m(p * Scale, metric, Exponent, da, pa);
if (coloring == "intensity") {
/* Intensity output */
if (feature == "F1") {
Fac = fabs(da[0]);
}
else if (feature == "F2") {
Fac = fabs(da[1]);
}
else if (feature == "F3") {
Fac = fabs(da[2]);
}
else if (feature == "F4") {
Fac = fabs(da[3]);
}
else if (feature == "F2F1") {
Fac = fabs(da[1] - da[0]);
}
Color = color(Fac);
}
else {
/* Color output */
if (feature == "F1") {
Color = pa[0];
}
else if (feature == "F2") {
Color = pa[1];
}
else if (feature == "F3") {
Color = pa[2];
}
else if (feature == "F4") {
Color = pa[3];
}
else if (feature == "F2F1") {
Color = fabs(pa[1] - pa[0]);
}
Color = cellnoise_color(Color);
Fac = (Color[0] + Color[1] + Color[2]) * (1.0 / 3.0);
}
}