Files
blender/intern/cycles/kernel/kernel_projection.h
Michael Jones a0f269f682 Cycles: Kernel address space changes for MSL
This is the first of a sequence of changes to support compiling Cycles kernels as MSL (Metal Shading Language) in preparation for a Metal GPU device implementation.

MSL requires that all pointer types be declared with explicit address space attributes (device, thread, etc...). There is already precedent for this with Cycles' address space macros (ccl_global, ccl_private, etc...), therefore the first step of MSL-enablement is to apply these consistently. Line-for-line this represents the largest change required to enable MSL. Applying this change first will simplify future patches as well as offering the emergent benefit of enhanced descriptiveness.

The vast majority of deltas in this patch fall into one of two cases:

- Ensuring ccl_private is specified for thread-local pointer types
- Ensuring ccl_global is specified for device-wide pointer types

Additionally, the ccl_addr_space qualifier can be removed. Prior to Cycles X, ccl_addr_space was used as a context-dependent address space qualifier, but now it is either redundant (e.g. in struct typedefs), or can be replaced by ccl_global in the case of pointer types. Associated function variants (e.g. lcg_step_float_addrspace) are also redundant.

In cases where address space qualifiers are chained with "const", this patch places the address space qualifier first. The rationale for this is that the choice of address space is likely to have the greater impact on runtime performance and overall architecture.

The final part of this patch is the addition of a metal/compat.h header. This is partially complete and will be extended in future patches, paving the way for the full Metal implementation.

Ref T92212

Reviewed By: brecht

Maniphest Tasks: T92212

Differential Revision: https://developer.blender.org/D12864
2021-10-14 16:14:43 +01:00

259 lines
8.0 KiB
C

/*
* Parts adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
CCL_NAMESPACE_BEGIN
/* Spherical coordinates <-> Cartesian direction. */
ccl_device float2 direction_to_spherical(float3 dir)
{
float theta = safe_acosf(dir.z);
float phi = atan2f(dir.x, dir.y);
return make_float2(theta, phi);
}
ccl_device float3 spherical_to_direction(float theta, float phi)
{
float sin_theta = sinf(theta);
return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
}
/* Equirectangular coordinates <-> Cartesian direction */
ccl_device float2 direction_to_equirectangular_range(float3 dir, float4 range)
{
if (is_zero(dir))
return zero_float2();
float u = (atan2f(dir.y, dir.x) - range.y) / range.x;
float v = (acosf(dir.z / len(dir)) - range.w) / range.z;
return make_float2(u, v);
}
ccl_device float3 equirectangular_range_to_direction(float u, float v, float4 range)
{
float phi = range.x * u + range.y;
float theta = range.z * v + range.w;
float sin_theta = sinf(theta);
return make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cosf(theta));
}
ccl_device float2 direction_to_equirectangular(float3 dir)
{
return direction_to_equirectangular_range(dir, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
ccl_device float3 equirectangular_to_direction(float u, float v)
{
return equirectangular_range_to_direction(u, v, make_float4(-M_2PI_F, M_PI_F, -M_PI_F, M_PI_F));
}
/* Fisheye <-> Cartesian direction */
ccl_device float2 direction_to_fisheye(float3 dir, float fov)
{
float r = atan2f(sqrtf(dir.y * dir.y + dir.z * dir.z), dir.x) / fov;
float phi = atan2f(dir.z, dir.y);
float u = r * cosf(phi) + 0.5f;
float v = r * sinf(phi) + 0.5f;
return make_float2(u, v);
}
ccl_device float3 fisheye_to_direction(float u, float v, float fov)
{
u = (u - 0.5f) * 2.0f;
v = (v - 0.5f) * 2.0f;
float r = sqrtf(u * u + v * v);
if (r > 1.0f)
return zero_float3();
float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
float theta = r * fov * 0.5f;
if (v < 0.0f)
phi = -phi;
return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}
ccl_device float2 direction_to_fisheye_equisolid(float3 dir, float lens, float width, float height)
{
float theta = safe_acosf(dir.x);
float r = 2.0f * lens * sinf(theta * 0.5f);
float phi = atan2f(dir.z, dir.y);
float u = r * cosf(phi) / width + 0.5f;
float v = r * sinf(phi) / height + 0.5f;
return make_float2(u, v);
}
ccl_device_inline float3
fisheye_equisolid_to_direction(float u, float v, float lens, float fov, float width, float height)
{
u = (u - 0.5f) * width;
v = (v - 0.5f) * height;
float rmax = 2.0f * lens * sinf(fov * 0.25f);
float r = sqrtf(u * u + v * v);
if (r > rmax)
return zero_float3();
float phi = safe_acosf((r != 0.0f) ? u / r : 0.0f);
float theta = 2.0f * asinf(r / (2.0f * lens));
if (v < 0.0f)
phi = -phi;
return make_float3(cosf(theta), -cosf(phi) * sinf(theta), sinf(phi) * sinf(theta));
}
/* Mirror Ball <-> Cartesion direction */
ccl_device float3 mirrorball_to_direction(float u, float v)
{
/* point on sphere */
float3 dir;
dir.x = 2.0f * u - 1.0f;
dir.z = 2.0f * v - 1.0f;
if (dir.x * dir.x + dir.z * dir.z > 1.0f)
return zero_float3();
dir.y = -sqrtf(max(1.0f - dir.x * dir.x - dir.z * dir.z, 0.0f));
/* reflection */
float3 I = make_float3(0.0f, -1.0f, 0.0f);
return 2.0f * dot(dir, I) * dir - I;
}
ccl_device float2 direction_to_mirrorball(float3 dir)
{
/* inverse of mirrorball_to_direction */
dir.y -= 1.0f;
float div = 2.0f * sqrtf(max(-0.5f * dir.y, 0.0f));
if (div > 0.0f)
dir /= div;
float u = 0.5f * (dir.x + 1.0f);
float v = 0.5f * (dir.z + 1.0f);
return make_float2(u, v);
}
ccl_device_inline float3 panorama_to_direction(ccl_constant KernelCamera *cam, float u, float v)
{
switch (cam->panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return equirectangular_range_to_direction(u, v, cam->equirectangular_range);
case PANORAMA_MIRRORBALL:
return mirrorball_to_direction(u, v);
case PANORAMA_FISHEYE_EQUIDISTANT:
return fisheye_to_direction(u, v, cam->fisheye_fov);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return fisheye_equisolid_to_direction(
u, v, cam->fisheye_lens, cam->fisheye_fov, cam->sensorwidth, cam->sensorheight);
}
}
ccl_device_inline float2 direction_to_panorama(ccl_constant KernelCamera *cam, float3 dir)
{
switch (cam->panorama_type) {
case PANORAMA_EQUIRECTANGULAR:
return direction_to_equirectangular_range(dir, cam->equirectangular_range);
case PANORAMA_MIRRORBALL:
return direction_to_mirrorball(dir);
case PANORAMA_FISHEYE_EQUIDISTANT:
return direction_to_fisheye(dir, cam->fisheye_fov);
case PANORAMA_FISHEYE_EQUISOLID:
default:
return direction_to_fisheye_equisolid(
dir, cam->fisheye_lens, cam->sensorwidth, cam->sensorheight);
}
}
ccl_device_inline void spherical_stereo_transform(ccl_constant KernelCamera *cam,
ccl_private float3 *P,
ccl_private float3 *D)
{
float interocular_offset = cam->interocular_offset;
/* Interocular offset of zero means either non stereo, or stereo without
* spherical stereo. */
kernel_assert(interocular_offset != 0.0f);
if (cam->pole_merge_angle_to > 0.0f) {
const float pole_merge_angle_from = cam->pole_merge_angle_from,
pole_merge_angle_to = cam->pole_merge_angle_to;
float altitude = fabsf(safe_asinf((*D).z));
if (altitude > pole_merge_angle_to) {
interocular_offset = 0.0f;
}
else if (altitude > pole_merge_angle_from) {
float fac = (altitude - pole_merge_angle_from) /
(pole_merge_angle_to - pole_merge_angle_from);
float fade = cosf(fac * M_PI_2_F);
interocular_offset *= fade;
}
}
float3 up = make_float3(0.0f, 0.0f, 1.0f);
float3 side = normalize(cross(*D, up));
float3 stereo_offset = side * interocular_offset;
*P += stereo_offset;
/* Convergence distance is FLT_MAX in the case of parallel convergence mode,
* no need to modify direction in this case either. */
const float convergence_distance = cam->convergence_distance;
if (convergence_distance != FLT_MAX) {
float3 screen_offset = convergence_distance * (*D);
*D = normalize(screen_offset - stereo_offset);
}
}
CCL_NAMESPACE_END