Files
blender/intern/cycles/kernel/geom/curve.h
Brecht Van Lommel c813a1b358 Cycles: add Point Info node
With (center) position, radius and random value outputs.

Eevee does not yet support rendering point clouds, but an untested
implementation of this node was added for when it does.

Ref T92573
2022-01-25 17:14:20 +01:00

341 lines
10 KiB
C

/*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
/* Curve Primitive
*
* Curve primitive for rendering hair and fur. These can be render as flat
* ribbons or curves with actual thickness. The curve can also be rendered as
* line segments rather than curves for better performance.
*/
#ifdef __HAIR__
/* Reading attributes on various curve elements */
ccl_device float curve_attribute_float(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float *dx,
ccl_private float *dy)
{
if (desc.element & (ATTR_ELEMENT_CURVE_KEY | ATTR_ELEMENT_CURVE_KEY_MOTION)) {
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float f0 = kernel_tex_fetch(__attributes_float, desc.offset + k0);
float f1 = kernel_tex_fetch(__attributes_float, desc.offset + k1);
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * (f1 - f0);
if (dy)
*dy = 0.0f;
# endif
return (1.0f - sd->u) * f0 + sd->u * f1;
}
else {
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = 0.0f;
if (dy)
*dy = 0.0f;
# endif
if (desc.element & (ATTR_ELEMENT_CURVE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_CURVE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float, offset);
}
else {
return 0.0f;
}
}
}
ccl_device float2 curve_attribute_float2(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float2 *dx,
ccl_private float2 *dy)
{
if (desc.element & (ATTR_ELEMENT_CURVE_KEY | ATTR_ELEMENT_CURVE_KEY_MOTION)) {
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float2 f0 = kernel_tex_fetch(__attributes_float2, desc.offset + k0);
float2 f1 = kernel_tex_fetch(__attributes_float2, desc.offset + k1);
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * (f1 - f0);
if (dy)
*dy = make_float2(0.0f, 0.0f);
# endif
return (1.0f - sd->u) * f0 + sd->u * f1;
}
else {
/* idea: we can't derive any useful differentials here, but for tiled
* mipmap image caching it would be useful to avoid reading the highest
* detail level always. maybe a derivative based on the hair density
* could be computed somehow? */
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float2(0.0f, 0.0f);
if (dy)
*dy = make_float2(0.0f, 0.0f);
# endif
if (desc.element & (ATTR_ELEMENT_CURVE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_CURVE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float2, offset);
}
else {
return make_float2(0.0f, 0.0f);
}
}
}
ccl_device float3 curve_attribute_float3(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float3 *dx,
ccl_private float3 *dy)
{
if (desc.element & (ATTR_ELEMENT_CURVE_KEY | ATTR_ELEMENT_CURVE_KEY_MOTION)) {
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float3 f0 = kernel_tex_fetch(__attributes_float3, desc.offset + k0);
float3 f1 = kernel_tex_fetch(__attributes_float3, desc.offset + k1);
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * (f1 - f0);
if (dy)
*dy = make_float3(0.0f, 0.0f, 0.0f);
# endif
return (1.0f - sd->u) * f0 + sd->u * f1;
}
else {
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float3(0.0f, 0.0f, 0.0f);
if (dy)
*dy = make_float3(0.0f, 0.0f, 0.0f);
# endif
if (desc.element & (ATTR_ELEMENT_CURVE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_CURVE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float3, offset);
}
else {
return make_float3(0.0f, 0.0f, 0.0f);
}
}
}
ccl_device float4 curve_attribute_float4(KernelGlobals kg,
ccl_private const ShaderData *sd,
const AttributeDescriptor desc,
ccl_private float4 *dx,
ccl_private float4 *dy)
{
if (desc.element & (ATTR_ELEMENT_CURVE_KEY | ATTR_ELEMENT_CURVE_KEY_MOTION)) {
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float4 f0 = kernel_tex_fetch(__attributes_float4, desc.offset + k0);
float4 f1 = kernel_tex_fetch(__attributes_float4, desc.offset + k1);
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = sd->du.dx * (f1 - f0);
if (dy)
*dy = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
# endif
return (1.0f - sd->u) * f0 + sd->u * f1;
}
else {
# ifdef __RAY_DIFFERENTIALS__
if (dx)
*dx = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
if (dy)
*dy = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
# endif
if (desc.element & (ATTR_ELEMENT_CURVE | ATTR_ELEMENT_OBJECT | ATTR_ELEMENT_MESH)) {
const int offset = (desc.element == ATTR_ELEMENT_CURVE) ? desc.offset + sd->prim :
desc.offset;
return kernel_tex_fetch(__attributes_float4, offset);
}
else {
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
}
/* Curve thickness */
ccl_device float curve_thickness(KernelGlobals kg, ccl_private const ShaderData *sd)
{
float r = 0.0f;
if (sd->type & PRIMITIVE_CURVE) {
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float4 P_curve[2];
if (!(sd->type & PRIMITIVE_MOTION)) {
P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
}
else {
motion_curve_keys_linear(kg, sd->object, sd->prim, sd->time, k0, k1, P_curve);
}
r = (P_curve[1].w - P_curve[0].w) * sd->u + P_curve[0].w;
}
return r * 2.0f;
}
/* Curve random */
ccl_device float curve_random(KernelGlobals kg, ccl_private const ShaderData *sd)
{
if (sd->type & PRIMITIVE_CURVE) {
const AttributeDescriptor desc = find_attribute(kg, sd, ATTR_STD_CURVE_RANDOM);
return (desc.offset != ATTR_STD_NOT_FOUND) ? curve_attribute_float(kg, sd, desc, NULL, NULL) :
0.0f;
}
return 0.0f;
}
/* Curve location for motion pass, linear interpolation between keys and
* ignoring radius because we do the same for the motion keys */
ccl_device float3 curve_motion_center_location(KernelGlobals kg, ccl_private const ShaderData *sd)
{
KernelCurve curve = kernel_tex_fetch(__curves, sd->prim);
int k0 = curve.first_key + PRIMITIVE_UNPACK_SEGMENT(sd->type);
int k1 = k0 + 1;
float4 P_curve[2];
P_curve[0] = kernel_tex_fetch(__curve_keys, k0);
P_curve[1] = kernel_tex_fetch(__curve_keys, k1);
return float4_to_float3(P_curve[1]) * sd->u + float4_to_float3(P_curve[0]) * (1.0f - sd->u);
}
/* Curve tangent normal */
ccl_device float3 curve_tangent_normal(KernelGlobals kg, ccl_private const ShaderData *sd)
{
float3 tgN = make_float3(0.0f, 0.0f, 0.0f);
if (sd->type & PRIMITIVE_CURVE) {
tgN = -(-sd->I - sd->dPdu * (dot(sd->dPdu, -sd->I) / len_squared(sd->dPdu)));
tgN = normalize(tgN);
/* need to find suitable scaled gd for corrected normal */
# if 0
tgN = normalize(tgN - gd * sd->dPdu);
# endif
}
return tgN;
}
/* Curve bounds utility function */
ccl_device_inline void curvebounds(ccl_private float *lower,
ccl_private float *upper,
ccl_private float *extremta,
ccl_private float *extrema,
ccl_private float *extremtb,
ccl_private float *extremb,
float p0,
float p1,
float p2,
float p3)
{
float halfdiscroot = (p2 * p2 - 3 * p3 * p1);
float ta = -1.0f;
float tb = -1.0f;
*extremta = -1.0f;
*extremtb = -1.0f;
*upper = p0;
*lower = (p0 + p1) + (p2 + p3);
*extrema = *upper;
*extremb = *lower;
if (*lower >= *upper) {
*upper = *lower;
*lower = p0;
}
if (halfdiscroot >= 0) {
float inv3p3 = (1.0f / 3.0f) / p3;
halfdiscroot = sqrtf(halfdiscroot);
ta = (-p2 - halfdiscroot) * inv3p3;
tb = (-p2 + halfdiscroot) * inv3p3;
}
float t2;
float t3;
if (ta > 0.0f && ta < 1.0f) {
t2 = ta * ta;
t3 = t2 * ta;
*extremta = ta;
*extrema = p3 * t3 + p2 * t2 + p1 * ta + p0;
*upper = fmaxf(*extrema, *upper);
*lower = fminf(*extrema, *lower);
}
if (tb > 0.0f && tb < 1.0f) {
t2 = tb * tb;
t3 = t2 * tb;
*extremtb = tb;
*extremb = p3 * t3 + p2 * t2 + p1 * tb + p0;
*upper = fmaxf(*extremb, *upper);
*lower = fminf(*extremb, *lower);
}
}
#endif /* __HAIR__ */
CCL_NAMESPACE_END