Files
blender/source/gameengine/VideoTexture/ImageRender.cpp
Benoit Bolsee 149d231d69 VideoTexture: new ImageMirror class for easy mirror (and portal) creation
The new class VideoTexture.ImageMirror() is available to perform
automatic mirror rendering.

Constructor:

  VideoTexture.ImageMirror(scene,observer,mirror,material)
    scene:    reference to the scene that will be rendered.
              Both observer and mirror must be part of that scene.
    observer: reference to a game object used as view point for
              mirror rendering: the scene will be rendered through
              the mirror as if the active camera was at the observer 
              location. Usually the observer is the active camera
              but you can use any game obejct.
    mirror:   reference to the mesh object holding the mirror.
    material: material ID of the mirror texture as returned by 
              VideoTexture.materialID(). The mirror is formed by 
              the polygons mapped to that material.

There are no specific methods or attributes. ImageMirror inherits 
all methods and attributes from ImageRender. You must refresh the
parent VideoTexture.Texture object regularly to update the mirror 
rendering.

Guidelines on how to create a working mirror:
- Use a texture that is specific to the mirror so that the mirror 
  rendering only appears on the mirror.
- The mirror must be planar; the algorithm works well only for planar
  or quasi planar mirror. For spherical mirror, you will get better
  results with ImageRender and a camera at the center of the mirror. 
  ImageMirror automatically computes the mirror orientation and 
  position. The mirror doesn't need to be rectangular, it can be 
  circular or take any form provided it is planar.
- The mirror up direction must be along the Z axis in local mesh
  coordinates. If the mirror is not vertical, ImageMirror will 
  compute the up direction as being the projection of the Z axis
  on the mirror plane.
- UV mapping must be set right to get correct mirror rendering:
  - make a planar projection of the mirror polygons (Unwrap or projection from view)
  - eventually rotate the projection so that UV up direction corresponds to the mesh Z axis
  - scale the projection so that the extreme points touch the border of the texture
  - flip the UV projection horizontally (scale -1 on X axis). This is needed
    because the mirror texture is rendered from the back of the mirror and
    thus is reversed from the view point of the observer. Horizontal flip 
    in the UV map restores the correct orientation.

Besides these simple rules, the mirror rendering is completely automatic. 
In particular, you don't need to allocate a camera for the rendering, 
ImageMirror creates dynamically a camera for that. The reflection is correct
even on large angles. The mirror can be a dynamic and moving object, the 
algorithm always computes the correct camera position based on observer 
relative position. You don't have to worry about mirror position in the scene: 
the algorithm automatically computes the camera frustum so that any object 
behind the mirror is not rendered.

Warnings:
- observer and mirror are references to game objects. ImageMirror keeps
  a pointer to them but does not increment the reference count. You must ensure 
  that these game objects are not deleted as long as you refresh() the ImageMirror
  object. You must release the ImageMirror object before you delete the game
  objects. To release the ImageMirror object (normally stored in GameLogic),
  just assign it to None.
- Mirror rendering is automatically skipped when the observer is behind the mirror
  but it is not disabled when the mirror is out of sight of the observer.
  You should only refresh the mirror when you know that the observer is likely to see it.
  For example, no need to refresh a car inner mirror when the player is not in the car.

Example:

  contr = GameLogic.getCurrentController()
  # object holding the mirror
  mirror = contr.getOwner()
  scene = GameLogic.getCurrentScene()
  # observer will be the active camere
  camera = scene.getObjectList()['OBCamera']
  matID = VideoTexture.materialID(mirror, 'IMmirror.png')
  GameLogic.mirror = VideoTexture.Texture(mirror, matID)
  GameLogic.mirror.source = VideoTexture.ImageMirror(scene,camera,mirror,matID)
  # to render the mirror, just call GameLogic.mirror.refresh(True) on each frame.

You can download a demo game (with a video file) here:

  http://home.scarlet.be/~tsi46445/blender/VideoTextureDemo.zip

For those who have already downloaded the demo, you can just update the blend file:

  http://home.scarlet.be/~tsi46445/blender/MirrorTextureDemo.blend
2008-12-04 16:07:46 +00:00

685 lines
25 KiB
C++

/* $Id$
-----------------------------------------------------------------------------
This source file is part of VideoTexture library
Copyright (c) 2007 The Zdeno Ash Miklas
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA, or go to
http://www.gnu.org/copyleft/lesser.txt.
-----------------------------------------------------------------------------
*/
// implementation
#include <PyObjectPlus.h>
#include <structmember.h>
#include <float.h>
#include <math.h>
#include <BIF_gl.h>
#include "KX_PythonInit.h"
#include "DNA_scene_types.h"
#include "RAS_CameraData.h"
#include "RAS_MeshObject.h"
#include "BLI_arithb.h"
#include "ImageRender.h"
#include "ImageBase.h"
#include "BlendType.h"
#include "Exception.h"
#include "Texture.h"
ExceptionID SceneInvalid, CameraInvalid, ObserverInvalid;
ExceptionID MirrorInvalid, MirrorSizeInvalid, MirrorNormalInvalid, MirrorHorizontal, MirrorTooSmall;
ExpDesc SceneInvalidDesc (SceneInvalid, "Scene object is invalid");
ExpDesc CameraInvalidDesc (CameraInvalid, "Camera object is invalid");
ExpDesc ObserverInvalidDesc (ObserverInvalid, "Observer object is invalid");
ExpDesc MirrorInvalidDesc (MirrorInvalid, "Mirror object is invalid");
ExpDesc MirrorSizeInvalidDesc (MirrorSizeInvalid, "Mirror has no vertex or no size");
ExpDesc MirrorNormalInvalidDesc (MirrorNormalInvalid, "Cannot determine mirror plane");
ExpDesc MirrorHorizontalDesc (MirrorHorizontal, "Mirror is horizontal in local space");
ExpDesc MirrorTooSmallDesc (MirrorTooSmall, "Mirror is too small");
// constructor
ImageRender::ImageRender (KX_Scene * scene, KX_Camera * camera) :
ImageViewport(),
m_render(true),
m_scene(scene),
m_camera(camera),
m_owncamera(false),
m_observer(NULL),
m_mirror(NULL)
{
// initialize background colour
setBackground(0, 0, 255, 255);
// retrieve rendering objects
m_engine = KX_GetActiveEngine();
m_rasterizer = m_engine->GetRasterizer();
m_canvas = m_engine->GetCanvas();
m_rendertools = m_engine->GetRenderTools();
}
// destructor
ImageRender::~ImageRender (void)
{
if (m_owncamera)
m_camera->Release();
}
// set background color
void ImageRender::setBackground (int red, int green, int blue, int alpha)
{
m_background[0] = (red < 0) ? 0.f : (red > 255) ? 1.f : float(red)/255.f;
m_background[1] = (green < 0) ? 0.f : (green > 255) ? 1.f : float(green)/255.f;
m_background[2] = (blue < 0) ? 0.f : (blue > 255) ? 1.f : float(blue)/255.f;
m_background[3] = (alpha < 0) ? 0.f : (alpha > 255) ? 1.f : float(alpha)/255.f;
}
// capture image from viewport
void ImageRender::calcImage (unsigned int texId)
{
if (m_rasterizer->GetDrawingMode() != RAS_IRasterizer::KX_TEXTURED || // no need for texture
m_camera->GetViewport() || // camera must be inactive
m_camera == m_scene->GetActiveCamera())
{
// no need to compute texture in non texture rendering
m_avail = false;
return;
}
// render the scene from the camera
Render();
// get image from viewport
ImageViewport::calcImage(texId);
// restore OpenGL state
m_canvas->EndFrame();
}
void ImageRender::Render()
{
RAS_FrameFrustum frustrum;
if (!m_render)
return;
if (m_mirror)
{
// mirror mode, compute camera frustrum, position and orientation
// convert mirror position and normal in world space
const MT_Matrix3x3 & mirrorObjWorldOri = m_mirror->GetSGNode()->GetWorldOrientation();
const MT_Point3 & mirrorObjWorldPos = m_mirror->GetSGNode()->GetWorldPosition();
const MT_Vector3 & mirrorObjWorldScale = m_mirror->GetSGNode()->GetWorldScaling();
MT_Point3 mirrorWorldPos =
mirrorObjWorldPos + mirrorObjWorldScale * (mirrorObjWorldOri * m_mirrorPos);
MT_Vector3 mirrorWorldZ = mirrorObjWorldOri * m_mirrorZ;
// get observer world position
const MT_Point3 & observerWorldPos = m_observer->GetSGNode()->GetWorldPosition();
// get plane D term = mirrorPos . normal
MT_Scalar mirrorPlaneDTerm = mirrorWorldPos.dot(mirrorWorldZ);
// compute distance of observer to mirror = D - observerPos . normal
MT_Scalar observerDistance = mirrorPlaneDTerm - observerWorldPos.dot(mirrorWorldZ);
// if distance < 0.01 => observer is on wrong side of mirror, don't render
if (observerDistance < 0.01f)
return;
// set camera world position = observerPos + normal * 2 * distance
MT_Point3 cameraWorldPos = observerWorldPos + (MT_Scalar(2.0)*observerDistance)*mirrorWorldZ;
m_camera->GetSGNode()->SetLocalPosition(cameraWorldPos);
// set camera orientation: z=normal, y=mirror_up in world space, x= y x z
MT_Vector3 mirrorWorldY = mirrorObjWorldOri * m_mirrorY;
MT_Vector3 mirrorWorldX = mirrorObjWorldOri * m_mirrorX;
MT_Matrix3x3 cameraWorldOri(
mirrorWorldX[0], mirrorWorldY[0], mirrorWorldZ[0],
mirrorWorldX[1], mirrorWorldY[1], mirrorWorldZ[1],
mirrorWorldX[2], mirrorWorldY[2], mirrorWorldZ[2]);
m_camera->GetSGNode()->SetLocalOrientation(cameraWorldOri);
m_camera->GetSGNode()->UpdateWorldData(0.0);
// compute camera frustrum:
// get position of mirror relative to camera: offset = mirrorPos-cameraPos
MT_Vector3 mirrorOffset = mirrorWorldPos - cameraWorldPos;
// convert to camera orientation
mirrorOffset = mirrorOffset * cameraWorldOri;
// scale mirror size to world scale:
// get closest local axis for mirror Y and X axis and scale height and width by local axis scale
MT_Scalar x, y;
x = fabs(m_mirrorY[0]);
y = fabs(m_mirrorY[1]);
float height = (x > y) ?
((x > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
((y > fabs(m_mirrorY[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
x = fabs(m_mirrorX[0]);
y = fabs(m_mirrorX[1]);
float width = (x > y) ?
((x > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[0] : mirrorObjWorldScale[2]):
((y > fabs(m_mirrorX[2])) ? mirrorObjWorldScale[1] : mirrorObjWorldScale[2]);
width *= m_mirrorHalfWidth;
height *= m_mirrorHalfHeight;
// left = offsetx-width
// right = offsetx+width
// top = offsety+height
// bottom = offsety-height
// near = -offsetz
// far = near+100
frustrum.x1 = mirrorOffset[0]-width;
frustrum.x2 = mirrorOffset[0]+width;
frustrum.y1 = mirrorOffset[1]-height;
frustrum.y2 = mirrorOffset[1]+height;
frustrum.camnear = -mirrorOffset[2];
frustrum.camfar = -mirrorOffset[2]+100.f;
}
const float ortho = 100.0;
const RAS_IRasterizer::StereoMode stereomode = m_rasterizer->GetStereoMode();
// The screen area that ImageViewport will copy is also the rendering zone
m_canvas->SetViewPort(m_position[0], m_position[1], m_position[0]+m_capSize[0]-1, m_position[1]+m_capSize[1]-1);
m_canvas->ClearColor(m_background[0], m_background[1], m_background[2], m_background[3]);
m_canvas->ClearBuffer(RAS_ICanvas::COLOR_BUFFER|RAS_ICanvas::DEPTH_BUFFER);
m_rasterizer->BeginFrame(RAS_IRasterizer::KX_TEXTURED,m_engine->GetClockTime());
m_rendertools->BeginFrame(m_rasterizer);
m_engine->SetWorldSettings(m_scene->GetWorldInfo());
m_rendertools->SetAuxilaryClientInfo(m_scene);
m_rasterizer->DisplayFog();
// matrix calculation, don't apply any of the stereo mode
m_rasterizer->SetStereoMode(RAS_IRasterizer::RAS_STEREO_NOSTEREO);
if (m_mirror)
{
// frustrum was computed above
// get frustrum matrix and set projection matrix
MT_Matrix4x4 projmat = m_rasterizer->GetFrustumMatrix(
frustrum.x1, frustrum.x2, frustrum.y1, frustrum.y2, frustrum.camnear, frustrum.camfar);
m_camera->SetProjectionMatrix(projmat);
} else if (m_camera->hasValidProjectionMatrix())
{
m_rasterizer->SetProjectionMatrix(m_camera->GetProjectionMatrix());
} else
{
float lens = m_camera->GetLens();
bool orthographic = !m_camera->GetCameraData()->m_perspective;
float nearfrust = m_camera->GetCameraNear();
float farfrust = m_camera->GetCameraFar();
float aspect_ratio = 1.0f;
Scene *blenderScene = m_scene->GetBlenderScene();
if (orthographic) {
lens *= ortho;
nearfrust = (nearfrust + 1.0)*ortho;
farfrust *= ortho;
}
// compute the aspect ratio from frame blender scene settings so that render to texture
// works the same in Blender and in Blender player
if (blenderScene->r.ysch != 0)
aspect_ratio = float(blenderScene->r.xsch) / float(blenderScene->r.ysch);
RAS_FramingManager::ComputeDefaultFrustum(
nearfrust,
farfrust,
lens,
aspect_ratio,
frustrum);
MT_Matrix4x4 projmat = m_rasterizer->GetFrustumMatrix(
frustrum.x1, frustrum.x2, frustrum.y1, frustrum.y2, frustrum.camnear, frustrum.camfar);
m_camera->SetProjectionMatrix(projmat);
}
MT_Transform camtrans(m_camera->GetWorldToCamera());
if (!m_camera->GetCameraData()->m_perspective)
camtrans.getOrigin()[2] *= ortho;
MT_Matrix4x4 viewmat(camtrans);
m_rasterizer->SetViewMatrix(viewmat, m_camera->NodeGetWorldPosition(),
m_camera->GetCameraLocation(), m_camera->GetCameraOrientation());
m_camera->SetModelviewMatrix(viewmat);
// restore the stereo mode now that the matrix is computed
m_rasterizer->SetStereoMode(stereomode);
// do not update the mesh, we don't want to do it more than once per frame
//m_scene->UpdateMeshTransformations();
m_scene->CalculateVisibleMeshes(m_rasterizer,m_camera);
m_scene->RenderBuckets(camtrans, m_rasterizer, m_rendertools);
}
// cast Image pointer to ImageRender
inline ImageRender * getImageRender (PyImage * self)
{ return static_cast<ImageRender*>(self->m_image); }
// python methods
// Blender Scene type
BlendType<KX_Scene> sceneType ("KX_Scene");
// Blender Camera type
BlendType<KX_Camera> cameraType ("KX_Camera");
// object initialization
static int ImageRender_init (PyObject * pySelf, PyObject * args, PyObject * kwds)
{
// parameters - scene object
PyObject * scene;
// camera object
PyObject * camera;
// parameter keywords
static char *kwlist[] = {"sceneObj", "cameraObj", NULL};
// get parameters
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OO", kwlist, &scene, &camera))
return -1;
try
{
// get scene pointer
KX_Scene * scenePtr (NULL);
if (scene != NULL) scenePtr = sceneType.checkType(scene);
// throw exception if scene is not available
if (scenePtr == NULL) THRWEXCP(SceneInvalid, S_OK);
// get camera pointer
KX_Camera * cameraPtr (NULL);
if (camera != NULL) cameraPtr = cameraType.checkType(camera);
// throw exception if camera is not available
if (cameraPtr == NULL) THRWEXCP(CameraInvalid, S_OK);
// get pointer to image structure
PyImage * self = reinterpret_cast<PyImage*>(pySelf);
// create source object
if (self->m_image != NULL) delete self->m_image;
self->m_image = new ImageRender(scenePtr, cameraPtr);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
// initialization succeded
return 0;
}
// get background color
PyObject * getBackground (PyImage * self, void * closure)
{
return Py_BuildValue("[BBBB]",
getImageRender(self)->getBackground(0),
getImageRender(self)->getBackground(1),
getImageRender(self)->getBackground(2),
getImageRender(self)->getBackground(3));
}
// set color
static int setBackground (PyImage * self, PyObject * value, void * closure)
{
// check validity of parameter
if (value == NULL || !PySequence_Check(value) || PySequence_Length(value) != 4
|| !PyInt_Check(PySequence_Fast_GET_ITEM(value, 0))
|| !PyInt_Check(PySequence_Fast_GET_ITEM(value, 1))
|| !PyInt_Check(PySequence_Fast_GET_ITEM(value, 2))
|| !PyInt_Check(PySequence_Fast_GET_ITEM(value, 3)))
{
PyErr_SetString(PyExc_TypeError, "The value must be a sequence of 4 integer between 0 and 255");
return -1;
}
// set background color
getImageRender(self)->setBackground((unsigned char)(PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 0))),
(unsigned char)(PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 1))),
(unsigned char)(PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 2))),
(unsigned char)(PyInt_AsLong(PySequence_Fast_GET_ITEM(value, 3))));
// success
return 0;
}
// methods structure
static PyMethodDef imageRenderMethods[] =
{ // methods from ImageBase class
{"refresh", (PyCFunction)Image_refresh, METH_NOARGS, "Refresh image - invalidate its current content"},
{NULL}
};
// attributes structure
static PyGetSetDef imageRenderGetSets[] =
{
{(char*)"background", (getter)getBackground, (setter)setBackground, (char*)"background color", NULL},
// attribute from ImageViewport
{(char*)"capsize", (getter)ImageViewport_getCaptureSize, (setter)ImageViewport_setCaptureSize, (char*)"size of render area", NULL},
{(char*)"alpha", (getter)ImageViewport_getAlpha, (setter)ImageViewport_setAlpha, (char*)"use alpha in texture", NULL},
{(char*)"whole", (getter)ImageViewport_getWhole, (setter)ImageViewport_setWhole, (char*)"use whole viewport to render", NULL},
// attributes from ImageBase class
{(char*)"image", (getter)Image_getImage, NULL, (char*)"image data", NULL},
{(char*)"size", (getter)Image_getSize, NULL, (char*)"image size", NULL},
{(char*)"scale", (getter)Image_getScale, (setter)Image_setScale, (char*)"fast scale of image (near neighbour)", NULL},
{(char*)"flip", (getter)Image_getFlip, (setter)Image_setFlip, (char*)"flip image vertically", NULL},
{(char*)"filter", (getter)Image_getFilter, (setter)Image_setFilter, (char*)"pixel filter", NULL},
{NULL}
};
// define python type
PyTypeObject ImageRenderType =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"VideoTexture.ImageRender", /*tp_name*/
sizeof(PyImage), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Image_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Image source from render", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
imageRenderMethods, /* tp_methods */
0, /* tp_members */
imageRenderGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)ImageRender_init, /* tp_init */
0, /* tp_alloc */
Image_allocNew, /* tp_new */
};
// object initialization
static int ImageMirror_init (PyObject * pySelf, PyObject * args, PyObject * kwds)
{
// parameters - scene object
PyObject * scene;
// reference object for mirror
PyObject * observer;
// object holding the mirror
PyObject * mirror;
// material of the mirror
short materialID = 0;
// parameter keywords
static char *kwlist[] = {"scene", "observer", "mirror", "material", NULL};
// get parameters
if (!PyArg_ParseTupleAndKeywords(args, kwds, "OOO|h", kwlist, &scene, &observer, &mirror, &materialID))
return -1;
try
{
// get scene pointer
KX_Scene * scenePtr (NULL);
if (scene != NULL && PyObject_TypeCheck(scene, &KX_Scene::Type))
scenePtr = static_cast<KX_Scene*>(scene);
else
THRWEXCP(SceneInvalid, S_OK);
// get observer pointer
KX_GameObject * observerPtr (NULL);
if (observer != NULL && PyObject_TypeCheck(observer, &KX_GameObject::Type))
observerPtr = static_cast<KX_GameObject*>(observer);
else if (observer != NULL && PyObject_TypeCheck(observer, &KX_Camera::Type))
observerPtr = static_cast<KX_Camera*>(observer);
else
THRWEXCP(ObserverInvalid, S_OK);
// get mirror pointer
KX_GameObject * mirrorPtr (NULL);
if (mirror != NULL && PyObject_TypeCheck(mirror, &KX_GameObject::Type))
mirrorPtr = static_cast<KX_GameObject*>(mirror);
else
THRWEXCP(MirrorInvalid, S_OK);
// locate the material in the mirror
RAS_IPolyMaterial * material = getMaterial(mirror, materialID);
if (material == NULL)
THRWEXCP(MaterialNotAvail, S_OK);
// get pointer to image structure
PyImage * self = reinterpret_cast<PyImage*>(pySelf);
// create source object
if (self->m_image != NULL)
{
delete self->m_image;
self->m_image = NULL;
}
self->m_image = new ImageRender(scenePtr, observerPtr, mirrorPtr, material);
}
catch (Exception & exp)
{
exp.report();
return -1;
}
// initialization succeded
return 0;
}
// constructor
ImageRender::ImageRender (KX_Scene * scene, KX_GameObject * observer, KX_GameObject * mirror, RAS_IPolyMaterial * mat) :
ImageViewport(),
m_render(false),
m_scene(scene),
m_observer(observer),
m_mirror(mirror)
{
// this constructor is used for automatic planar mirror
// create a camera, take all data by default, in any case we will recompute the frustrum on each frame
RAS_CameraData camdata;
vector<RAS_TexVert*> mirrorVerts;
vector<RAS_TexVert*>::iterator it;
float mirrorArea = 0.f;
float mirrorNormal[3] = {0.f, 0.f, 0.f};
float mirrorUp[3];
float dist, vec[3];
float zaxis[3] = {0.f, 0.f, 1.f};
float mirrorMat[3][3];
float left, right, top, bottom, back;
m_camera= new KX_Camera(scene, KX_Scene::m_callbacks, camdata);
m_camera->SetName("__mirror__cam__");
// don't add the camera to the scene object list, it doesn't need to be accessible
m_owncamera = true;
// retrieve rendering objects
m_engine = KX_GetActiveEngine();
m_rasterizer = m_engine->GetRasterizer();
m_canvas = m_engine->GetCanvas();
m_rendertools = m_engine->GetRenderTools();
// locate the vertex assigned to mat and do following calculation in mesh coordinates
for (int meshIndex = 0; meshIndex < mirror->GetMeshCount(); meshIndex++)
{
RAS_MeshObject* mesh = mirror->GetMesh(meshIndex);
int numPolygons = mesh->NumPolygons();
for (int polygonIndex=0; polygonIndex < numPolygons; polygonIndex++)
{
RAS_Polygon* polygon = mesh->GetPolygon(polygonIndex);
if (polygon->GetMaterial()->GetPolyMaterial() == mat)
{
RAS_TexVert *v1, *v2, *v3, *v4;
float normal[3];
float area;
// this polygon is part of the mirror,
v1 = polygon->GetVertex(0);
v2 = polygon->GetVertex(1);
v3 = polygon->GetVertex(2);
mirrorVerts.push_back(v1);
mirrorVerts.push_back(v2);
mirrorVerts.push_back(v3);
if (polygon->VertexCount() == 4)
{
v4 = polygon->GetVertex(3);
mirrorVerts.push_back(v4);
area = CalcNormFloat4((float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ(), (float*)v4->getXYZ(), normal);
} else
{
area = CalcNormFloat((float*)v1->getXYZ(), (float*)v2->getXYZ(), (float*)v3->getXYZ(), normal);
}
area = fabs(area);
mirrorArea += area;
VecMulf(normal, area);
VecAddf(mirrorNormal, mirrorNormal, normal);
}
}
}
if (mirrorVerts.size() == 0 || mirrorArea < FLT_EPSILON)
{
// no vertex or zero size mirror
THRWEXCP(MirrorSizeInvalid, S_OK);
}
// compute average normal of mirror faces
VecMulf(mirrorNormal, 1.0f/mirrorArea);
if (Normalize(mirrorNormal) == 0.f)
{
// no normal
THRWEXCP(MirrorNormalInvalid, S_OK);
}
// the mirror plane has an equation of the type ax+by+cz = d where (a,b,c) is the normal vector
// mirror up direction is the projection of Z on the plane
// scalar product between normal and Z axis
dist = Inpf(mirrorNormal, zaxis);
if (dist < FLT_EPSILON)
{
// the mirror is already vertical
VecCopyf(mirrorUp, zaxis);
}
else
{
// projection of Z to normal
VecCopyf(vec, mirrorNormal);
VecMulf(vec, dist);
VecSubf(mirrorUp, zaxis, mirrorNormal);
if (Normalize(mirrorUp) == 0.f)
{
// mirror is horizontal
THRWEXCP(MirrorHorizontal, S_OK);
return;
}
}
// compute rotation matrix between local coord and mirror coord
// to match camera orientation, we select mirror z = -normal, y = up, x = y x z
VecCopyf(mirrorMat[2], mirrorNormal);
VecMulf(mirrorMat[2], -1.0f);
VecCopyf(mirrorMat[1], mirrorUp);
Crossf(mirrorMat[0], mirrorMat[1], mirrorMat[2]);
// transpose to make it a orientation matrix from local space to mirror space
Mat3Transp(mirrorMat);
// transform all vertex to plane coordinates and determine mirror position
left = FLT_MAX;
right = -FLT_MAX;
bottom = FLT_MAX;
top = -FLT_MAX;
back = -FLT_MAX; // most backward vertex (=highest Z coord in mirror space)
for (it = mirrorVerts.begin(); it != mirrorVerts.end(); it++)
{
VecCopyf(vec, (float*)(*it)->getXYZ());
Mat3MulVecfl(mirrorMat, vec);
if (vec[0] < left)
left = vec[0];
if (vec[0] > right)
right = vec[0];
if (vec[1] < bottom)
bottom = vec[1];
if (vec[1] > top)
top = vec[1];
if (vec[2] > back)
back = vec[2];
}
// now store this information in the object for later rendering
m_mirrorHalfWidth = (right-left)*0.5f;
m_mirrorHalfHeight = (top-bottom)*0.5f;
if (m_mirrorHalfWidth < 0.01f || m_mirrorHalfHeight < 0.01f)
{
// mirror too small
THRWEXCP(MirrorTooSmall, S_OK);
}
// mirror position in mirror coord
vec[0] = (left+right)*0.5f;
vec[1] = (top+bottom)*0.5f;
vec[2] = back;
// convert it in local space: transpose again the matrix to get back to mirror to local transform
Mat3Transp(mirrorMat);
Mat3MulVecfl(mirrorMat, vec);
// mirror position in local space
m_mirrorPos.setValue(vec[0], vec[1], vec[2]);
// mirror normal vector (pointed towards the back of the mirror) in local space
m_mirrorZ.setValue(-mirrorNormal[0], -mirrorNormal[1], -mirrorNormal[2]);
m_mirrorY.setValue(mirrorUp[0], mirrorUp[1], mirrorUp[2]);
m_mirrorX = m_mirrorY.cross(m_mirrorZ);
m_render = true;
setBackground(0, 0, 255, 255);
}
// define python type
PyTypeObject ImageMirrorType =
{
PyObject_HEAD_INIT(NULL)
0, /*ob_size*/
"VideoTexture.ImageMirror", /*tp_name*/
sizeof(PyImage), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)Image_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
0, /*tp_repr*/
0, /*tp_as_number*/
0, /*tp_as_sequence*/
0, /*tp_as_mapping*/
0, /*tp_hash */
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT, /*tp_flags*/
"Image source from mirror", /* tp_doc */
0, /* tp_traverse */
0, /* tp_clear */
0, /* tp_richcompare */
0, /* tp_weaklistoffset */
0, /* tp_iter */
0, /* tp_iternext */
imageRenderMethods, /* tp_methods */
0, /* tp_members */
imageRenderGetSets, /* tp_getset */
0, /* tp_base */
0, /* tp_dict */
0, /* tp_descr_get */
0, /* tp_descr_set */
0, /* tp_dictoffset */
(initproc)ImageMirror_init, /* tp_init */
0, /* tp_alloc */
Image_allocNew, /* tp_new */
};