Files
blender/intern/cycles/kernel/svm/svm_musgrave.h
OmarSquircleArt f2176b3ff3 Shading: Extend Musgrave node to other dimensions.
This patch extends Musgrave noise to operate in 1D, 2D, 3D, and 4D
space. The Color output was also removed because it was identical
to the Fac output.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D5566
2019-09-09 21:06:55 +02:00

850 lines
24 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* 1D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
ccl_device_noinline_cpu float noise_musgrave_fBm_1d(float co,
float H,
float lacunarity,
float octaves)
{
float p = co;
float value = 0.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value += snoise_1d(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * snoise_1d(p) * pwr;
}
return value;
}
/* 1D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
ccl_device_noinline_cpu float noise_musgrave_multi_fractal_1d(float co,
float H,
float lacunarity,
float octaves)
{
float p = co;
float value = 1.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value *= (pwr * snoise_1d(p) + 1.0f);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value *= (rmd * pwr * snoise_1d(p) + 1.0f); /* correct? */
}
return value;
}
/* 1D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hetero_terrain_1d(
float co, float H, float lacunarity, float octaves, float offset)
{
float p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + snoise_1d(p);
p *= lacunarity;
for (int i = 1; i < float_to_int(octaves); i++) {
float increment = (snoise_1d(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
float increment = (snoise_1d(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 1D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hybrid_multi_fractal_1d(
float co, float H, float lacunarity, float octaves, float offset, float gain)
{
float p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float value = snoise_1d(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
if (weight > 1.0f) {
weight = 1.0f;
}
float signal = (snoise_1d(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * ((snoise_1d(p) + offset) * pwr);
}
return value;
}
/* 1D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_ridged_multi_fractal_1d(
float co, float H, float lacunarity, float octaves, float offset, float gain)
{
float p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabsf(snoise_1d(p));
signal *= signal;
float value = signal;
float weight = 1.0f;
for (int i = 1; i < float_to_int(octaves); i++) {
p *= lacunarity;
weight = saturate(signal * gain);
signal = offset - fabsf(snoise_1d(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 2D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
ccl_device_noinline_cpu float noise_musgrave_fBm_2d(float2 co,
float H,
float lacunarity,
float octaves)
{
float2 p = co;
float value = 0.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value += snoise_2d(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * snoise_2d(p) * pwr;
}
return value;
}
/* 2D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
ccl_device_noinline_cpu float noise_musgrave_multi_fractal_2d(float2 co,
float H,
float lacunarity,
float octaves)
{
float2 p = co;
float value = 1.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value *= (pwr * snoise_2d(p) + 1.0f);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value *= (rmd * pwr * snoise_2d(p) + 1.0f); /* correct? */
}
return value;
}
/* 2D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hetero_terrain_2d(
float2 co, float H, float lacunarity, float octaves, float offset)
{
float2 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + snoise_2d(p);
p *= lacunarity;
for (int i = 1; i < float_to_int(octaves); i++) {
float increment = (snoise_2d(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
float increment = (snoise_2d(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 2D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hybrid_multi_fractal_2d(
float2 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float2 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float value = snoise_2d(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
if (weight > 1.0f) {
weight = 1.0f;
}
float signal = (snoise_2d(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * ((snoise_2d(p) + offset) * pwr);
}
return value;
}
/* 2D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_ridged_multi_fractal_2d(
float2 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float2 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabsf(snoise_2d(p));
signal *= signal;
float value = signal;
float weight = 1.0f;
for (int i = 1; i < float_to_int(octaves); i++) {
p *= lacunarity;
weight = saturate(signal * gain);
signal = offset - fabsf(snoise_2d(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 3D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
ccl_device_noinline_cpu float noise_musgrave_fBm_3d(float3 co,
float H,
float lacunarity,
float octaves)
{
float3 p = co;
float value = 0.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value += snoise_3d(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * snoise_3d(p) * pwr;
}
return value;
}
/* 3D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
ccl_device_noinline_cpu float noise_musgrave_multi_fractal_3d(float3 co,
float H,
float lacunarity,
float octaves)
{
float3 p = co;
float value = 1.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value *= (pwr * snoise_3d(p) + 1.0f);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value *= (rmd * pwr * snoise_3d(p) + 1.0f); /* correct? */
}
return value;
}
/* 3D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hetero_terrain_3d(
float3 co, float H, float lacunarity, float octaves, float offset)
{
float3 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + snoise_3d(p);
p *= lacunarity;
for (int i = 1; i < float_to_int(octaves); i++) {
float increment = (snoise_3d(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
float increment = (snoise_3d(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 3D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hybrid_multi_fractal_3d(
float3 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float3 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float value = snoise_3d(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
if (weight > 1.0f) {
weight = 1.0f;
}
float signal = (snoise_3d(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * ((snoise_3d(p) + offset) * pwr);
}
return value;
}
/* 3D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_ridged_multi_fractal_3d(
float3 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float3 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabsf(snoise_3d(p));
signal *= signal;
float value = signal;
float weight = 1.0f;
for (int i = 1; i < float_to_int(octaves); i++) {
p *= lacunarity;
weight = saturate(signal * gain);
signal = offset - fabsf(snoise_3d(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
/* 4D Musgrave fBm
*
* H: fractal increment parameter
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*
* from "Texturing and Modelling: A procedural approach"
*/
ccl_device_noinline_cpu float noise_musgrave_fBm_4d(float4 co,
float H,
float lacunarity,
float octaves)
{
float4 p = co;
float value = 0.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value += snoise_4d(p) * pwr;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * snoise_4d(p) * pwr;
}
return value;
}
/* 4D Musgrave Multifractal
*
* H: highest fractal dimension
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
*/
ccl_device_noinline_cpu float noise_musgrave_multi_fractal_4d(float4 co,
float H,
float lacunarity,
float octaves)
{
float4 p = co;
float value = 1.0f;
float pwr = 1.0f;
float pwHL = powf(lacunarity, -H);
for (int i = 0; i < float_to_int(octaves); i++) {
value *= (pwr * snoise_4d(p) + 1.0f);
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value *= (rmd * pwr * snoise_4d(p) + 1.0f); /* correct? */
}
return value;
}
/* 4D Musgrave Heterogeneous Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hetero_terrain_4d(
float4 co, float H, float lacunarity, float octaves, float offset)
{
float4 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
/* first unscaled octave of function; later octaves are scaled */
float value = offset + snoise_4d(p);
p *= lacunarity;
for (int i = 1; i < float_to_int(octaves); i++) {
float increment = (snoise_4d(p) + offset) * pwr * value;
value += increment;
pwr *= pwHL;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
float increment = (snoise_4d(p) + offset) * pwr * value;
value += rmd * increment;
}
return value;
}
/* 4D Hybrid Additive/Multiplicative Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_hybrid_multi_fractal_4d(
float4 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float4 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float value = snoise_4d(p) + offset;
float weight = gain * value;
p *= lacunarity;
for (int i = 1; (weight > 0.001f) && (i < float_to_int(octaves)); i++) {
if (weight > 1.0f) {
weight = 1.0f;
}
float signal = (snoise_4d(p) + offset) * pwr;
pwr *= pwHL;
value += weight * signal;
weight *= gain * signal;
p *= lacunarity;
}
float rmd = octaves - floorf(octaves);
if (rmd != 0.0f) {
value += rmd * ((snoise_4d(p) + offset) * pwr);
}
return value;
}
/* 4D Ridged Multifractal Terrain
*
* H: fractal dimension of the roughest area
* lacunarity: gap between successive frequencies
* octaves: number of frequencies in the fBm
* offset: raises the terrain from `sea level'
*/
ccl_device_noinline_cpu float noise_musgrave_ridged_multi_fractal_4d(
float4 co, float H, float lacunarity, float octaves, float offset, float gain)
{
float4 p = co;
float pwHL = powf(lacunarity, -H);
float pwr = pwHL;
float signal = offset - fabsf(snoise_4d(p));
signal *= signal;
float value = signal;
float weight = 1.0f;
for (int i = 1; i < float_to_int(octaves); i++) {
p *= lacunarity;
weight = saturate(signal * gain);
signal = offset - fabsf(snoise_4d(p));
signal *= signal;
signal *= weight;
value += signal * pwr;
pwr *= pwHL;
}
return value;
}
ccl_device void svm_node_tex_musgrave(KernelGlobals *kg,
ShaderData *sd,
float *stack,
uint offsets1,
uint offsets2,
uint offsets3,
int *offset)
{
uint type, dimensions, co_stack_offset, w_stack_offset;
uint scale_stack_offset, detail_stack_offset, dimension_stack_offset, lacunarity_stack_offset;
uint offset_stack_offset, gain_stack_offset, fac_stack_offset;
svm_unpack_node_uchar4(offsets1, &type, &dimensions, &co_stack_offset, &w_stack_offset);
svm_unpack_node_uchar4(offsets2,
&scale_stack_offset,
&detail_stack_offset,
&dimension_stack_offset,
&lacunarity_stack_offset);
svm_unpack_node_uchar3(offsets3, &offset_stack_offset, &gain_stack_offset, &fac_stack_offset);
uint4 defaults1 = read_node(kg, offset);
uint4 defaults2 = read_node(kg, offset);
float3 co = stack_load_float3(stack, co_stack_offset);
float w = stack_load_float_default(stack, w_stack_offset, defaults1.x);
float scale = stack_load_float_default(stack, scale_stack_offset, defaults1.y);
float detail = stack_load_float_default(stack, detail_stack_offset, defaults1.z);
float dimension = stack_load_float_default(stack, dimension_stack_offset, defaults1.w);
float lacunarity = stack_load_float_default(stack, lacunarity_stack_offset, defaults2.x);
float foffset = stack_load_float_default(stack, offset_stack_offset, defaults2.y);
float gain = stack_load_float_default(stack, gain_stack_offset, defaults2.z);
dimension = fmaxf(dimension, 1e-5f);
detail = clamp(detail, 0.0f, 16.0f);
lacunarity = fmaxf(lacunarity, 1e-5f);
float fac;
switch (dimensions) {
case 1: {
float p = w * scale;
switch ((NodeMusgraveType)type) {
case NODE_MUSGRAVE_MULTIFRACTAL:
fac = noise_musgrave_multi_fractal_1d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_FBM:
fac = noise_musgrave_fBm_1d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_HYBRID_MULTIFRACTAL:
fac = noise_musgrave_hybrid_multi_fractal_1d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_RIDGED_MULTIFRACTAL:
fac = noise_musgrave_ridged_multi_fractal_1d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_HETERO_TERRAIN:
fac = noise_musgrave_hetero_terrain_1d(p, dimension, lacunarity, detail, foffset);
break;
default:
fac = 0.0f;
}
break;
}
case 2: {
float2 p = make_float2(co.x, co.y) * scale;
switch ((NodeMusgraveType)type) {
case NODE_MUSGRAVE_MULTIFRACTAL:
fac = noise_musgrave_multi_fractal_2d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_FBM:
fac = noise_musgrave_fBm_2d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_HYBRID_MULTIFRACTAL:
fac = noise_musgrave_hybrid_multi_fractal_2d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_RIDGED_MULTIFRACTAL:
fac = noise_musgrave_ridged_multi_fractal_2d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_HETERO_TERRAIN:
fac = noise_musgrave_hetero_terrain_2d(p, dimension, lacunarity, detail, foffset);
break;
default:
fac = 0.0f;
}
break;
}
case 3: {
float3 p = co * scale;
switch ((NodeMusgraveType)type) {
case NODE_MUSGRAVE_MULTIFRACTAL:
fac = noise_musgrave_multi_fractal_3d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_FBM:
fac = noise_musgrave_fBm_3d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_HYBRID_MULTIFRACTAL:
fac = noise_musgrave_hybrid_multi_fractal_3d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_RIDGED_MULTIFRACTAL:
fac = noise_musgrave_ridged_multi_fractal_3d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_HETERO_TERRAIN:
fac = noise_musgrave_hetero_terrain_3d(p, dimension, lacunarity, detail, foffset);
break;
default:
fac = 0.0f;
}
break;
}
case 4: {
float4 p = make_float4(co.x, co.y, co.z, w) * scale;
switch ((NodeMusgraveType)type) {
case NODE_MUSGRAVE_MULTIFRACTAL:
fac = noise_musgrave_multi_fractal_4d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_FBM:
fac = noise_musgrave_fBm_4d(p, dimension, lacunarity, detail);
break;
case NODE_MUSGRAVE_HYBRID_MULTIFRACTAL:
fac = noise_musgrave_hybrid_multi_fractal_4d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_RIDGED_MULTIFRACTAL:
fac = noise_musgrave_ridged_multi_fractal_4d(
p, dimension, lacunarity, detail, foffset, gain);
break;
case NODE_MUSGRAVE_HETERO_TERRAIN:
fac = noise_musgrave_hetero_terrain_4d(p, dimension, lacunarity, detail, foffset);
break;
default:
fac = 0.0f;
}
break;
}
default:
fac = 0.0f;
}
stack_store_float(stack, fac_stack_offset, fac);
}
CCL_NAMESPACE_END