Files
blender/intern/cycles/kernel/kernel_jitter.h
Brecht Van Lommel 1df3b51988 Cycles: replace integrator state argument macros
* Rename struct KernelGlobals to struct KernelGlobalsCPU
* Add KernelGlobals, IntegratorState and ConstIntegratorState typedefs
  that every device can define in its own way.
* Remove INTEGRATOR_STATE_ARGS and INTEGRATOR_STATE_PASS macros and
  replace with these new typedefs.
* Add explicit state argument to INTEGRATOR_STATE and similar macros

In preparation for decoupling main and shadow paths.

Differential Revision: https://developer.blender.org/D12888
2021-10-18 19:02:10 +02:00

170 lines
4.8 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
ccl_device_inline uint32_t laine_karras_permutation(uint32_t x, uint32_t seed)
{
x += seed;
x ^= (x * 0x6c50b47cu);
x ^= x * 0xb82f1e52u;
x ^= x * 0xc7afe638u;
x ^= x * 0x8d22f6e6u;
return x;
}
ccl_device_inline uint32_t nested_uniform_scramble(uint32_t x, uint32_t seed)
{
x = reverse_integer_bits(x);
x = laine_karras_permutation(x, seed);
x = reverse_integer_bits(x);
return x;
}
ccl_device_inline uint cmj_hash(uint i, uint p)
{
i ^= p;
i ^= i >> 17;
i ^= i >> 10;
i *= 0xb36534e5;
i ^= i >> 12;
i ^= i >> 21;
i *= 0x93fc4795;
i ^= 0xdf6e307f;
i ^= i >> 17;
i *= 1 | p >> 18;
return i;
}
ccl_device_inline uint cmj_hash_simple(uint i, uint p)
{
i = (i ^ 61) ^ p;
i += i << 3;
i ^= i >> 4;
i *= 0x27d4eb2d;
return i;
}
ccl_device_inline float cmj_randfloat(uint i, uint p)
{
return cmj_hash(i, p) * (1.0f / 4294967808.0f);
}
ccl_device_inline float cmj_randfloat_simple(uint i, uint p)
{
return cmj_hash_simple(i, p) * (1.0f / (float)0xFFFFFFFF);
}
ccl_device float pmj_sample_1D(KernelGlobals kg, uint sample, uint rng_hash, uint dimension)
{
/* Perform Owen shuffle of the sample number to reorder the samples. */
#ifdef _SIMPLE_HASH_
const uint rv = cmj_hash_simple(dimension, rng_hash);
#else /* Use a _REGULAR_HASH_. */
const uint rv = cmj_hash(dimension, rng_hash);
#endif
#ifdef _XOR_SHUFFLE_
# warning "Using XOR shuffle."
const uint s = sample ^ rv;
#else /* Use _OWEN_SHUFFLE_ for reordering. */
const uint s = nested_uniform_scramble(sample, rv);
#endif
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
const uint sample_set = s / NUM_PMJ_SAMPLES;
const uint d = (dimension + sample_set);
const uint dim = d % NUM_PMJ_PATTERNS;
/* The PMJ sample sets contain a sample with (x,y) with NUM_PMJ_SAMPLES so for 1D
* the x part is used for even dims and the y for odd. */
int index = 2 * ((dim >> 1) * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES)) + (dim & 1);
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
/* Use Cranley-Patterson rotation to displace the sample pattern. */
# ifdef _SIMPLE_HASH_
float dx = cmj_randfloat_simple(d, rng_hash);
# else
float dx = cmj_randfloat(d, rng_hash);
# endif
/* Jitter sample locations and map back into [0 1]. */
fx = fx + dx;
fx = fx - floorf(fx);
#else
# warning "Not using Cranley-Patterson Rotation."
#endif
return fx;
}
ccl_device void pmj_sample_2D(KernelGlobals kg,
uint sample,
uint rng_hash,
uint dimension,
ccl_private float *x,
ccl_private float *y)
{
/* Perform a shuffle on the sample number to reorder the samples. */
#ifdef _SIMPLE_HASH_
const uint rv = cmj_hash_simple(dimension, rng_hash);
#else /* Use a _REGULAR_HASH_. */
const uint rv = cmj_hash(dimension, rng_hash);
#endif
#ifdef _XOR_SHUFFLE_
# warning "Using XOR shuffle."
const uint s = sample ^ rv;
#else /* Use _OWEN_SHUFFLE_ for reordering. */
const uint s = nested_uniform_scramble(sample, rv);
#endif
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
const uint sample_set = s / NUM_PMJ_SAMPLES;
const uint d = (dimension + sample_set);
uint dim = d % NUM_PMJ_PATTERNS;
int index = 2 * (dim * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES));
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
float fy = kernel_tex_fetch(__sample_pattern_lut, index + 1);
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
/* Use Cranley-Patterson rotation to displace the sample pattern. */
# ifdef _SIMPLE_HASH_
float dx = cmj_randfloat_simple(d, rng_hash);
float dy = cmj_randfloat_simple(d + 1, rng_hash);
# else
float dx = cmj_randfloat(d, rng_hash);
float dy = cmj_randfloat(d + 1, rng_hash);
# endif
/* Jitter sample locations and map back to the unit square [0 1]x[0 1]. */
float sx = fx + dx;
float sy = fy + dy;
sx = sx - floorf(sx);
sy = sy - floorf(sy);
#else
# warning "Not using Cranley Patterson Rotation."
#endif
(*x) = sx;
(*y) = sy;
}
CCL_NAMESPACE_END