
* Rename struct KernelGlobals to struct KernelGlobalsCPU * Add KernelGlobals, IntegratorState and ConstIntegratorState typedefs that every device can define in its own way. * Remove INTEGRATOR_STATE_ARGS and INTEGRATOR_STATE_PASS macros and replace with these new typedefs. * Add explicit state argument to INTEGRATOR_STATE and similar macros In preparation for decoupling main and shadow paths. Differential Revision: https://developer.blender.org/D12888
217 lines
6.2 KiB
C
217 lines
6.2 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
#pragma once
|
|
|
|
#include "kernel/kernel_jitter.h"
|
|
#include "util/util_hash.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* Pseudo random numbers, uncomment this for debugging correlations. Only run
|
|
* this single threaded on a CPU for repeatable results. */
|
|
//#define __DEBUG_CORRELATION__
|
|
|
|
/* High Dimensional Sobol.
|
|
*
|
|
* Multidimensional sobol with generator matrices. Dimension 0 and 1 are equal
|
|
* to classic Van der Corput and Sobol sequences. */
|
|
|
|
#ifdef __SOBOL__
|
|
|
|
/* Skip initial numbers that for some dimensions have clear patterns that
|
|
* don't cover the entire sample space. Ideally we would have a better
|
|
* progressive pattern that doesn't suffer from this problem, because even
|
|
* with this offset some dimensions are quite poor.
|
|
*/
|
|
# define SOBOL_SKIP 64
|
|
|
|
ccl_device uint sobol_dimension(KernelGlobals kg, int index, int dimension)
|
|
{
|
|
uint result = 0;
|
|
uint i = index + SOBOL_SKIP;
|
|
for (int j = 0, x; (x = find_first_set(i)); i >>= x) {
|
|
j += x;
|
|
result ^= __float_as_uint(kernel_tex_fetch(__sample_pattern_lut, 32 * dimension + j - 1));
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif /* __SOBOL__ */
|
|
|
|
ccl_device_forceinline float path_rng_1D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
return (float)drand48();
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
return pmj_sample_1D(kg, sample, rng_hash, dimension);
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol sequence value using direction vectors. */
|
|
uint result = sobol_dimension(kg, sample, dimension);
|
|
float r = (float)result * (1.0f / (float)0xFFFFFFFF);
|
|
|
|
/* Cranly-Patterson rotation using rng seed */
|
|
float shift;
|
|
|
|
/* Hash rng with dimension to solve correlation issues.
|
|
* See T38710, T50116.
|
|
*/
|
|
uint tmp_rng = cmj_hash_simple(dimension, rng_hash);
|
|
shift = tmp_rng * (1.0f / (float)0xFFFFFFFF);
|
|
|
|
return r + shift - floorf(r + shift);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_forceinline void path_rng_2D(KernelGlobals kg,
|
|
uint rng_hash,
|
|
int sample,
|
|
int dimension,
|
|
ccl_private float *fx,
|
|
ccl_private float *fy)
|
|
{
|
|
#ifdef __DEBUG_CORRELATION__
|
|
*fx = (float)drand48();
|
|
*fy = (float)drand48();
|
|
return;
|
|
#endif
|
|
|
|
#ifdef __SOBOL__
|
|
if (kernel_data.integrator.sampling_pattern == SAMPLING_PATTERN_PMJ)
|
|
#endif
|
|
{
|
|
pmj_sample_2D(kg, sample, rng_hash, dimension, fx, fy);
|
|
|
|
return;
|
|
}
|
|
|
|
#ifdef __SOBOL__
|
|
/* Sobol. */
|
|
*fx = path_rng_1D(kg, rng_hash, sample, dimension);
|
|
*fy = path_rng_1D(kg, rng_hash, sample, dimension + 1);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* 1D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqint1(uint n)
|
|
{
|
|
n = (n << 13U) ^ n;
|
|
n = n * (n * n * 15731U + 789221U) + 1376312589U;
|
|
|
|
return n;
|
|
}
|
|
|
|
/**
|
|
* 2D hash recommended from "Hash Functions for GPU Rendering" JCGT Vol. 9, No. 3, 2020
|
|
* See https://www.shadertoy.com/view/4tXyWN and https://www.shadertoy.com/view/XlGcRh
|
|
* http://www.jcgt.org/published/0009/03/02/paper.pdf
|
|
*/
|
|
ccl_device_inline uint hash_iqnt2d(const uint x, const uint y)
|
|
{
|
|
const uint qx = 1103515245U * ((x >> 1U) ^ (y));
|
|
const uint qy = 1103515245U * ((y >> 1U) ^ (x));
|
|
const uint n = 1103515245U * ((qx) ^ (qy >> 3U));
|
|
|
|
return n;
|
|
}
|
|
|
|
ccl_device_inline uint path_rng_hash_init(KernelGlobals kg,
|
|
const int sample,
|
|
const int x,
|
|
const int y)
|
|
{
|
|
const uint rng_hash = hash_iqnt2d(x, y) ^ kernel_data.integrator.seed;
|
|
|
|
#ifdef __DEBUG_CORRELATION__
|
|
srand48(rng_hash + sample);
|
|
#else
|
|
(void)sample;
|
|
#endif
|
|
|
|
return rng_hash;
|
|
}
|
|
|
|
/* Linear Congruential Generator */
|
|
|
|
ccl_device uint lcg_step_uint(uint *rng)
|
|
{
|
|
/* implicit mod 2^32 */
|
|
*rng = (1103515245 * (*rng) + 12345);
|
|
return *rng;
|
|
}
|
|
|
|
ccl_device float lcg_step_float(uint *rng)
|
|
{
|
|
/* implicit mod 2^32 */
|
|
*rng = (1103515245 * (*rng) + 12345);
|
|
return (float)*rng * (1.0f / (float)0xFFFFFFFF);
|
|
}
|
|
|
|
ccl_device uint lcg_init(uint seed)
|
|
{
|
|
uint rng = seed;
|
|
lcg_step_uint(&rng);
|
|
return rng;
|
|
}
|
|
|
|
ccl_device_inline uint lcg_state_init(const uint rng_hash,
|
|
const uint rng_offset,
|
|
const uint sample,
|
|
const uint scramble)
|
|
{
|
|
return lcg_init(rng_hash + rng_offset + sample * scramble);
|
|
}
|
|
|
|
ccl_device_inline bool sample_is_even(int pattern, int sample)
|
|
{
|
|
if (pattern == SAMPLING_PATTERN_PMJ) {
|
|
/* See Section 10.2.1, "Progressive Multi-Jittered Sample Sequences", Christensen et al.
|
|
* We can use this to get divide sample sequence into two classes for easier variance
|
|
* estimation. */
|
|
#if defined(__GNUC__) && !defined(__KERNEL_GPU__)
|
|
return __builtin_popcount(sample & 0xaaaaaaaa) & 1;
|
|
#elif defined(__NVCC__)
|
|
return __popc(sample & 0xaaaaaaaa) & 1;
|
|
#else
|
|
/* TODO(Stefan): pop-count intrinsic for Windows with fallback for older CPUs. */
|
|
int i = sample & 0xaaaaaaaa;
|
|
i = i - ((i >> 1) & 0x55555555);
|
|
i = (i & 0x33333333) + ((i >> 2) & 0x33333333);
|
|
i = (((i + (i >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
|
|
return i & 1;
|
|
#endif
|
|
}
|
|
else {
|
|
/* TODO(Stefan): Are there reliable ways of dividing CMJ and Sobol into two classes? */
|
|
return sample & 0x1;
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|