
* Rename struct KernelGlobals to struct KernelGlobalsCPU * Add KernelGlobals, IntegratorState and ConstIntegratorState typedefs that every device can define in its own way. * Remove INTEGRATOR_STATE_ARGS and INTEGRATOR_STATE_PASS macros and replace with these new typedefs. * Add explicit state argument to INTEGRATOR_STATE and similar macros In preparation for decoupling main and shadow paths. Differential Revision: https://developer.blender.org/D12888
170 lines
4.8 KiB
C
170 lines
4.8 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#pragma once
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device_inline uint32_t laine_karras_permutation(uint32_t x, uint32_t seed)
|
|
{
|
|
x += seed;
|
|
x ^= (x * 0x6c50b47cu);
|
|
x ^= x * 0xb82f1e52u;
|
|
x ^= x * 0xc7afe638u;
|
|
x ^= x * 0x8d22f6e6u;
|
|
|
|
return x;
|
|
}
|
|
|
|
ccl_device_inline uint32_t nested_uniform_scramble(uint32_t x, uint32_t seed)
|
|
{
|
|
x = reverse_integer_bits(x);
|
|
x = laine_karras_permutation(x, seed);
|
|
x = reverse_integer_bits(x);
|
|
|
|
return x;
|
|
}
|
|
|
|
ccl_device_inline uint cmj_hash(uint i, uint p)
|
|
{
|
|
i ^= p;
|
|
i ^= i >> 17;
|
|
i ^= i >> 10;
|
|
i *= 0xb36534e5;
|
|
i ^= i >> 12;
|
|
i ^= i >> 21;
|
|
i *= 0x93fc4795;
|
|
i ^= 0xdf6e307f;
|
|
i ^= i >> 17;
|
|
i *= 1 | p >> 18;
|
|
|
|
return i;
|
|
}
|
|
|
|
ccl_device_inline uint cmj_hash_simple(uint i, uint p)
|
|
{
|
|
i = (i ^ 61) ^ p;
|
|
i += i << 3;
|
|
i ^= i >> 4;
|
|
i *= 0x27d4eb2d;
|
|
return i;
|
|
}
|
|
|
|
ccl_device_inline float cmj_randfloat(uint i, uint p)
|
|
{
|
|
return cmj_hash(i, p) * (1.0f / 4294967808.0f);
|
|
}
|
|
|
|
ccl_device_inline float cmj_randfloat_simple(uint i, uint p)
|
|
{
|
|
return cmj_hash_simple(i, p) * (1.0f / (float)0xFFFFFFFF);
|
|
}
|
|
|
|
ccl_device float pmj_sample_1D(KernelGlobals kg, uint sample, uint rng_hash, uint dimension)
|
|
{
|
|
/* Perform Owen shuffle of the sample number to reorder the samples. */
|
|
#ifdef _SIMPLE_HASH_
|
|
const uint rv = cmj_hash_simple(dimension, rng_hash);
|
|
#else /* Use a _REGULAR_HASH_. */
|
|
const uint rv = cmj_hash(dimension, rng_hash);
|
|
#endif
|
|
#ifdef _XOR_SHUFFLE_
|
|
# warning "Using XOR shuffle."
|
|
const uint s = sample ^ rv;
|
|
#else /* Use _OWEN_SHUFFLE_ for reordering. */
|
|
const uint s = nested_uniform_scramble(sample, rv);
|
|
#endif
|
|
|
|
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
|
|
const uint sample_set = s / NUM_PMJ_SAMPLES;
|
|
const uint d = (dimension + sample_set);
|
|
const uint dim = d % NUM_PMJ_PATTERNS;
|
|
|
|
/* The PMJ sample sets contain a sample with (x,y) with NUM_PMJ_SAMPLES so for 1D
|
|
* the x part is used for even dims and the y for odd. */
|
|
int index = 2 * ((dim >> 1) * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES)) + (dim & 1);
|
|
|
|
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
|
|
|
|
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
|
|
/* Use Cranley-Patterson rotation to displace the sample pattern. */
|
|
# ifdef _SIMPLE_HASH_
|
|
float dx = cmj_randfloat_simple(d, rng_hash);
|
|
# else
|
|
float dx = cmj_randfloat(d, rng_hash);
|
|
# endif
|
|
/* Jitter sample locations and map back into [0 1]. */
|
|
fx = fx + dx;
|
|
fx = fx - floorf(fx);
|
|
#else
|
|
# warning "Not using Cranley-Patterson Rotation."
|
|
#endif
|
|
|
|
return fx;
|
|
}
|
|
|
|
ccl_device void pmj_sample_2D(KernelGlobals kg,
|
|
uint sample,
|
|
uint rng_hash,
|
|
uint dimension,
|
|
ccl_private float *x,
|
|
ccl_private float *y)
|
|
{
|
|
/* Perform a shuffle on the sample number to reorder the samples. */
|
|
#ifdef _SIMPLE_HASH_
|
|
const uint rv = cmj_hash_simple(dimension, rng_hash);
|
|
#else /* Use a _REGULAR_HASH_. */
|
|
const uint rv = cmj_hash(dimension, rng_hash);
|
|
#endif
|
|
#ifdef _XOR_SHUFFLE_
|
|
# warning "Using XOR shuffle."
|
|
const uint s = sample ^ rv;
|
|
#else /* Use _OWEN_SHUFFLE_ for reordering. */
|
|
const uint s = nested_uniform_scramble(sample, rv);
|
|
#endif
|
|
|
|
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
|
|
const uint sample_set = s / NUM_PMJ_SAMPLES;
|
|
const uint d = (dimension + sample_set);
|
|
uint dim = d % NUM_PMJ_PATTERNS;
|
|
int index = 2 * (dim * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES));
|
|
|
|
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
|
|
float fy = kernel_tex_fetch(__sample_pattern_lut, index + 1);
|
|
|
|
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
|
|
/* Use Cranley-Patterson rotation to displace the sample pattern. */
|
|
# ifdef _SIMPLE_HASH_
|
|
float dx = cmj_randfloat_simple(d, rng_hash);
|
|
float dy = cmj_randfloat_simple(d + 1, rng_hash);
|
|
# else
|
|
float dx = cmj_randfloat(d, rng_hash);
|
|
float dy = cmj_randfloat(d + 1, rng_hash);
|
|
# endif
|
|
/* Jitter sample locations and map back to the unit square [0 1]x[0 1]. */
|
|
float sx = fx + dx;
|
|
float sy = fy + dy;
|
|
sx = sx - floorf(sx);
|
|
sy = sy - floorf(sy);
|
|
#else
|
|
# warning "Not using Cranley Patterson Rotation."
|
|
#endif
|
|
|
|
(*x) = sx;
|
|
(*y) = sy;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|