Files
blender/intern/cycles/kernel/svm/image.h
William Leeson 7b1c5712f8 Cycles: Replace saturate with saturatef
saturate is depricated in favour of __saturatef this replaces saturate
with __saturatef on CUDA by createing a saturatef function which replaces
all instances of saturate and are hooked up to the correct function on all
platforms.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D13010
2021-10-27 14:05:46 +02:00

254 lines
7.9 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
ccl_device float4 svm_image_texture(KernelGlobals kg, int id, float x, float y, uint flags)
{
if (id == -1) {
return make_float4(
TEX_IMAGE_MISSING_R, TEX_IMAGE_MISSING_G, TEX_IMAGE_MISSING_B, TEX_IMAGE_MISSING_A);
}
float4 r = kernel_tex_image_interp(kg, id, x, y);
const float alpha = r.w;
if ((flags & NODE_IMAGE_ALPHA_UNASSOCIATE) && alpha != 1.0f && alpha != 0.0f) {
r /= alpha;
r.w = alpha;
}
if (flags & NODE_IMAGE_COMPRESS_AS_SRGB) {
r = color_srgb_to_linear_v4(r);
}
return r;
}
/* Remap coordinate from 0..1 box to -1..-1 */
ccl_device_inline float3 texco_remap_square(float3 co)
{
return (co - make_float3(0.5f, 0.5f, 0.5f)) * 2.0f;
}
ccl_device_noinline int svm_node_tex_image(
KernelGlobals kg, ccl_private ShaderData *sd, ccl_private float *stack, uint4 node, int offset)
{
uint co_offset, out_offset, alpha_offset, flags;
svm_unpack_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags);
float3 co = stack_load_float3(stack, co_offset);
float2 tex_co;
if (node.w == NODE_IMAGE_PROJ_SPHERE) {
co = texco_remap_square(co);
tex_co = map_to_sphere(co);
}
else if (node.w == NODE_IMAGE_PROJ_TUBE) {
co = texco_remap_square(co);
tex_co = map_to_tube(co);
}
else {
tex_co = make_float2(co.x, co.y);
}
/* TODO(lukas): Consider moving tile information out of the SVM node.
* TextureInfo seems a reasonable candidate. */
int id = -1;
int num_nodes = (int)node.y;
if (num_nodes > 0) {
/* Remember the offset of the node following the tile nodes. */
int next_offset = offset + num_nodes;
/* Find the tile that the UV lies in. */
int tx = (int)tex_co.x;
int ty = (int)tex_co.y;
/* Check that we're within a legitimate tile. */
if (tx >= 0 && ty >= 0 && tx < 10) {
int tile = 1001 + 10 * ty + tx;
/* Find the index of the tile. */
for (int i = 0; i < num_nodes; i++) {
uint4 tile_node = read_node(kg, &offset);
if (tile_node.x == tile) {
id = tile_node.y;
break;
}
if (tile_node.z == tile) {
id = tile_node.w;
break;
}
}
/* If we found the tile, offset the UVs to be relative to it. */
if (id != -1) {
tex_co.x -= tx;
tex_co.y -= ty;
}
}
/* Skip over the remaining nodes. */
offset = next_offset;
}
else {
id = -num_nodes;
}
float4 f = svm_image_texture(kg, id, tex_co.x, tex_co.y, flags);
if (stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if (stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
return offset;
}
ccl_device_noinline void svm_node_tex_image_box(KernelGlobals kg,
ccl_private ShaderData *sd,
ccl_private float *stack,
uint4 node)
{
/* get object space normal */
float3 N = sd->N;
N = sd->N;
object_inverse_normal_transform(kg, sd, &N);
/* project from direction vector to barycentric coordinates in triangles */
float3 signed_N = N;
N.x = fabsf(N.x);
N.y = fabsf(N.y);
N.z = fabsf(N.z);
N /= (N.x + N.y + N.z);
/* basic idea is to think of this as a triangle, each corner representing
* one of the 3 faces of the cube. in the corners we have single textures,
* in between we blend between two textures, and in the middle we a blend
* between three textures.
*
* The `Nxyz` values are the barycentric coordinates in an equilateral
* triangle, which in case of blending, in the middle has a smaller
* equilateral triangle where 3 textures blend. this divides things into
* 7 zones, with an if() test for each zone. */
float3 weight = make_float3(0.0f, 0.0f, 0.0f);
float blend = __int_as_float(node.w);
float limit = 0.5f * (1.0f + blend);
/* first test for corners with single texture */
if (N.x > limit * (N.x + N.y) && N.x > limit * (N.x + N.z)) {
weight.x = 1.0f;
}
else if (N.y > limit * (N.x + N.y) && N.y > limit * (N.y + N.z)) {
weight.y = 1.0f;
}
else if (N.z > limit * (N.x + N.z) && N.z > limit * (N.y + N.z)) {
weight.z = 1.0f;
}
else if (blend > 0.0f) {
/* in case of blending, test for mixes between two textures */
if (N.z < (1.0f - limit) * (N.y + N.x)) {
weight.x = N.x / (N.x + N.y);
weight.x = saturatef((weight.x - 0.5f * (1.0f - blend)) / blend);
weight.y = 1.0f - weight.x;
}
else if (N.x < (1.0f - limit) * (N.y + N.z)) {
weight.y = N.y / (N.y + N.z);
weight.y = saturatef((weight.y - 0.5f * (1.0f - blend)) / blend);
weight.z = 1.0f - weight.y;
}
else if (N.y < (1.0f - limit) * (N.x + N.z)) {
weight.x = N.x / (N.x + N.z);
weight.x = saturatef((weight.x - 0.5f * (1.0f - blend)) / blend);
weight.z = 1.0f - weight.x;
}
else {
/* last case, we have a mix between three */
weight.x = ((2.0f - limit) * N.x + (limit - 1.0f)) / (2.0f * limit - 1.0f);
weight.y = ((2.0f - limit) * N.y + (limit - 1.0f)) / (2.0f * limit - 1.0f);
weight.z = ((2.0f - limit) * N.z + (limit - 1.0f)) / (2.0f * limit - 1.0f);
}
}
else {
/* Desperate mode, no valid choice anyway, fallback to one side. */
weight.x = 1.0f;
}
/* now fetch textures */
uint co_offset, out_offset, alpha_offset, flags;
svm_unpack_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags);
float3 co = stack_load_float3(stack, co_offset);
uint id = node.y;
float4 f = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* Map so that no textures are flipped, rotation is somewhat arbitrary. */
if (weight.x > 0.0f) {
float2 uv = make_float2((signed_N.x < 0.0f) ? 1.0f - co.y : co.y, co.z);
f += weight.x * svm_image_texture(kg, id, uv.x, uv.y, flags);
}
if (weight.y > 0.0f) {
float2 uv = make_float2((signed_N.y > 0.0f) ? 1.0f - co.x : co.x, co.z);
f += weight.y * svm_image_texture(kg, id, uv.x, uv.y, flags);
}
if (weight.z > 0.0f) {
float2 uv = make_float2((signed_N.z > 0.0f) ? 1.0f - co.y : co.y, co.x);
f += weight.z * svm_image_texture(kg, id, uv.x, uv.y, flags);
}
if (stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if (stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
ccl_device_noinline void svm_node_tex_environment(KernelGlobals kg,
ccl_private ShaderData *sd,
ccl_private float *stack,
uint4 node)
{
uint id = node.y;
uint co_offset, out_offset, alpha_offset, flags;
uint projection = node.w;
svm_unpack_node_uchar4(node.z, &co_offset, &out_offset, &alpha_offset, &flags);
float3 co = stack_load_float3(stack, co_offset);
float2 uv;
co = safe_normalize(co);
if (projection == 0)
uv = direction_to_equirectangular(co);
else
uv = direction_to_mirrorball(co);
float4 f = svm_image_texture(kg, id, uv.x, uv.y, flags);
if (stack_valid(out_offset))
stack_store_float3(stack, out_offset, make_float3(f.x, f.y, f.z));
if (stack_valid(alpha_offset))
stack_store_float(stack, alpha_offset, f.w);
}
CCL_NAMESPACE_END