Files
blender/source/blender/alembic/intern/abc_mesh.cc

1474 lines
43 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup balembic
*/
#include "abc_mesh.h"
#include <algorithm>
#include "abc_transform.h"
#include "abc_util.h"
#include "MEM_guardedalloc.h"
extern "C" {
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_fluidsim_types.h"
#include "DNA_object_types.h"
#include "BLI_math_geom.h"
#include "BLI_string.h"
#include "BKE_animsys.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "WM_api.h"
#include "WM_types.h"
#include "ED_mesh.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "DEG_depsgraph_query.h"
}
using Alembic::Abc::C4fArraySample;
using Alembic::Abc::FloatArraySample;
using Alembic::Abc::ICompoundProperty;
using Alembic::Abc::Int32ArraySample;
using Alembic::Abc::Int32ArraySamplePtr;
using Alembic::Abc::P3fArraySamplePtr;
using Alembic::Abc::V2fArraySample;
using Alembic::Abc::V3fArraySample;
using Alembic::AbcGeom::IFaceSet;
using Alembic::AbcGeom::IFaceSetSchema;
using Alembic::AbcGeom::IObject;
using Alembic::AbcGeom::IPolyMesh;
using Alembic::AbcGeom::IPolyMeshSchema;
using Alembic::AbcGeom::ISampleSelector;
using Alembic::AbcGeom::ISubD;
using Alembic::AbcGeom::ISubDSchema;
using Alembic::AbcGeom::IV2fGeomParam;
using Alembic::AbcGeom::OArrayProperty;
using Alembic::AbcGeom::OBoolProperty;
using Alembic::AbcGeom::OC3fArrayProperty;
using Alembic::AbcGeom::OC3fGeomParam;
using Alembic::AbcGeom::OC4fGeomParam;
using Alembic::AbcGeom::OCompoundProperty;
using Alembic::AbcGeom::OFaceSet;
using Alembic::AbcGeom::OFaceSetSchema;
using Alembic::AbcGeom::OFloatGeomParam;
using Alembic::AbcGeom::OInt32GeomParam;
using Alembic::AbcGeom::ON3fArrayProperty;
using Alembic::AbcGeom::ON3fGeomParam;
using Alembic::AbcGeom::OPolyMesh;
using Alembic::AbcGeom::OPolyMeshSchema;
using Alembic::AbcGeom::OSubD;
using Alembic::AbcGeom::OSubDSchema;
using Alembic::AbcGeom::OV2fGeomParam;
using Alembic::AbcGeom::OV3fGeomParam;
using Alembic::AbcGeom::IN3fGeomParam;
using Alembic::AbcGeom::kFacevaryingScope;
using Alembic::AbcGeom::kVaryingScope;
using Alembic::AbcGeom::kVertexScope;
using Alembic::AbcGeom::kWrapExisting;
using Alembic::AbcGeom::N3fArraySample;
using Alembic::AbcGeom::N3fArraySamplePtr;
using Alembic::AbcGeom::UInt32ArraySample;
/* ************************************************************************** */
/* NOTE: Alembic's polygon winding order is clockwise, to match with Renderman. */
static void get_vertices(struct Mesh *mesh, std::vector<Imath::V3f> &points)
{
points.clear();
points.resize(mesh->totvert);
MVert *verts = mesh->mvert;
for (int i = 0, e = mesh->totvert; i < e; i++) {
copy_yup_from_zup(points[i].getValue(), verts[i].co);
}
}
static void get_topology(struct Mesh *mesh,
std::vector<int32_t> &poly_verts,
std::vector<int32_t> &loop_counts,
bool &r_has_flat_shaded_poly)
{
const int num_poly = mesh->totpoly;
const int num_loops = mesh->totloop;
MLoop *mloop = mesh->mloop;
MPoly *mpoly = mesh->mpoly;
r_has_flat_shaded_poly = false;
poly_verts.clear();
loop_counts.clear();
poly_verts.reserve(num_loops);
loop_counts.reserve(num_poly);
/* NOTE: data needs to be written in the reverse order. */
for (int i = 0; i < num_poly; i++) {
MPoly &poly = mpoly[i];
loop_counts.push_back(poly.totloop);
r_has_flat_shaded_poly |= (poly.flag & ME_SMOOTH) == 0;
MLoop *loop = mloop + poly.loopstart + (poly.totloop - 1);
for (int j = 0; j < poly.totloop; j++, loop--) {
poly_verts.push_back(loop->v);
}
}
}
static void get_creases(struct Mesh *mesh,
std::vector<int32_t> &indices,
std::vector<int32_t> &lengths,
std::vector<float> &sharpnesses)
{
const float factor = 1.0f / 255.0f;
indices.clear();
lengths.clear();
sharpnesses.clear();
MEdge *edge = mesh->medge;
for (int i = 0, e = mesh->totedge; i < e; i++) {
const float sharpness = static_cast<float>(edge[i].crease) * factor;
if (sharpness != 0.0f) {
indices.push_back(edge[i].v1);
indices.push_back(edge[i].v2);
sharpnesses.push_back(sharpness);
}
}
lengths.resize(sharpnesses.size(), 2);
}
static void get_loop_normals(struct Mesh *mesh,
std::vector<Imath::V3f> &normals,
bool has_flat_shaded_poly)
{
normals.clear();
/* If all polygons are smooth shaded, and there are no custom normals, we don't need to export
* normals at all. This is also done by other software, see T71246. */
if (!has_flat_shaded_poly && !CustomData_has_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL)) {
return;
}
BKE_mesh_calc_normals_split(mesh);
const float(*lnors)[3] = static_cast<float(*)[3]>(CustomData_get_layer(&mesh->ldata, CD_NORMAL));
BLI_assert(lnors != NULL || !"BKE_mesh_calc_normals_split() should have computed CD_NORMAL");
normals.resize(mesh->totloop);
/* NOTE: data needs to be written in the reverse order. */
int abc_index = 0;
MPoly *mp = mesh->mpoly;
for (int i = 0, e = mesh->totpoly; i < e; i++, mp++) {
for (int j = mp->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mp->loopstart + j;
copy_yup_from_zup(normals[abc_index].getValue(), lnors[blender_index]);
}
}
}
/* *************** Modifiers *************** */
/* check if the mesh is a subsurf, ignoring disabled modifiers and
* displace if it's after subsurf. */
static ModifierData *get_subsurf_modifier(Scene *scene, Object *ob)
{
ModifierData *md = static_cast<ModifierData *>(ob->modifiers.last);
for (; md; md = md->prev) {
if (!modifier_isEnabled(scene, md, eModifierMode_Render)) {
continue;
}
if (md->type == eModifierType_Subsurf) {
SubsurfModifierData *smd = reinterpret_cast<SubsurfModifierData *>(md);
if (smd->subdivType == ME_CC_SUBSURF) {
return md;
}
}
/* mesh is not a subsurf. break */
if ((md->type != eModifierType_Displace) && (md->type != eModifierType_ParticleSystem)) {
return NULL;
}
}
return NULL;
}
static ModifierData *get_liquid_sim_modifier(Scene *scene, Object *ob)
{
ModifierData *md = modifiers_findByType(ob, eModifierType_Fluidsim);
if (md && (modifier_isEnabled(scene, md, eModifierMode_Render))) {
FluidsimModifierData *fsmd = reinterpret_cast<FluidsimModifierData *>(md);
if (fsmd->fss && fsmd->fss->type == OB_FLUIDSIM_DOMAIN) {
return md;
}
}
return NULL;
}
/* ************************************************************************** */
AbcGenericMeshWriter::AbcGenericMeshWriter(Object *ob,
AbcTransformWriter *parent,
uint32_t time_sampling,
ExportSettings &settings)
: AbcObjectWriter(ob, time_sampling, settings, parent)
{
m_is_animated = isAnimated();
m_subsurf_mod = NULL;
m_is_subd = false;
/* If the object is static, use the default static time sampling. */
if (!m_is_animated) {
time_sampling = 0;
}
if (!m_settings.apply_subdiv) {
m_subsurf_mod = get_subsurf_modifier(m_settings.scene, m_object);
m_is_subd = (m_subsurf_mod != NULL);
}
m_is_liquid = (get_liquid_sim_modifier(m_settings.scene, m_object) != NULL);
while (parent->alembicXform().getChildHeader(m_name)) {
m_name.append("_");
}
if (m_settings.use_subdiv_schema && m_is_subd) {
OSubD subd(parent->alembicXform(), m_name, m_time_sampling);
m_subdiv_schema = subd.getSchema();
}
else {
OPolyMesh mesh(parent->alembicXform(), m_name, m_time_sampling);
m_mesh_schema = mesh.getSchema();
OCompoundProperty typeContainer = m_mesh_schema.getUserProperties();
OBoolProperty type(typeContainer, "meshtype");
type.set(m_is_subd);
}
}
AbcGenericMeshWriter::~AbcGenericMeshWriter()
{
if (m_subsurf_mod) {
m_subsurf_mod->mode &= ~eModifierMode_DisableTemporary;
}
}
bool AbcGenericMeshWriter::isAnimated() const
{
if (BKE_animdata_id_is_animated(static_cast<ID *>(m_object->data))) {
return true;
}
if (BKE_key_from_object(m_object) != NULL) {
return true;
}
/* Test modifiers. */
ModifierData *md = static_cast<ModifierData *>(m_object->modifiers.first);
while (md) {
if (md->type != eModifierType_Subsurf) {
return true;
}
md = md->next;
}
return false;
}
void AbcGenericMeshWriter::setIsAnimated(bool is_animated)
{
m_is_animated = is_animated;
}
void AbcGenericMeshWriter::do_write()
{
/* We have already stored a sample for this object. */
if (!m_first_frame && !m_is_animated) {
return;
}
bool needsfree;
struct Mesh *mesh = getFinalMesh(needsfree);
try {
if (m_settings.use_subdiv_schema && m_subdiv_schema.valid()) {
writeSubD(mesh);
}
else {
writeMesh(mesh);
}
if (needsfree) {
freeEvaluatedMesh(mesh);
}
}
catch (...) {
if (needsfree) {
freeEvaluatedMesh(mesh);
}
throw;
}
}
void AbcGenericMeshWriter::freeEvaluatedMesh(struct Mesh *mesh)
{
BKE_id_free(NULL, mesh);
}
void AbcGenericMeshWriter::writeMesh(struct Mesh *mesh)
{
std::vector<Imath::V3f> points, normals;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<Imath::V3f> velocities;
bool has_flat_shaded_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, has_flat_shaded_poly);
if (m_first_frame && m_settings.export_face_sets) {
writeFaceSets(mesh, m_mesh_schema);
}
m_mesh_sample = OPolyMeshSchema::Sample(
V3fArraySample(points), Int32ArraySample(poly_verts), Int32ArraySample(loop_counts));
UVSample sample;
if (m_first_frame && m_settings.export_uvs) {
const char *name = get_uv_sample(sample, m_custom_data_config, &mesh->ldata);
if (!sample.indices.empty() && !sample.uvs.empty()) {
OV2fGeomParam::Sample uv_sample;
uv_sample.setVals(V2fArraySample(sample.uvs));
uv_sample.setIndices(UInt32ArraySample(sample.indices));
uv_sample.setScope(kFacevaryingScope);
m_mesh_schema.setUVSourceName(name);
m_mesh_sample.setUVs(uv_sample);
}
write_custom_data(
m_mesh_schema.getArbGeomParams(), m_custom_data_config, &mesh->ldata, CD_MLOOPUV);
}
if (m_settings.export_normals) {
get_loop_normals(mesh, normals, has_flat_shaded_poly);
ON3fGeomParam::Sample normals_sample;
if (!normals.empty()) {
normals_sample.setScope(kFacevaryingScope);
normals_sample.setVals(V3fArraySample(normals));
}
m_mesh_sample.setNormals(normals_sample);
}
if (m_is_liquid) {
getVelocities(mesh, velocities);
m_mesh_sample.setVelocities(V3fArraySample(velocities));
}
m_mesh_sample.setSelfBounds(bounds());
m_mesh_schema.set(m_mesh_sample);
writeArbGeoParams(mesh);
}
void AbcGenericMeshWriter::writeSubD(struct Mesh *mesh)
{
std::vector<float> crease_sharpness;
std::vector<Imath::V3f> points;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<int32_t> crease_indices, crease_lengths;
bool has_flat_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, has_flat_poly);
get_creases(mesh, crease_indices, crease_lengths, crease_sharpness);
if (m_first_frame && m_settings.export_face_sets) {
writeFaceSets(mesh, m_subdiv_schema);
}
m_subdiv_sample = OSubDSchema::Sample(
V3fArraySample(points), Int32ArraySample(poly_verts), Int32ArraySample(loop_counts));
UVSample sample;
if (m_first_frame && m_settings.export_uvs) {
const char *name = get_uv_sample(sample, m_custom_data_config, &mesh->ldata);
if (!sample.indices.empty() && !sample.uvs.empty()) {
OV2fGeomParam::Sample uv_sample;
uv_sample.setVals(V2fArraySample(sample.uvs));
uv_sample.setIndices(UInt32ArraySample(sample.indices));
uv_sample.setScope(kFacevaryingScope);
m_subdiv_schema.setUVSourceName(name);
m_subdiv_sample.setUVs(uv_sample);
}
write_custom_data(
m_subdiv_schema.getArbGeomParams(), m_custom_data_config, &mesh->ldata, CD_MLOOPUV);
}
if (!crease_indices.empty()) {
m_subdiv_sample.setCreaseIndices(Int32ArraySample(crease_indices));
m_subdiv_sample.setCreaseLengths(Int32ArraySample(crease_lengths));
m_subdiv_sample.setCreaseSharpnesses(FloatArraySample(crease_sharpness));
}
m_subdiv_sample.setSelfBounds(bounds());
m_subdiv_schema.set(m_subdiv_sample);
writeArbGeoParams(mesh);
}
template<typename Schema> void AbcGenericMeshWriter::writeFaceSets(struct Mesh *me, Schema &schema)
{
std::map<std::string, std::vector<int32_t>> geo_groups;
getGeoGroups(me, geo_groups);
std::map<std::string, std::vector<int32_t>>::iterator it;
for (it = geo_groups.begin(); it != geo_groups.end(); ++it) {
OFaceSet face_set = schema.createFaceSet(it->first);
OFaceSetSchema::Sample samp;
samp.setFaces(Int32ArraySample(it->second));
face_set.getSchema().set(samp);
}
}
Mesh *AbcGenericMeshWriter::getFinalMesh(bool &r_needsfree)
{
/* We don't want subdivided mesh data */
if (m_subsurf_mod) {
m_subsurf_mod->mode |= eModifierMode_DisableTemporary;
}
r_needsfree = false;
Scene *scene = DEG_get_evaluated_scene(m_settings.depsgraph);
Object *ob_eval = DEG_get_evaluated_object(m_settings.depsgraph, m_object);
struct Mesh *mesh = getEvaluatedMesh(scene, ob_eval, r_needsfree);
if (m_subsurf_mod) {
m_subsurf_mod->mode &= ~eModifierMode_DisableTemporary;
}
if (m_settings.triangulate) {
const bool tag_only = false;
const int quad_method = m_settings.quad_method;
const int ngon_method = m_settings.ngon_method;
struct BMeshCreateParams bmcp = {false};
struct BMeshFromMeshParams bmfmp = {true, false, false, 0};
BMesh *bm = BKE_mesh_to_bmesh_ex(mesh, &bmcp, &bmfmp);
BM_mesh_triangulate(bm, quad_method, ngon_method, 4, tag_only, NULL, NULL, NULL);
Mesh *result = BKE_mesh_from_bmesh_for_eval_nomain(bm, NULL, mesh);
BM_mesh_free(bm);
if (r_needsfree) {
BKE_id_free(NULL, mesh);
}
mesh = result;
r_needsfree = true;
}
m_custom_data_config.pack_uvs = m_settings.pack_uv;
m_custom_data_config.mpoly = mesh->mpoly;
m_custom_data_config.mloop = mesh->mloop;
m_custom_data_config.totpoly = mesh->totpoly;
m_custom_data_config.totloop = mesh->totloop;
m_custom_data_config.totvert = mesh->totvert;
return mesh;
}
void AbcGenericMeshWriter::writeArbGeoParams(struct Mesh *me)
{
if (m_is_liquid) {
/* We don't need anything more for liquid meshes. */
return;
}
if (m_first_frame && m_settings.export_vcols) {
if (m_subdiv_schema.valid()) {
write_custom_data(
m_subdiv_schema.getArbGeomParams(), m_custom_data_config, &me->ldata, CD_MLOOPCOL);
}
else {
write_custom_data(
m_mesh_schema.getArbGeomParams(), m_custom_data_config, &me->ldata, CD_MLOOPCOL);
}
}
}
void AbcGenericMeshWriter::getVelocities(struct Mesh *mesh, std::vector<Imath::V3f> &vels)
{
const int totverts = mesh->totvert;
vels.clear();
vels.resize(totverts);
ModifierData *md = get_liquid_sim_modifier(m_settings.scene, m_object);
FluidsimModifierData *fmd = reinterpret_cast<FluidsimModifierData *>(md);
FluidsimSettings *fss = fmd->fss;
if (fss->meshVelocities) {
float *mesh_vels = reinterpret_cast<float *>(fss->meshVelocities);
for (int i = 0; i < totverts; i++) {
copy_yup_from_zup(vels[i].getValue(), mesh_vels);
mesh_vels += 3;
}
}
else {
std::fill(vels.begin(), vels.end(), Imath::V3f(0.0f));
}
}
void AbcGenericMeshWriter::getGeoGroups(struct Mesh *mesh,
std::map<std::string, std::vector<int32_t>> &geo_groups)
{
const int num_poly = mesh->totpoly;
MPoly *polygons = mesh->mpoly;
for (int i = 0; i < num_poly; i++) {
MPoly &current_poly = polygons[i];
short mnr = current_poly.mat_nr;
Material *mat = give_current_material(m_object, mnr + 1);
if (!mat) {
continue;
}
std::string name = get_id_name(&mat->id);
if (geo_groups.find(name) == geo_groups.end()) {
std::vector<int32_t> faceArray;
geo_groups[name] = faceArray;
}
geo_groups[name].push_back(i);
}
if (geo_groups.size() == 0) {
Material *mat = give_current_material(m_object, 1);
std::string name = (mat) ? get_id_name(&mat->id) : "default";
std::vector<int32_t> faceArray;
for (int i = 0, e = mesh->totface; i < e; i++) {
faceArray.push_back(i);
}
geo_groups[name] = faceArray;
}
}
AbcMeshWriter::AbcMeshWriter(Object *ob,
AbcTransformWriter *parent,
uint32_t time_sampling,
ExportSettings &settings)
: AbcGenericMeshWriter(ob, parent, time_sampling, settings)
{
}
AbcMeshWriter::~AbcMeshWriter()
{
}
Mesh *AbcMeshWriter::getEvaluatedMesh(Scene *scene_eval,
Object *ob_eval,
bool &UNUSED(r_needsfree))
{
return mesh_get_eval_final(m_settings.depsgraph, scene_eval, ob_eval, &CD_MASK_MESH);
}
/* ************************************************************************** */
/* Some helpers for mesh generation */
namespace utils {
static void build_mat_map(const Main *bmain, std::map<std::string, Material *> &mat_map)
{
Material *material = static_cast<Material *>(bmain->materials.first);
for (; material; material = static_cast<Material *>(material->id.next)) {
mat_map[material->id.name + 2] = material;
}
}
static void assign_materials(Main *bmain,
Object *ob,
const std::map<std::string, int> &mat_index_map)
{
bool can_assign = true;
std::map<std::string, int>::const_iterator it = mat_index_map.begin();
int matcount = 0;
for (; it != mat_index_map.end(); ++it, matcount++) {
if (!BKE_object_material_slot_add(bmain, ob)) {
can_assign = false;
break;
}
}
/* TODO(kevin): use global map? */
std::map<std::string, Material *> mat_map;
build_mat_map(bmain, mat_map);
std::map<std::string, Material *>::iterator mat_iter;
if (can_assign) {
it = mat_index_map.begin();
for (; it != mat_index_map.end(); ++it) {
std::string mat_name = it->first;
mat_iter = mat_map.find(mat_name.c_str());
Material *assigned_mat;
if (mat_iter == mat_map.end()) {
assigned_mat = BKE_material_add(bmain, mat_name.c_str());
mat_map[mat_name] = assigned_mat;
}
else {
assigned_mat = mat_iter->second;
}
assign_material(bmain, ob, assigned_mat, it->second, BKE_MAT_ASSIGN_OBDATA);
}
}
}
} /* namespace utils */
/* ************************************************************************** */
using Alembic::AbcGeom::UInt32ArraySamplePtr;
using Alembic::AbcGeom::V2fArraySamplePtr;
struct AbcMeshData {
Int32ArraySamplePtr face_indices;
Int32ArraySamplePtr face_counts;
P3fArraySamplePtr positions;
P3fArraySamplePtr ceil_positions;
V2fArraySamplePtr uvs;
UInt32ArraySamplePtr uvs_indices;
};
static void read_mverts_interp(MVert *mverts,
const P3fArraySamplePtr &positions,
const P3fArraySamplePtr &ceil_positions,
const float weight)
{
float tmp[3];
for (int i = 0; i < positions->size(); i++) {
MVert &mvert = mverts[i];
const Imath::V3f &floor_pos = (*positions)[i];
const Imath::V3f &ceil_pos = (*ceil_positions)[i];
interp_v3_v3v3(tmp, floor_pos.getValue(), ceil_pos.getValue(), weight);
copy_zup_from_yup(mvert.co, tmp);
mvert.bweight = 0;
}
}
static void read_mverts(CDStreamConfig &config, const AbcMeshData &mesh_data)
{
MVert *mverts = config.mvert;
const P3fArraySamplePtr &positions = mesh_data.positions;
if (config.weight != 0.0f && mesh_data.ceil_positions != NULL &&
mesh_data.ceil_positions->size() == positions->size()) {
read_mverts_interp(mverts, positions, mesh_data.ceil_positions, config.weight);
return;
}
read_mverts(mverts, positions, nullptr);
}
void read_mverts(MVert *mverts, const P3fArraySamplePtr positions, const N3fArraySamplePtr normals)
{
for (int i = 0; i < positions->size(); i++) {
MVert &mvert = mverts[i];
Imath::V3f pos_in = (*positions)[i];
copy_zup_from_yup(mvert.co, pos_in.getValue());
mvert.bweight = 0;
if (normals) {
Imath::V3f nor_in = (*normals)[i];
short no[3];
normal_float_to_short_v3(no, nor_in.getValue());
copy_zup_from_yup(mvert.no, no);
}
}
}
static void read_mpolys(CDStreamConfig &config, const AbcMeshData &mesh_data)
{
MPoly *mpolys = config.mpoly;
MLoop *mloops = config.mloop;
MLoopUV *mloopuvs = config.mloopuv;
const Int32ArraySamplePtr &face_indices = mesh_data.face_indices;
const Int32ArraySamplePtr &face_counts = mesh_data.face_counts;
const V2fArraySamplePtr &uvs = mesh_data.uvs;
const size_t uvs_size = uvs == nullptr ? 0 : uvs->size();
const UInt32ArraySamplePtr &uvs_indices = mesh_data.uvs_indices;
const bool do_uvs = (mloopuvs && uvs && uvs_indices) &&
(uvs_indices->size() == face_indices->size());
unsigned int loop_index = 0;
unsigned int rev_loop_index = 0;
unsigned int uv_index = 0;
for (int i = 0; i < face_counts->size(); i++) {
const int face_size = (*face_counts)[i];
MPoly &poly = mpolys[i];
poly.loopstart = loop_index;
poly.totloop = face_size;
/* Polygons are always assumed to be smooth-shaded. If the Alembic mesh should be flat-shaded,
* this is encoded in custom loop normals. See T71246. */
poly.flag |= ME_SMOOTH;
/* NOTE: Alembic data is stored in the reverse order. */
rev_loop_index = loop_index + (face_size - 1);
for (int f = 0; f < face_size; f++, loop_index++, rev_loop_index--) {
MLoop &loop = mloops[rev_loop_index];
loop.v = (*face_indices)[loop_index];
if (do_uvs) {
MLoopUV &loopuv = mloopuvs[rev_loop_index];
uv_index = (*uvs_indices)[loop_index];
/* Some Alembic files are broken (or at least export UVs in a way we don't expect). */
if (uv_index >= uvs_size) {
continue;
}
loopuv.uv[0] = (*uvs)[uv_index][0];
loopuv.uv[1] = (*uvs)[uv_index][1];
}
}
}
BKE_mesh_calc_edges(config.mesh, false, false);
}
static void process_no_normals(CDStreamConfig &config)
{
/* Absense of normals in the Alembic mesh is interpreted as 'smooth'. */
BKE_mesh_calc_normals(config.mesh);
}
static void process_loop_normals(CDStreamConfig &config, const N3fArraySamplePtr loop_normals_ptr)
{
size_t loop_count = loop_normals_ptr->size();
if (loop_count == 0) {
process_no_normals(config);
return;
}
float(*lnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(loop_count, sizeof(float[3]), "ABC::FaceNormals"));
Mesh *mesh = config.mesh;
MPoly *mpoly = mesh->mpoly;
const N3fArraySample &loop_normals = *loop_normals_ptr;
int abc_index = 0;
for (int i = 0, e = mesh->totpoly; i < e; i++, mpoly++) {
/* As usual, ABC orders the loops in reverse. */
for (int j = mpoly->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mpoly->loopstart + j;
copy_zup_from_yup(lnors[blender_index], loop_normals[abc_index].getValue());
}
}
mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals(mesh, lnors);
MEM_freeN(lnors);
}
static void process_vertex_normals(CDStreamConfig &config,
const N3fArraySamplePtr vertex_normals_ptr)
{
size_t normals_count = vertex_normals_ptr->size();
if (normals_count == 0) {
process_no_normals(config);
return;
}
float(*vnors)[3] = static_cast<float(*)[3]>(
MEM_malloc_arrayN(normals_count, sizeof(float[3]), "ABC::VertexNormals"));
const N3fArraySample &vertex_normals = *vertex_normals_ptr;
for (int index = 0; index < normals_count; index++) {
copy_zup_from_yup(vnors[index], vertex_normals[index].getValue());
}
config.mesh->flag |= ME_AUTOSMOOTH;
BKE_mesh_set_custom_normals_from_vertices(config.mesh, vnors);
MEM_freeN(vnors);
}
static void process_normals(CDStreamConfig &config,
const IN3fGeomParam &normals,
const ISampleSelector &selector)
{
if (!normals.valid()) {
process_no_normals(config);
return;
}
IN3fGeomParam::Sample normsamp = normals.getExpandedValue(selector);
Alembic::AbcGeom::GeometryScope scope = normals.getScope();
switch (scope) {
case Alembic::AbcGeom::kFacevaryingScope: // 'Vertex Normals' in Houdini.
process_loop_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kVertexScope:
case Alembic::AbcGeom::kVaryingScope: // 'Point Normals' in Houdini.
process_vertex_normals(config, normsamp.getVals());
break;
case Alembic::AbcGeom::kConstantScope:
case Alembic::AbcGeom::kUniformScope:
case Alembic::AbcGeom::kUnknownScope:
process_no_normals(config);
break;
}
}
ABC_INLINE void read_uvs_params(CDStreamConfig &config,
AbcMeshData &abc_data,
const IV2fGeomParam &uv,
const ISampleSelector &selector)
{
if (!uv.valid()) {
return;
}
IV2fGeomParam::Sample uvsamp;
uv.getIndexed(uvsamp, selector);
abc_data.uvs = uvsamp.getVals();
abc_data.uvs_indices = uvsamp.getIndices();
if (abc_data.uvs_indices->size() == config.totloop) {
std::string name = Alembic::Abc::GetSourceName(uv.getMetaData());
/* According to the convention, primary UVs should have had their name
* set using Alembic::Abc::SetSourceName, but you can't expect everyone
* to follow it! :) */
if (name.empty()) {
name = uv.getName();
}
void *cd_ptr = config.add_customdata_cb(config.mesh, name.c_str(), CD_MLOOPUV);
config.mloopuv = static_cast<MLoopUV *>(cd_ptr);
}
}
static void *add_customdata_cb(Mesh *mesh, const char *name, int data_type)
{
CustomDataType cd_data_type = static_cast<CustomDataType>(data_type);
void *cd_ptr;
CustomData *loopdata;
int numloops;
/* unsupported custom data type -- don't do anything. */
if (!ELEM(cd_data_type, CD_MLOOPUV, CD_MLOOPCOL)) {
return NULL;
}
loopdata = &mesh->ldata;
cd_ptr = CustomData_get_layer_named(loopdata, cd_data_type, name);
if (cd_ptr != NULL) {
/* layer already exists, so just return it. */
return cd_ptr;
}
/* Create a new layer. */
numloops = mesh->totloop;
cd_ptr = CustomData_add_layer_named(loopdata, cd_data_type, CD_DEFAULT, NULL, numloops, name);
return cd_ptr;
}
static void get_weight_and_index(CDStreamConfig &config,
Alembic::AbcCoreAbstract::TimeSamplingPtr time_sampling,
size_t samples_number)
{
Alembic::AbcGeom::index_t i0, i1;
config.weight = get_weight_and_index(config.time, time_sampling, samples_number, i0, i1);
config.index = i0;
config.ceil_index = i1;
}
static void read_mesh_sample(const std::string &iobject_full_name,
ImportSettings *settings,
const IPolyMeshSchema &schema,
const ISampleSelector &selector,
CDStreamConfig &config)
{
const IPolyMeshSchema::Sample sample = schema.getValue(selector);
AbcMeshData abc_mesh_data;
abc_mesh_data.face_counts = sample.getFaceCounts();
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.positions = sample.getPositions();
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
if (config.weight != 0.0f) {
Alembic::AbcGeom::IPolyMeshSchema::Sample ceil_sample;
schema.get(ceil_sample, Alembic::Abc::ISampleSelector(config.ceil_index));
abc_mesh_data.ceil_positions = ceil_sample.getPositions();
}
if ((settings->read_flag & MOD_MESHSEQ_READ_UV) != 0) {
read_uvs_params(config, abc_mesh_data, schema.getUVsParam(), selector);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_VERT) != 0) {
read_mverts(config, abc_mesh_data);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
read_mpolys(config, abc_mesh_data);
process_normals(config, schema.getNormalsParam(), selector);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {
read_custom_data(iobject_full_name, schema.getArbGeomParams(), config, selector);
}
}
CDStreamConfig get_config(Mesh *mesh)
{
CDStreamConfig config;
BLI_assert(mesh->mvert || mesh->totvert == 0);
config.mesh = mesh;
config.mvert = mesh->mvert;
config.mloop = mesh->mloop;
config.mpoly = mesh->mpoly;
config.totloop = mesh->totloop;
config.totpoly = mesh->totpoly;
config.loopdata = &mesh->ldata;
config.add_customdata_cb = add_customdata_cb;
return config;
}
/* ************************************************************************** */
AbcMeshReader::AbcMeshReader(const IObject &object, ImportSettings &settings)
: AbcObjectReader(object, settings)
{
m_settings->read_flag |= MOD_MESHSEQ_READ_ALL;
IPolyMesh ipoly_mesh(m_iobject, kWrapExisting);
m_schema = ipoly_mesh.getSchema();
get_min_max_time(m_iobject, m_schema, m_min_time, m_max_time);
}
bool AbcMeshReader::valid() const
{
return m_schema.valid();
}
void AbcMeshReader::readObjectData(Main *bmain, const Alembic::Abc::ISampleSelector &sample_sel)
{
Mesh *mesh = BKE_mesh_add(bmain, m_data_name.c_str());
m_object = BKE_object_add_only_object(bmain, OB_MESH, m_object_name.c_str());
m_object->data = mesh;
Mesh *read_mesh = this->read_mesh(mesh, sample_sel, MOD_MESHSEQ_READ_ALL, NULL);
if (read_mesh != mesh) {
/* XXX fixme after 2.80; mesh->flag isn't copied by BKE_mesh_nomain_to_mesh() */
/* read_mesh can be freed by BKE_mesh_nomain_to_mesh(), so get the flag before that happens. */
short autosmooth = (read_mesh->flag & ME_AUTOSMOOTH);
BKE_mesh_nomain_to_mesh(read_mesh, mesh, m_object, &CD_MASK_MESH, true);
mesh->flag |= autosmooth;
}
if (m_settings->validate_meshes) {
BKE_mesh_validate(mesh, false, false);
}
readFaceSetsSample(bmain, mesh, sample_sel);
if (has_animations(m_schema, m_settings)) {
addCacheModifier();
}
}
bool AbcMeshReader::accepts_object_type(
const Alembic::AbcCoreAbstract::ObjectHeader &alembic_header,
const Object *const ob,
const char **err_str) const
{
if (!Alembic::AbcGeom::IPolyMesh::matches(alembic_header)) {
*err_str =
"Object type mismatch, Alembic object path pointed to PolyMesh when importing, but not "
"any more.";
return false;
}
if (ob->type != OB_MESH) {
*err_str = "Object type mismatch, Alembic object path points to PolyMesh.";
return false;
}
return true;
}
bool AbcMeshReader::topology_changed(Mesh *existing_mesh, const ISampleSelector &sample_sel)
{
IPolyMeshSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
// A similar error in read_mesh() would just return existing_mesh.
return false;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
return positions->size() != existing_mesh->totvert ||
face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop;
}
Mesh *AbcMeshReader::read_mesh(Mesh *existing_mesh,
const ISampleSelector &sample_sel,
int read_flag,
const char **err_str)
{
IPolyMeshSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
if (err_str != nullptr) {
*err_str = "Error reading mesh sample; more detail on the console";
}
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return existing_mesh;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
Mesh *new_mesh = NULL;
/* Only read point data when streaming meshes, unless we need to create new ones. */
ImportSettings settings;
settings.read_flag |= read_flag;
if (topology_changed(existing_mesh, sample_sel)) {
new_mesh = BKE_mesh_new_nomain_from_template(
existing_mesh, positions->size(), 0, 0, face_indices->size(), face_counts->size());
settings.read_flag |= MOD_MESHSEQ_READ_ALL;
}
else {
/* If the face count changed (e.g. by triangulation), only read points.
* This prevents crash from T49813.
* TODO(kevin): perhaps find a better way to do this? */
if (face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop) {
settings.read_flag = MOD_MESHSEQ_READ_VERT;
if (err_str) {
*err_str =
"Topology has changed, perhaps by triangulating the"
" mesh. Only vertices will be read!";
}
}
}
CDStreamConfig config = get_config(new_mesh ? new_mesh : existing_mesh);
config.time = sample_sel.getRequestedTime();
read_mesh_sample(m_iobject.getFullName(), &settings, m_schema, sample_sel, config);
if (new_mesh) {
/* Here we assume that the number of materials doesn't change, i.e. that
* the material slots that were created when the object was loaded from
* Alembic are still valid now. */
size_t num_polys = new_mesh->totpoly;
if (num_polys > 0) {
std::map<std::string, int> mat_map;
assign_facesets_to_mpoly(sample_sel, new_mesh->mpoly, num_polys, mat_map);
}
return new_mesh;
}
return existing_mesh;
}
void AbcMeshReader::assign_facesets_to_mpoly(const ISampleSelector &sample_sel,
MPoly *mpoly,
int totpoly,
std::map<std::string, int> &r_mat_map)
{
std::vector<std::string> face_sets;
m_schema.getFaceSetNames(face_sets);
if (face_sets.empty()) {
return;
}
int current_mat = 0;
for (int i = 0; i < face_sets.size(); i++) {
const std::string &grp_name = face_sets[i];
if (r_mat_map.find(grp_name) == r_mat_map.end()) {
r_mat_map[grp_name] = 1 + current_mat++;
}
const int assigned_mat = r_mat_map[grp_name];
const IFaceSet faceset = m_schema.getFaceSet(grp_name);
if (!faceset.valid()) {
std::cerr << " Face set " << grp_name << " invalid for " << m_object_name << "\n";
continue;
}
const IFaceSetSchema face_schem = faceset.getSchema();
const IFaceSetSchema::Sample face_sample = face_schem.getValue(sample_sel);
const Int32ArraySamplePtr group_faces = face_sample.getFaces();
const size_t num_group_faces = group_faces->size();
for (size_t l = 0; l < num_group_faces; l++) {
size_t pos = (*group_faces)[l];
if (pos >= totpoly) {
std::cerr << "Faceset overflow on " << faceset.getName() << '\n';
break;
}
MPoly &poly = mpoly[pos];
poly.mat_nr = assigned_mat - 1;
}
}
}
void AbcMeshReader::readFaceSetsSample(Main *bmain, Mesh *mesh, const ISampleSelector &sample_sel)
{
std::map<std::string, int> mat_map;
assign_facesets_to_mpoly(sample_sel, mesh->mpoly, mesh->totpoly, mat_map);
utils::assign_materials(bmain, m_object, mat_map);
}
/* ************************************************************************** */
ABC_INLINE MEdge *find_edge(MEdge *edges, int totedge, int v1, int v2)
{
for (int i = 0, e = totedge; i < e; i++) {
MEdge &edge = edges[i];
if (edge.v1 == v1 && edge.v2 == v2) {
return &edge;
}
}
return NULL;
}
static void read_subd_sample(const std::string &iobject_full_name,
ImportSettings *settings,
const ISubDSchema &schema,
const ISampleSelector &selector,
CDStreamConfig &config)
{
const ISubDSchema::Sample sample = schema.getValue(selector);
AbcMeshData abc_mesh_data;
abc_mesh_data.face_counts = sample.getFaceCounts();
abc_mesh_data.face_indices = sample.getFaceIndices();
abc_mesh_data.positions = sample.getPositions();
get_weight_and_index(config, schema.getTimeSampling(), schema.getNumSamples());
if (config.weight != 0.0f) {
Alembic::AbcGeom::ISubDSchema::Sample ceil_sample;
schema.get(ceil_sample, Alembic::Abc::ISampleSelector(config.ceil_index));
abc_mesh_data.ceil_positions = ceil_sample.getPositions();
}
if ((settings->read_flag & MOD_MESHSEQ_READ_UV) != 0) {
read_uvs_params(config, abc_mesh_data, schema.getUVsParam(), selector);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_VERT) != 0) {
read_mverts(config, abc_mesh_data);
}
if ((settings->read_flag & MOD_MESHSEQ_READ_POLY) != 0) {
/* Alembic's 'SubD' scheme is used to store subdivision surfaces, i.e. the pre-subdivision
* mesh. Currently we don't add a subdivision modifier when we load such data. This code is
* assuming that the subdivided surface should be smooth. */
read_mpolys(config, abc_mesh_data);
process_no_normals(config);
}
if ((settings->read_flag & (MOD_MESHSEQ_READ_UV | MOD_MESHSEQ_READ_COLOR)) != 0) {
read_custom_data(iobject_full_name, schema.getArbGeomParams(), config, selector);
}
}
/* ************************************************************************** */
AbcSubDReader::AbcSubDReader(const IObject &object, ImportSettings &settings)
: AbcObjectReader(object, settings)
{
m_settings->read_flag |= MOD_MESHSEQ_READ_ALL;
ISubD isubd_mesh(m_iobject, kWrapExisting);
m_schema = isubd_mesh.getSchema();
get_min_max_time(m_iobject, m_schema, m_min_time, m_max_time);
}
bool AbcSubDReader::valid() const
{
return m_schema.valid();
}
bool AbcSubDReader::accepts_object_type(
const Alembic::AbcCoreAbstract::ObjectHeader &alembic_header,
const Object *const ob,
const char **err_str) const
{
if (!Alembic::AbcGeom::ISubD::matches(alembic_header)) {
*err_str =
"Object type mismatch, Alembic object path pointed to SubD when importing, but not any "
"more.";
return false;
}
if (ob->type != OB_MESH) {
*err_str = "Object type mismatch, Alembic object path points to SubD.";
return false;
}
return true;
}
void AbcSubDReader::readObjectData(Main *bmain, const Alembic::Abc::ISampleSelector &sample_sel)
{
Mesh *mesh = BKE_mesh_add(bmain, m_data_name.c_str());
m_object = BKE_object_add_only_object(bmain, OB_MESH, m_object_name.c_str());
m_object->data = mesh;
Mesh *read_mesh = this->read_mesh(mesh, sample_sel, MOD_MESHSEQ_READ_ALL, NULL);
if (read_mesh != mesh) {
BKE_mesh_nomain_to_mesh(read_mesh, mesh, m_object, &CD_MASK_MESH, true);
}
ISubDSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return;
}
Int32ArraySamplePtr indices = sample.getCreaseIndices();
Alembic::Abc::FloatArraySamplePtr sharpnesses = sample.getCreaseSharpnesses();
if (indices && sharpnesses) {
MEdge *edges = mesh->medge;
int totedge = mesh->totedge;
for (int i = 0, s = 0, e = indices->size(); i < e; i += 2, s++) {
int v1 = (*indices)[i];
int v2 = (*indices)[i + 1];
if (v2 < v1) {
/* It appears to be common to store edges with the smallest index first, in which case this
* prevents us from doing the second search below. */
std::swap(v1, v2);
}
MEdge *edge = find_edge(edges, totedge, v1, v2);
if (edge == NULL) {
edge = find_edge(edges, totedge, v2, v1);
}
if (edge) {
edge->crease = unit_float_to_uchar_clamp((*sharpnesses)[s]);
}
}
mesh->cd_flag |= ME_CDFLAG_EDGE_CREASE;
}
if (m_settings->validate_meshes) {
BKE_mesh_validate(mesh, false, false);
}
if (has_animations(m_schema, m_settings)) {
addCacheModifier();
}
}
Mesh *AbcSubDReader::read_mesh(Mesh *existing_mesh,
const ISampleSelector &sample_sel,
int read_flag,
const char **err_str)
{
ISubDSchema::Sample sample;
try {
sample = m_schema.getValue(sample_sel);
}
catch (Alembic::Util::Exception &ex) {
if (err_str != nullptr) {
*err_str = "Error reading mesh sample; more detail on the console";
}
printf("Alembic: error reading mesh sample for '%s/%s' at time %f: %s\n",
m_iobject.getFullName().c_str(),
m_schema.getName().c_str(),
sample_sel.getRequestedTime(),
ex.what());
return existing_mesh;
}
const P3fArraySamplePtr &positions = sample.getPositions();
const Alembic::Abc::Int32ArraySamplePtr &face_indices = sample.getFaceIndices();
const Alembic::Abc::Int32ArraySamplePtr &face_counts = sample.getFaceCounts();
Mesh *new_mesh = NULL;
ImportSettings settings;
settings.read_flag |= read_flag;
if (existing_mesh->totvert != positions->size()) {
new_mesh = BKE_mesh_new_nomain_from_template(
existing_mesh, positions->size(), 0, 0, face_indices->size(), face_counts->size());
settings.read_flag |= MOD_MESHSEQ_READ_ALL;
}
else {
/* If the face count changed (e.g. by triangulation), only read points.
* This prevents crash from T49813.
* TODO(kevin): perhaps find a better way to do this? */
if (face_counts->size() != existing_mesh->totpoly ||
face_indices->size() != existing_mesh->totloop) {
settings.read_flag = MOD_MESHSEQ_READ_VERT;
if (err_str) {
*err_str =
"Topology has changed, perhaps by triangulating the"
" mesh. Only vertices will be read!";
}
}
}
/* Only read point data when streaming meshes, unless we need to create new ones. */
CDStreamConfig config = get_config(new_mesh ? new_mesh : existing_mesh);
config.time = sample_sel.getRequestedTime();
read_subd_sample(m_iobject.getFullName(), &settings, m_schema, sample_sel, config);
return config.mesh;
}