
This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation. MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness. The vast majority of deltas in this patch fall into one of two cases: - Ensuring ccl_private is specified for thread-local pointer types - Ensuring ccl_global is specified for device-wide pointer types Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant. In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture. The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation. Ref T92212 Reviewed By: brecht Maniphest Tasks: T92212 Differential Revision: https://developer.blender.org/D12864
533 lines
20 KiB
C
533 lines
20 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Common utilities.
|
|
*/
|
|
|
|
/* The input buffer contains transparency = 1 - alpha, this converts it to
|
|
* alpha. Also clamp since alpha might end up outside of 0..1 due to Russian
|
|
* roulette. */
|
|
ccl_device_forceinline float film_transparency_to_alpha(float transparency)
|
|
{
|
|
return saturate(1.0f - transparency);
|
|
}
|
|
|
|
ccl_device_inline float film_get_scale(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer)
|
|
{
|
|
if (kfilm_convert->pass_sample_count == PASS_UNUSED) {
|
|
return kfilm_convert->scale;
|
|
}
|
|
|
|
if (kfilm_convert->pass_use_filter) {
|
|
const uint sample_count = *(
|
|
(ccl_global const uint *)(buffer + kfilm_convert->pass_sample_count));
|
|
return 1.0f / sample_count;
|
|
}
|
|
|
|
return 1.0f;
|
|
}
|
|
|
|
ccl_device_inline float film_get_scale_exposure(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer)
|
|
{
|
|
if (kfilm_convert->pass_sample_count == PASS_UNUSED) {
|
|
return kfilm_convert->scale_exposure;
|
|
}
|
|
|
|
const float scale = film_get_scale(kfilm_convert, buffer);
|
|
|
|
if (kfilm_convert->pass_use_exposure) {
|
|
return scale * kfilm_convert->exposure;
|
|
}
|
|
|
|
return scale;
|
|
}
|
|
|
|
ccl_device_inline bool film_get_scale_and_scale_exposure(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict scale,
|
|
ccl_private float *ccl_restrict scale_exposure)
|
|
{
|
|
if (kfilm_convert->pass_sample_count == PASS_UNUSED) {
|
|
*scale = kfilm_convert->scale;
|
|
*scale_exposure = kfilm_convert->scale_exposure;
|
|
return true;
|
|
}
|
|
|
|
const uint sample_count = *(
|
|
(ccl_global const uint *)(buffer + kfilm_convert->pass_sample_count));
|
|
if (!sample_count) {
|
|
*scale = 0.0f;
|
|
*scale_exposure = 0.0f;
|
|
return false;
|
|
}
|
|
|
|
if (kfilm_convert->pass_use_filter) {
|
|
*scale = 1.0f / sample_count;
|
|
}
|
|
else {
|
|
*scale = 1.0f;
|
|
}
|
|
|
|
if (kfilm_convert->pass_use_exposure) {
|
|
*scale_exposure = *scale * kfilm_convert->exposure;
|
|
}
|
|
else {
|
|
*scale_exposure = *scale;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Float (scalar) passes.
|
|
*/
|
|
|
|
ccl_device_inline void film_get_pass_pixel_depth(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 1);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
const float scale_exposure = film_get_scale_exposure(kfilm_convert, buffer);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
const float f = *in;
|
|
|
|
pixel[0] = (f == 0.0f) ? 1e10f : f * scale_exposure;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_mist(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 1);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
const float scale_exposure = film_get_scale_exposure(kfilm_convert, buffer);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
const float f = *in;
|
|
|
|
/* Note that we accumulate 1 - mist in the kernel to avoid having to
|
|
* track the mist values in the integrator state. */
|
|
pixel[0] = saturate(1.0f - f * scale_exposure);
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_sample_count(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
/* TODO(sergey): Consider normalizing into the [0..1] range, so that it is possible to see
|
|
* meaningful value when adaptive sampler stopped rendering image way before the maximum
|
|
* number of samples was reached (for examples when number of samples is set to 0 in
|
|
* viewport). */
|
|
|
|
kernel_assert(kfilm_convert->num_components >= 1);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
const float f = *in;
|
|
|
|
pixel[0] = __float_as_uint(f) * kfilm_convert->scale;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_float(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 1);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
const float scale_exposure = film_get_scale_exposure(kfilm_convert, buffer);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
const float f = *in;
|
|
|
|
pixel[0] = f * scale_exposure;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Float 3 passes.
|
|
*/
|
|
|
|
ccl_device_inline void film_get_pass_pixel_light_path(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 3);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
/* Read light pass. */
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
float3 f = make_float3(in[0], in[1], in[2]);
|
|
|
|
/* Optionally add indirect light pass. */
|
|
if (kfilm_convert->pass_indirect != PASS_UNUSED) {
|
|
ccl_global const float *in_indirect = buffer + kfilm_convert->pass_indirect;
|
|
const float3 f_indirect = make_float3(in_indirect[0], in_indirect[1], in_indirect[2]);
|
|
f += f_indirect;
|
|
}
|
|
|
|
/* Optionally divide out color. */
|
|
if (kfilm_convert->pass_divide != PASS_UNUSED) {
|
|
ccl_global const float *in_divide = buffer + kfilm_convert->pass_divide;
|
|
const float3 f_divide = make_float3(in_divide[0], in_divide[1], in_divide[2]);
|
|
f = safe_divide_even_color(f, f_divide);
|
|
|
|
/* Exposure only, sample scale cancels out. */
|
|
f *= kfilm_convert->exposure;
|
|
}
|
|
else {
|
|
/* Sample scale and exposure. */
|
|
f *= film_get_scale_exposure(kfilm_convert, buffer);
|
|
}
|
|
|
|
pixel[0] = f.x;
|
|
pixel[1] = f.y;
|
|
pixel[2] = f.z;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_float3(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 3);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
const float scale_exposure = film_get_scale_exposure(kfilm_convert, buffer);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
|
|
const float3 f = make_float3(in[0], in[1], in[2]) * scale_exposure;
|
|
|
|
pixel[0] = f.x;
|
|
pixel[1] = f.y;
|
|
pixel[2] = f.z;
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Float4 passes.
|
|
*/
|
|
|
|
ccl_device_inline void film_get_pass_pixel_motion(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components == 4);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
kernel_assert(kfilm_convert->pass_motion_weight != PASS_UNUSED);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
ccl_global const float *in_weight = buffer + kfilm_convert->pass_motion_weight;
|
|
|
|
const float weight = in_weight[0];
|
|
const float weight_inv = (weight > 0.0f) ? 1.0f / weight : 0.0f;
|
|
|
|
const float4 motion = make_float4(in[0], in[1], in[2], in[3]) * weight_inv;
|
|
|
|
pixel[0] = motion.x;
|
|
pixel[1] = motion.y;
|
|
pixel[2] = motion.z;
|
|
pixel[3] = motion.w;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_cryptomatte(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components == 4);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
const float scale = film_get_scale(kfilm_convert, buffer);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
|
|
const float4 f = make_float4(in[0], in[1], in[2], in[3]);
|
|
|
|
/* x and z contain integer IDs, don't rescale them.
|
|
* y and w contain matte weights, they get scaled. */
|
|
pixel[0] = f.x;
|
|
pixel[1] = f.y * scale;
|
|
pixel[2] = f.z;
|
|
pixel[3] = f.w * scale;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_float4(ccl_global const KernelFilmConvert *ccl_restrict
|
|
kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components == 4);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
float scale, scale_exposure;
|
|
film_get_scale_and_scale_exposure(kfilm_convert, buffer, &scale, &scale_exposure);
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
|
|
const float3 color = make_float3(in[0], in[1], in[2]) * scale_exposure;
|
|
const float alpha = in[3] * scale;
|
|
|
|
pixel[0] = color.x;
|
|
pixel[1] = color.y;
|
|
pixel[2] = color.z;
|
|
pixel[3] = alpha;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_combined(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components == 4);
|
|
|
|
/* 3rd channel contains transparency = 1 - alpha for the combined pass. */
|
|
|
|
kernel_assert(kfilm_convert->num_components == 4);
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
|
|
float scale, scale_exposure;
|
|
if (!film_get_scale_and_scale_exposure(kfilm_convert, buffer, &scale, &scale_exposure)) {
|
|
pixel[0] = 0.0f;
|
|
pixel[1] = 0.0f;
|
|
pixel[2] = 0.0f;
|
|
pixel[3] = 0.0f;
|
|
return;
|
|
}
|
|
|
|
ccl_global const float *in = buffer + kfilm_convert->pass_offset;
|
|
|
|
const float3 color = make_float3(in[0], in[1], in[2]) * scale_exposure;
|
|
const float alpha = in[3] * scale;
|
|
|
|
pixel[0] = color.x;
|
|
pixel[1] = color.y;
|
|
pixel[2] = color.z;
|
|
pixel[3] = film_transparency_to_alpha(alpha);
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Shadow catcher.
|
|
*/
|
|
|
|
ccl_device_inline float3 film_calculate_shadow_catcher_denoised(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer)
|
|
{
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher != PASS_UNUSED);
|
|
|
|
float scale, scale_exposure;
|
|
film_get_scale_and_scale_exposure(kfilm_convert, buffer, &scale, &scale_exposure);
|
|
|
|
ccl_global const float *in_catcher = buffer + kfilm_convert->pass_shadow_catcher;
|
|
|
|
const float3 pixel = make_float3(in_catcher[0], in_catcher[1], in_catcher[2]) * scale_exposure;
|
|
|
|
return pixel;
|
|
}
|
|
|
|
ccl_device_inline float3 safe_divide_shadow_catcher(float3 a, float3 b)
|
|
{
|
|
float x, y, z;
|
|
|
|
x = (b.x != 0.0f) ? a.x / b.x : 1.0f;
|
|
y = (b.y != 0.0f) ? a.y / b.y : 1.0f;
|
|
z = (b.z != 0.0f) ? a.z / b.z : 1.0f;
|
|
|
|
return make_float3(x, y, z);
|
|
}
|
|
|
|
ccl_device_inline float3
|
|
film_calculate_shadow_catcher(ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer)
|
|
{
|
|
/* For the shadow catcher pass we divide combined pass by the shadow catcher.
|
|
* Note that denoised shadow catcher pass contains value which only needs ot be scaled (but not
|
|
* to be calculated as division). */
|
|
|
|
if (kfilm_convert->is_denoised) {
|
|
return film_calculate_shadow_catcher_denoised(kfilm_convert, buffer);
|
|
}
|
|
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher_sample_count != PASS_UNUSED);
|
|
|
|
/* If there is no shadow catcher object in this pixel, there is no modification of the light
|
|
* needed, so return one. */
|
|
ccl_global const float *in_catcher_sample_count =
|
|
buffer + kfilm_convert->pass_shadow_catcher_sample_count;
|
|
const float num_samples = in_catcher_sample_count[0];
|
|
if (num_samples == 0.0f) {
|
|
return one_float3();
|
|
}
|
|
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher != PASS_UNUSED);
|
|
ccl_global const float *in_catcher = buffer + kfilm_convert->pass_shadow_catcher;
|
|
|
|
/* NOTE: It is possible that the Shadow Catcher pass is requested as an output without actual
|
|
* shadow catcher objects in the scene. In this case there will be no auxiliary passes required
|
|
* for the decision (to save up memory). So delay the asserts to this point so that the number of
|
|
* samples check handles such configuration. */
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
kernel_assert(kfilm_convert->pass_combined != PASS_UNUSED);
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher_matte != PASS_UNUSED);
|
|
|
|
ccl_global const float *in_combined = buffer + kfilm_convert->pass_combined;
|
|
ccl_global const float *in_matte = buffer + kfilm_convert->pass_shadow_catcher_matte;
|
|
|
|
/* No scaling needed. The integration works in way that number of samples in the combined and
|
|
* shadow catcher passes are the same, and exposure is canceled during the division. */
|
|
const float3 color_catcher = make_float3(in_catcher[0], in_catcher[1], in_catcher[2]);
|
|
const float3 color_combined = make_float3(in_combined[0], in_combined[1], in_combined[2]);
|
|
const float3 color_matte = make_float3(in_matte[0], in_matte[1], in_matte[2]);
|
|
|
|
/* Need to ignore contribution of the matte object when doing division (otherwise there will be
|
|
* artifacts caused by anti-aliasing). Since combined pass is used for adaptive sampling and need
|
|
* to contain matte objects, we subtract matte objects contribution here. This is the same as if
|
|
* the matte objects were not accumulated to the combined pass. */
|
|
const float3 combined_no_matte = color_combined - color_matte;
|
|
|
|
const float3 shadow_catcher = safe_divide_shadow_catcher(combined_no_matte, color_catcher);
|
|
|
|
const float scale = film_get_scale(kfilm_convert, buffer);
|
|
const float transparency = in_combined[3] * scale;
|
|
const float alpha = film_transparency_to_alpha(transparency);
|
|
|
|
/* Alpha-over on white using transparency of the combined pass. This allows to eliminate
|
|
* artifacts which are happening on an edge of a shadow catcher when using transparent film.
|
|
* Note that we treat shadow catcher as straight alpha here because alpha got canceled out
|
|
* during the division. */
|
|
const float3 pixel = (1.0f - alpha) * one_float3() + alpha * shadow_catcher;
|
|
|
|
return pixel;
|
|
}
|
|
|
|
ccl_device_inline float4 film_calculate_shadow_catcher_matte_with_shadow(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer)
|
|
{
|
|
/* The approximation of the shadow is 1 - average(shadow_catcher_pass). A better approximation
|
|
* is possible.
|
|
*
|
|
* The matte is alpha-overed onto the shadow (which is kind of alpha-overing shadow onto footage,
|
|
* and then alpha-overing synthetic objects on top). */
|
|
|
|
kernel_assert(kfilm_convert->pass_offset != PASS_UNUSED);
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher != PASS_UNUSED);
|
|
kernel_assert(kfilm_convert->pass_shadow_catcher_matte != PASS_UNUSED);
|
|
|
|
float scale, scale_exposure;
|
|
if (!film_get_scale_and_scale_exposure(kfilm_convert, buffer, &scale, &scale_exposure)) {
|
|
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
ccl_global const float *in_matte = buffer + kfilm_convert->pass_shadow_catcher_matte;
|
|
|
|
const float3 shadow_catcher = film_calculate_shadow_catcher(kfilm_convert, buffer);
|
|
const float3 color_matte = make_float3(in_matte[0], in_matte[1], in_matte[2]) * scale_exposure;
|
|
|
|
const float transparency = in_matte[3] * scale;
|
|
const float alpha = saturate(1.0f - transparency);
|
|
|
|
const float alpha_matte = (1.0f - alpha) * (1.0f - average(shadow_catcher)) + alpha;
|
|
|
|
if (kfilm_convert->use_approximate_shadow_catcher_background) {
|
|
kernel_assert(kfilm_convert->pass_background != PASS_UNUSED);
|
|
|
|
ccl_global const float *in_background = buffer + kfilm_convert->pass_background;
|
|
const float3 color_background = make_float3(
|
|
in_background[0], in_background[1], in_background[2]) *
|
|
scale_exposure;
|
|
const float3 alpha_over = color_matte + color_background * (1.0f - alpha_matte);
|
|
return make_float4(alpha_over.x, alpha_over.y, alpha_over.z, 1.0f);
|
|
}
|
|
|
|
return make_float4(color_matte.x, color_matte.y, color_matte.z, alpha_matte);
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_shadow_catcher(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components >= 3);
|
|
|
|
const float3 pixel_value = film_calculate_shadow_catcher(kfilm_convert, buffer);
|
|
|
|
pixel[0] = pixel_value.x;
|
|
pixel[1] = pixel_value.y;
|
|
pixel[2] = pixel_value.z;
|
|
}
|
|
|
|
ccl_device_inline void film_get_pass_pixel_shadow_catcher_matte_with_shadow(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
kernel_assert(kfilm_convert->num_components == 3 || kfilm_convert->num_components == 4);
|
|
|
|
const float4 pixel_value = film_calculate_shadow_catcher_matte_with_shadow(kfilm_convert,
|
|
buffer);
|
|
|
|
pixel[0] = pixel_value.x;
|
|
pixel[1] = pixel_value.y;
|
|
pixel[2] = pixel_value.z;
|
|
if (kfilm_convert->num_components == 4) {
|
|
pixel[3] = pixel_value.w;
|
|
}
|
|
}
|
|
|
|
/* --------------------------------------------------------------------
|
|
* Compositing and overlays.
|
|
*/
|
|
|
|
ccl_device_inline void film_apply_pass_pixel_overlays_rgba(
|
|
ccl_global const KernelFilmConvert *ccl_restrict kfilm_convert,
|
|
ccl_global const float *ccl_restrict buffer,
|
|
ccl_private float *ccl_restrict pixel)
|
|
{
|
|
if (kfilm_convert->show_active_pixels &&
|
|
kfilm_convert->pass_adaptive_aux_buffer != PASS_UNUSED) {
|
|
if (buffer[kfilm_convert->pass_adaptive_aux_buffer + 3] == 0.0f) {
|
|
const float3 active_rgb = make_float3(1.0f, 0.0f, 0.0f);
|
|
const float3 mix_rgb = interp(make_float3(pixel[0], pixel[1], pixel[2]), active_rgb, 0.5f);
|
|
pixel[0] = mix_rgb.x;
|
|
pixel[1] = mix_rgb.y;
|
|
pixel[2] = mix_rgb.z;
|
|
}
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|