Files
blender/intern/bsp/intern/BSP_Triangulate.cpp
2002-11-01 21:39:56 +00:00

250 lines
5.7 KiB
C++
Executable File

/**
* $Id$
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include <stdio.h>
#include <stdlib.h>
#include "MT_Plane3.h"
#include "BSP_Triangulate.h"
#include "MT_assert.h"
static const MT_Scalar EPSILON = MT_Scalar(1e-10);
using namespace std;
BSP_Triangulate::
BSP_Triangulate(
):
m_xi(0),
m_yi(1)
{
}
BSP_Triangulate::
~BSP_Triangulate(
){
}
MT_Scalar
BSP_Triangulate::
Area(
const vector<BSP_MVertex> &verts,
const BSP_VertexList &contour
){
int n = contour.size();
MT_Scalar A(0.0);
for(int p=n-1,q=0; q<n; p=q++)
{
A+= verts[contour[p]].m_pos[m_xi]*verts[contour[q]].m_pos[m_yi] -
verts[contour[q]].m_pos[m_xi]*verts[contour[p]].m_pos[m_yi];
}
return A*MT_Scalar(0.5);
}
/*
InsideTriangle decides if a point P is Inside of the triangle
defined by A, B, C.
Or within an epsilon of it.
*/
bool
BSP_Triangulate::
InsideTriangle(
MT_Scalar Ax, MT_Scalar Ay,
MT_Scalar Bx, MT_Scalar By,
MT_Scalar Cx, MT_Scalar Cy,
MT_Scalar Px, MT_Scalar Py
){
MT_Scalar ax, ay, bx, by, cx, cy, apx, apy, bpx, bpy, cpx, cpy;
MT_Scalar cCROSSap, bCROSScp, aCROSSbp;
ax = Cx - Bx; ay = Cy - By;
bx = Ax - Cx; by = Ay - Cy;
cx = Bx - Ax; cy = By - Ay;
apx= Px - Ax; apy= Py - Ay;
bpx= Px - Bx; bpy= Py - By;
cpx= Px - Cx; cpy= Py - Cy;
aCROSSbp = ax*bpy - ay*bpx;
cCROSSap = cx*apy - cy*apx;
bCROSScp = bx*cpy - by*cpx;
return ((aCROSSbp >= -EPSILON) && (bCROSScp >= -EPSILON) && (cCROSSap >= -EPSILON));
};
bool
BSP_Triangulate::
Snip(
const vector<BSP_MVertex> &verts,
const BSP_VertexList &contour,
int u,int v,
int w,int n,
int *V
){
int p;
MT_Scalar Ax, Ay, Bx, By, Cx, Cy, Px, Py;
Ax = verts[contour[V[u]]].m_pos[m_xi];
Ay = verts[contour[V[u]]].m_pos[m_yi];
Bx = verts[contour[V[v]]].m_pos[m_xi];
By = verts[contour[V[v]]].m_pos[m_yi];
Cx = verts[contour[V[w]]].m_pos[m_xi];
Cy = verts[contour[V[w]]].m_pos[m_yi];
// Snip is passes if the area of the candidate triangle is
// greater than 2*epsilon
// And if none of the remaining vertices are inside the polygon
// or within an epsilon of the boundary,
if ( EPSILON > (((Bx-Ax)*(Cy-Ay)) - ((By-Ay)*(Cx-Ax))) ) return false;
for (p=0;p<n;p++)
{
if( (p == u) || (p == v) || (p == w) ) continue;
Px = verts[contour[V[p]]].m_pos[m_xi];
Py = verts[contour[V[p]]].m_pos[m_yi];
if (InsideTriangle(Ax,Ay,Bx,By,Cx,Cy,Px,Py)) return false;
}
return true;
}
bool
BSP_Triangulate::
Process(
const vector<BSP_MVertex> &verts,
const BSP_VertexList &contour,
const MT_Plane3 &normal,
std::vector<int> &result
){
// Choose major axis of normal and assign
// 'projection' indices m_xi,m_yi;
int maj_axis = normal.Normal().closestAxis();
if (maj_axis == 0) {
m_xi = 1; m_yi = 2;
} else
if (maj_axis == 1) {
m_xi = 0; m_yi = 2;
} else {
m_xi = 0; m_yi = 1;
}
/* initialize list of Vertices in polygon */
int n = contour.size();
if ( n < 3 ) return false;
/* we want a counter-clockwise polygon in V */
/* to true but we also nead to preserve the winding order
of polygons going into the routine. We keep track of what
we did with a little bool */
bool is_flipped = false;
if ( 0.0f < Area(verts,contour) ) {
for (int v=0; v<n; v++) m_V.push_back(v);
} else {
for(int v=0; v<n; v++) m_V.push_back((n-1)-v);
is_flipped = true;
}
int nv = n;
/* remove nv-2 Vertices, creating 1 triangle every time */
int count = 2*nv; /* error detection */
for(int m=0, v=nv-1; nv>2; )
{
/* if we loop, it is probably a non-simple polygon */
if (0 >= (count--))
{
#if 0
int deb = 0;
for (deb= 0; deb < contour.size(); deb++) {
cout << verts[contour[deb]].m_pos << "\n";
}
cout.flush();
#endif
//** Triangulate: ERROR - probable bad polygon!
m_V.clear();
return false;
}
/* three consecutive vertices in current polygon, <u,v,w> */
int u = v ; if (nv <= u) u = 0; /* previous */
v = u+1; if (nv <= v) v = 0; /* new v */
int w = v+1; if (nv <= w) w = 0; /* next */
/* Try and snip this triangle off from the
current polygon.*/
if ( Snip(verts,contour,u,v,w,nv, &m_V[0]) )
{
int a,b,c,s,t;
/* true names of the vertices */
a = m_V[u]; b = m_V[v]; c = m_V[w];
/* output Triangle indices*/
if (is_flipped) {
result.push_back( c );
result.push_back( b );
result.push_back( a );
} else {
result.push_back( a );
result.push_back( b );
result.push_back( c );
}
m++;
/* remove v from remaining polygon */
for(s=v,t=v+1;t<nv;s++,t++) m_V[s] = m_V[t]; nv--;
/* resest error detection counter */
count = 2*nv;
}
}
m_V.clear();
return true;
}