Files
blender/intern/cycles/kernel/svm/svm_tex_coord.h
Patrick Mours 2b999c6a68 Cycles: change svm node decoding for more efficient code generation on GPU
These functions no longer accept NULL. They were renamed for clarity and to
avoid hidden merge issues.

Ref D5363
2019-08-26 10:26:53 +02:00

399 lines
11 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/* Texture Coordinate Node */
ccl_device void svm_node_tex_coord(
KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint4 node, int *offset)
{
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch (type) {
case NODE_TEXCO_OBJECT: {
data = sd->P;
if (node.w == 0) {
if (sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if (sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P);
else
data = transform_point(&tfm, sd->P + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if ((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE &&
kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P);
else
data = camera_world_to_ndc(kg, sd, sd->P);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if (sd->object != OBJECT_NONE)
data = 2.0f * dot(sd->N, sd->I) * sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P;
#ifdef __VOLUME__
if (sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
#endif
break;
}
}
stack_store_float3(stack, out_offset, data);
}
ccl_device void svm_node_tex_coord_bump_dx(
KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint4 node, int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch (type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dx;
if (node.w == 0) {
if (sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if (sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P + sd->dP.dx);
else
data = transform_point(&tfm, sd->P + sd->dP.dx + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if ((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE &&
kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dx);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dx);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if (sd->object != OBJECT_NONE)
data = 2.0f * dot(sd->N, sd->I) * sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dx;
# ifdef __VOLUME__
if (sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
# endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device void svm_node_tex_coord_bump_dy(
KernelGlobals *kg, ShaderData *sd, int path_flag, float *stack, uint4 node, int *offset)
{
#ifdef __RAY_DIFFERENTIALS__
float3 data;
uint type = node.y;
uint out_offset = node.z;
switch (type) {
case NODE_TEXCO_OBJECT: {
data = sd->P + sd->dP.dy;
if (node.w == 0) {
if (sd->object != OBJECT_NONE) {
object_inverse_position_transform(kg, sd, &data);
}
}
else {
Transform tfm;
tfm.x = read_node_float(kg, offset);
tfm.y = read_node_float(kg, offset);
tfm.z = read_node_float(kg, offset);
data = transform_point(&tfm, data);
}
break;
}
case NODE_TEXCO_NORMAL: {
data = sd->N;
object_inverse_normal_transform(kg, sd, &data);
break;
}
case NODE_TEXCO_CAMERA: {
Transform tfm = kernel_data.cam.worldtocamera;
if (sd->object != OBJECT_NONE)
data = transform_point(&tfm, sd->P + sd->dP.dy);
else
data = transform_point(&tfm, sd->P + sd->dP.dy + camera_position(kg));
break;
}
case NODE_TEXCO_WINDOW: {
if ((path_flag & PATH_RAY_CAMERA) && sd->object == OBJECT_NONE &&
kernel_data.cam.type == CAMERA_ORTHOGRAPHIC)
data = camera_world_to_ndc(kg, sd, sd->ray_P + sd->ray_dP.dy);
else
data = camera_world_to_ndc(kg, sd, sd->P + sd->dP.dy);
data.z = 0.0f;
break;
}
case NODE_TEXCO_REFLECTION: {
if (sd->object != OBJECT_NONE)
data = 2.0f * dot(sd->N, sd->I) * sd->N - sd->I;
else
data = sd->I;
break;
}
case NODE_TEXCO_DUPLI_GENERATED: {
data = object_dupli_generated(kg, sd->object);
break;
}
case NODE_TEXCO_DUPLI_UV: {
data = object_dupli_uv(kg, sd->object);
break;
}
case NODE_TEXCO_VOLUME_GENERATED: {
data = sd->P + sd->dP.dy;
# ifdef __VOLUME__
if (sd->object != OBJECT_NONE)
data = volume_normalized_position(kg, sd, data);
# endif
break;
}
}
stack_store_float3(stack, out_offset, data);
#else
svm_node_tex_coord(kg, sd, path_flag, stack, node, offset);
#endif
}
ccl_device void svm_node_normal_map(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint color_offset, strength_offset, normal_offset, space;
svm_unpack_node_uchar4(node.y, &color_offset, &strength_offset, &normal_offset, &space);
float3 color = stack_load_float3(stack, color_offset);
color = 2.0f * make_float3(color.x - 0.5f, color.y - 0.5f, color.z - 0.5f);
bool is_backfacing = (sd->flag & SD_BACKFACING) != 0;
float3 N;
if (space == NODE_NORMAL_MAP_TANGENT) {
/* tangent space */
if (sd->object == OBJECT_NONE) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* first try to get tangent attribute */
const AttributeDescriptor attr = find_attribute(kg, sd, node.z);
const AttributeDescriptor attr_sign = find_attribute(kg, sd, node.w);
const AttributeDescriptor attr_normal = find_attribute(kg, sd, ATTR_STD_VERTEX_NORMAL);
if (attr.offset == ATTR_STD_NOT_FOUND || attr_sign.offset == ATTR_STD_NOT_FOUND ||
attr_normal.offset == ATTR_STD_NOT_FOUND) {
stack_store_float3(stack, normal_offset, make_float3(0.0f, 0.0f, 0.0f));
return;
}
/* get _unnormalized_ interpolated normal and tangent */
float3 tangent = primitive_surface_attribute_float3(kg, sd, attr, NULL, NULL);
float sign = primitive_surface_attribute_float(kg, sd, attr_sign, NULL, NULL);
float3 normal;
if (sd->shader & SHADER_SMOOTH_NORMAL) {
normal = primitive_surface_attribute_float3(kg, sd, attr_normal, NULL, NULL);
}
else {
normal = sd->Ng;
/* the normal is already inverted, which is too soon for the math here */
if (is_backfacing) {
normal = -normal;
}
object_inverse_normal_transform(kg, sd, &normal);
}
/* apply normal map */
float3 B = sign * cross(normal, tangent);
N = safe_normalize(color.x * tangent + color.y * B + color.z * normal);
/* transform to world space */
object_normal_transform(kg, sd, &N);
}
else {
/* strange blender convention */
if (space == NODE_NORMAL_MAP_BLENDER_OBJECT || space == NODE_NORMAL_MAP_BLENDER_WORLD) {
color.y = -color.y;
color.z = -color.z;
}
/* object, world space */
N = color;
if (space == NODE_NORMAL_MAP_OBJECT || space == NODE_NORMAL_MAP_BLENDER_OBJECT)
object_normal_transform(kg, sd, &N);
else
N = safe_normalize(N);
}
/* invert normal for backfacing polygons */
if (is_backfacing) {
N = -N;
}
float strength = stack_load_float(stack, strength_offset);
if (strength != 1.0f) {
strength = max(strength, 0.0f);
N = safe_normalize(sd->N + (N - sd->N) * strength);
}
N = ensure_valid_reflection(sd->Ng, sd->I, N);
if (is_zero(N)) {
N = sd->N;
}
stack_store_float3(stack, normal_offset, N);
}
ccl_device void svm_node_tangent(KernelGlobals *kg, ShaderData *sd, float *stack, uint4 node)
{
uint tangent_offset, direction_type, axis;
svm_unpack_node_uchar3(node.y, &tangent_offset, &direction_type, &axis);
float3 tangent;
float3 attribute_value;
const AttributeDescriptor desc = find_attribute(kg, sd, node.z);
if (desc.offset != ATTR_STD_NOT_FOUND) {
if (desc.type == NODE_ATTR_FLOAT2) {
float2 value = primitive_surface_attribute_float2(kg, sd, desc, NULL, NULL);
attribute_value.x = value.x;
attribute_value.y = value.y;
attribute_value.z = 0.0f;
}
else {
attribute_value = primitive_surface_attribute_float3(kg, sd, desc, NULL, NULL);
}
}
if (direction_type == NODE_TANGENT_UVMAP) {
/* UV map */
if (desc.offset == ATTR_STD_NOT_FOUND)
tangent = make_float3(0.0f, 0.0f, 0.0f);
else
tangent = attribute_value;
}
else {
/* radial */
float3 generated;
if (desc.offset == ATTR_STD_NOT_FOUND)
generated = sd->P;
else
generated = attribute_value;
if (axis == NODE_TANGENT_AXIS_X)
tangent = make_float3(0.0f, -(generated.z - 0.5f), (generated.y - 0.5f));
else if (axis == NODE_TANGENT_AXIS_Y)
tangent = make_float3(-(generated.z - 0.5f), 0.0f, (generated.x - 0.5f));
else
tangent = make_float3(-(generated.y - 0.5f), (generated.x - 0.5f), 0.0f);
}
object_normal_transform(kg, sd, &tangent);
tangent = cross(sd->N, normalize(cross(tangent, sd->N)));
stack_store_float3(stack, tangent_offset, tangent);
}
CCL_NAMESPACE_END