Files
blender/intern/guardedalloc/intern/mallocn_guarded_impl.c
Jacques Lucke 236ca8fbe8 Allocator: make leak detection work with static variables
When definining static variables that own memory, you should
use the "construct on first use" idiom. Otherwise, you'll get
a warning when Blender exits.

More details are provided in D8354.

Differential Revision: https://developer.blender.org/D8354
2020-07-24 12:26:11 +02:00

1221 lines
27 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup MEM
*
* Guarded memory allocation, and boundary-write detection.
*/
#include <stdarg.h>
#include <stdlib.h>
#include <string.h> /* memcpy */
#include <sys/types.h>
#include <pthread.h>
#include "MEM_guardedalloc.h"
/* to ensure strict conversions */
#include "../../source/blender/blenlib/BLI_strict_flags.h"
#include "atomic_ops.h"
#include "mallocn_intern.h"
/* Only for debugging:
* store original buffer's name when doing MEM_dupallocN
* helpful to profile issues with non-freed "dup_alloc" buffers,
* but this introduces some overhead to memory header and makes
* things slower a bit, so better to keep disabled by default
*/
//#define DEBUG_MEMDUPLINAME
/* Only for debugging:
* lets you count the allocations so as to find the allocator of unfreed memory
* in situations where the leak is predictable */
//#define DEBUG_MEMCOUNTER
/* Only for debugging:
* Defining DEBUG_BACKTRACE will store a backtrace from where
* memory block was allocated and print this trace for all
* unfreed blocks.
*/
//#define DEBUG_BACKTRACE
#ifdef DEBUG_BACKTRACE
# define BACKTRACE_SIZE 100
#endif
#ifdef DEBUG_MEMCOUNTER
/* set this to the value that isn't being freed */
# define DEBUG_MEMCOUNTER_ERROR_VAL 0
static int _mallocn_count = 0;
/* breakpoint here */
static void memcount_raise(const char *name)
{
fprintf(stderr, "%s: memcount-leak, %d\n", name, _mallocn_count);
}
#endif
/* --------------------------------------------------------------------- */
/* Data definition */
/* --------------------------------------------------------------------- */
/* all memory chunks are put in linked lists */
typedef struct localLink {
struct localLink *next, *prev;
} localLink;
typedef struct localListBase {
void *first, *last;
} localListBase;
/* note: keep this struct aligned (e.g., irix/gcc) - Hos */
typedef struct MemHead {
int tag1;
size_t len;
struct MemHead *next, *prev;
const char *name;
const char *nextname;
int tag2;
short pad1;
short alignment; /* if non-zero aligned alloc was used
* and alignment is stored here.
*/
#ifdef DEBUG_MEMCOUNTER
int _count;
#endif
#ifdef DEBUG_MEMDUPLINAME
int need_free_name, pad;
#endif
#ifdef DEBUG_BACKTRACE
void *backtrace[BACKTRACE_SIZE];
int backtrace_size;
#endif
} MemHead;
typedef MemHead MemHeadAligned;
#ifdef DEBUG_BACKTRACE
# if defined(__linux__) || defined(__APPLE__)
# include <execinfo.h>
// Windows is not supported yet.
//# elif defined(_MSV_VER)
//# include <DbgHelp.h>
# endif
#endif
typedef struct MemTail {
int tag3, pad;
} MemTail;
/* --------------------------------------------------------------------- */
/* local functions */
/* --------------------------------------------------------------------- */
static void addtail(volatile localListBase *listbase, void *vlink);
static void remlink(volatile localListBase *listbase, void *vlink);
static void rem_memblock(MemHead *memh);
static void MemorY_ErroR(const char *block, const char *error);
static const char *check_memlist(MemHead *memh);
/* --------------------------------------------------------------------- */
/* locally used defines */
/* --------------------------------------------------------------------- */
#ifdef __BIG_ENDIAN__
# define MAKE_ID(a, b, c, d) ((int)(a) << 24 | (int)(b) << 16 | (c) << 8 | (d))
#else
# define MAKE_ID(a, b, c, d) ((int)(d) << 24 | (int)(c) << 16 | (b) << 8 | (a))
#endif
#define MEMTAG1 MAKE_ID('M', 'E', 'M', 'O')
#define MEMTAG2 MAKE_ID('R', 'Y', 'B', 'L')
#define MEMTAG3 MAKE_ID('O', 'C', 'K', '!')
#define MEMFREE MAKE_ID('F', 'R', 'E', 'E')
#define MEMNEXT(x) ((MemHead *)(((char *)x) - ((char *)&(((MemHead *)0)->next))))
/* --------------------------------------------------------------------- */
/* vars */
/* --------------------------------------------------------------------- */
static unsigned int totblock = 0;
static size_t mem_in_use = 0, peak_mem = 0;
static volatile struct localListBase _membase;
static volatile struct localListBase *membase = &_membase;
static void (*error_callback)(const char *) = NULL;
static bool malloc_debug_memset = false;
#ifdef malloc
# undef malloc
#endif
#ifdef calloc
# undef calloc
#endif
#ifdef free
# undef free
#endif
/* --------------------------------------------------------------------- */
/* implementation */
/* --------------------------------------------------------------------- */
#ifdef __GNUC__
__attribute__((format(printf, 1, 2)))
#endif
static void
print_error(const char *str, ...)
{
char buf[1024];
va_list ap;
va_start(ap, str);
vsnprintf(buf, sizeof(buf), str, ap);
va_end(ap);
buf[sizeof(buf) - 1] = '\0';
if (error_callback) {
error_callback(buf);
}
else {
fputs(buf, stderr);
}
}
static pthread_mutex_t thread_lock = PTHREAD_MUTEX_INITIALIZER;
static void mem_lock_thread(void)
{
pthread_mutex_lock(&thread_lock);
}
static void mem_unlock_thread(void)
{
pthread_mutex_unlock(&thread_lock);
}
bool MEM_guarded_consistency_check(void)
{
const char *err_val = NULL;
MemHead *listend;
/* check_memlist starts from the front, and runs until it finds
* the requested chunk. For this test, that's the last one. */
listend = membase->last;
err_val = check_memlist(listend);
return (err_val == NULL);
}
void MEM_guarded_set_error_callback(void (*func)(const char *))
{
error_callback = func;
}
void MEM_guarded_set_memory_debug(void)
{
malloc_debug_memset = true;
}
size_t MEM_guarded_allocN_len(const void *vmemh)
{
if (vmemh) {
const MemHead *memh = vmemh;
memh--;
return memh->len;
}
else {
return 0;
}
}
void *MEM_guarded_dupallocN(const void *vmemh)
{
void *newp = NULL;
if (vmemh) {
const MemHead *memh = vmemh;
memh--;
#ifndef DEBUG_MEMDUPLINAME
if (LIKELY(memh->alignment == 0)) {
newp = MEM_guarded_mallocN(memh->len, "dupli_alloc");
}
else {
newp = MEM_guarded_mallocN_aligned(memh->len, (size_t)memh->alignment, "dupli_alloc");
}
if (newp == NULL) {
return NULL;
}
#else
{
MemHead *nmemh;
char *name = malloc(strlen(memh->name) + 24);
if (LIKELY(memh->alignment == 0)) {
sprintf(name, "%s %s", "dupli_alloc", memh->name);
newp = MEM_guarded_mallocN(memh->len, name);
}
else {
sprintf(name, "%s %s", "dupli_alloc", memh->name);
newp = MEM_guarded_mallocN_aligned(memh->len, (size_t)memh->alignment, name);
}
if (newp == NULL)
return NULL;
nmemh = newp;
nmemh--;
nmemh->need_free_name = 1;
}
#endif
memcpy(newp, vmemh, memh->len);
}
return newp;
}
void *MEM_guarded_reallocN_id(void *vmemh, size_t len, const char *str)
{
void *newp = NULL;
if (vmemh) {
MemHead *memh = vmemh;
memh--;
if (LIKELY(memh->alignment == 0)) {
newp = MEM_guarded_mallocN(len, memh->name);
}
else {
newp = MEM_guarded_mallocN_aligned(len, (size_t)memh->alignment, memh->name);
}
if (newp) {
if (len < memh->len) {
/* shrink */
memcpy(newp, vmemh, len);
}
else {
/* grow (or remain same size) */
memcpy(newp, vmemh, memh->len);
}
}
MEM_guarded_freeN(vmemh);
}
else {
newp = MEM_guarded_mallocN(len, str);
}
return newp;
}
void *MEM_guarded_recallocN_id(void *vmemh, size_t len, const char *str)
{
void *newp = NULL;
if (vmemh) {
MemHead *memh = vmemh;
memh--;
if (LIKELY(memh->alignment == 0)) {
newp = MEM_guarded_mallocN(len, memh->name);
}
else {
newp = MEM_guarded_mallocN_aligned(len, (size_t)memh->alignment, memh->name);
}
if (newp) {
if (len < memh->len) {
/* shrink */
memcpy(newp, vmemh, len);
}
else {
memcpy(newp, vmemh, memh->len);
if (len > memh->len) {
/* grow */
/* zero new bytes */
memset(((char *)newp) + memh->len, 0, len - memh->len);
}
}
}
MEM_guarded_freeN(vmemh);
}
else {
newp = MEM_guarded_callocN(len, str);
}
return newp;
}
#ifdef DEBUG_BACKTRACE
# if defined(__linux__) || defined(__APPLE__)
static void make_memhead_backtrace(MemHead *memh)
{
memh->backtrace_size = backtrace(memh->backtrace, BACKTRACE_SIZE);
}
static void print_memhead_backtrace(MemHead *memh)
{
char **strings;
int i;
strings = backtrace_symbols(memh->backtrace, memh->backtrace_size);
for (i = 0; i < memh->backtrace_size; i++) {
print_error(" %s\n", strings[i]);
}
free(strings);
}
# else
static void make_memhead_backtrace(MemHead *memh)
{
(void)memh; /* Ignored. */
}
static void print_memhead_backtrace(MemHead *memh)
{
(void)memh; /* Ignored. */
}
# endif /* defined(__linux__) || defined(__APPLE__) */
#endif /* DEBUG_BACKTRACE */
static void make_memhead_header(MemHead *memh, size_t len, const char *str)
{
MemTail *memt;
memh->tag1 = MEMTAG1;
memh->name = str;
memh->nextname = NULL;
memh->len = len;
memh->pad1 = 0;
memh->alignment = 0;
memh->tag2 = MEMTAG2;
#ifdef DEBUG_MEMDUPLINAME
memh->need_free_name = 0;
#endif
#ifdef DEBUG_BACKTRACE
make_memhead_backtrace(memh);
#endif
memt = (MemTail *)(((char *)memh) + sizeof(MemHead) + len);
memt->tag3 = MEMTAG3;
atomic_add_and_fetch_u(&totblock, 1);
atomic_add_and_fetch_z(&mem_in_use, len);
mem_lock_thread();
addtail(membase, &memh->next);
if (memh->next) {
memh->nextname = MEMNEXT(memh->next)->name;
}
peak_mem = mem_in_use > peak_mem ? mem_in_use : peak_mem;
mem_unlock_thread();
}
void *MEM_guarded_mallocN(size_t len, const char *str)
{
MemHead *memh;
len = SIZET_ALIGN_4(len);
memh = (MemHead *)malloc(len + sizeof(MemHead) + sizeof(MemTail));
if (LIKELY(memh)) {
make_memhead_header(memh, len, str);
if (UNLIKELY(malloc_debug_memset && len)) {
memset(memh + 1, 255, len);
}
#ifdef DEBUG_MEMCOUNTER
if (_mallocn_count == DEBUG_MEMCOUNTER_ERROR_VAL)
memcount_raise(__func__);
memh->_count = _mallocn_count++;
#endif
return (++memh);
}
print_error("Malloc returns null: len=" SIZET_FORMAT " in %s, total %u\n",
SIZET_ARG(len),
str,
(unsigned int)mem_in_use);
return NULL;
}
void *MEM_guarded_malloc_arrayN(size_t len, size_t size, const char *str)
{
size_t total_size;
if (UNLIKELY(!MEM_size_safe_multiply(len, size, &total_size))) {
print_error(
"Malloc array aborted due to integer overflow: "
"len=" SIZET_FORMAT "x" SIZET_FORMAT " in %s, total %u\n",
SIZET_ARG(len),
SIZET_ARG(size),
str,
(unsigned int)mem_in_use);
abort();
return NULL;
}
return MEM_guarded_mallocN(total_size, str);
}
void *MEM_guarded_mallocN_aligned(size_t len, size_t alignment, const char *str)
{
/* We only support alignment to a power of two. */
assert(IS_POW2(alignment));
/* Use a minimal alignment of 8. Otherwise MEM_guarded_freeN thinks it is an illegal pointer. */
if (alignment < 8) {
alignment = 8;
}
/* It's possible that MemHead's size is not properly aligned,
* do extra padding to deal with this.
*
* We only support small alignments which fits into short in
* order to save some bits in MemHead structure.
*/
size_t extra_padding = MEMHEAD_ALIGN_PADDING(alignment);
/* Huge alignment values doesn't make sense and they
* wouldn't fit into 'short' used in the MemHead.
*/
assert(alignment < 1024);
len = SIZET_ALIGN_4(len);
MemHead *memh = (MemHead *)aligned_malloc(
len + extra_padding + sizeof(MemHead) + sizeof(MemTail), alignment);
if (LIKELY(memh)) {
/* We keep padding in the beginning of MemHead,
* this way it's always possible to get MemHead
* from the data pointer.
*/
memh = (MemHead *)((char *)memh + extra_padding);
make_memhead_header(memh, len, str);
memh->alignment = (short)alignment;
if (UNLIKELY(malloc_debug_memset && len)) {
memset(memh + 1, 255, len);
}
#ifdef DEBUG_MEMCOUNTER
if (_mallocn_count == DEBUG_MEMCOUNTER_ERROR_VAL)
memcount_raise(__func__);
memh->_count = _mallocn_count++;
#endif
return (++memh);
}
print_error("aligned_malloc returns null: len=" SIZET_FORMAT " in %s, total %u\n",
SIZET_ARG(len),
str,
(unsigned int)mem_in_use);
return NULL;
}
void *MEM_guarded_callocN(size_t len, const char *str)
{
MemHead *memh;
len = SIZET_ALIGN_4(len);
memh = (MemHead *)calloc(len + sizeof(MemHead) + sizeof(MemTail), 1);
if (memh) {
make_memhead_header(memh, len, str);
#ifdef DEBUG_MEMCOUNTER
if (_mallocn_count == DEBUG_MEMCOUNTER_ERROR_VAL)
memcount_raise(__func__);
memh->_count = _mallocn_count++;
#endif
return (++memh);
}
print_error("Calloc returns null: len=" SIZET_FORMAT " in %s, total %u\n",
SIZET_ARG(len),
str,
(unsigned int)mem_in_use);
return NULL;
}
void *MEM_guarded_calloc_arrayN(size_t len, size_t size, const char *str)
{
size_t total_size;
if (UNLIKELY(!MEM_size_safe_multiply(len, size, &total_size))) {
print_error(
"Calloc array aborted due to integer overflow: "
"len=" SIZET_FORMAT "x" SIZET_FORMAT " in %s, total %u\n",
SIZET_ARG(len),
SIZET_ARG(size),
str,
(unsigned int)mem_in_use);
abort();
return NULL;
}
return MEM_guarded_callocN(total_size, str);
}
/* Memory statistics print */
typedef struct MemPrintBlock {
const char *name;
uintptr_t len;
int items;
} MemPrintBlock;
static int compare_name(const void *p1, const void *p2)
{
const MemPrintBlock *pb1 = (const MemPrintBlock *)p1;
const MemPrintBlock *pb2 = (const MemPrintBlock *)p2;
return strcmp(pb1->name, pb2->name);
}
static int compare_len(const void *p1, const void *p2)
{
const MemPrintBlock *pb1 = (const MemPrintBlock *)p1;
const MemPrintBlock *pb2 = (const MemPrintBlock *)p2;
if (pb1->len < pb2->len) {
return 1;
}
else if (pb1->len == pb2->len) {
return 0;
}
else {
return -1;
}
}
void MEM_guarded_printmemlist_stats(void)
{
MemHead *membl;
MemPrintBlock *pb, *printblock;
unsigned int totpb, a, b;
size_t mem_in_use_slop = 0;
mem_lock_thread();
if (totblock != 0) {
/* put memory blocks into array */
printblock = malloc(sizeof(MemPrintBlock) * totblock);
if (UNLIKELY(!printblock)) {
mem_unlock_thread();
print_error("malloc returned null while generating stats");
return;
}
}
else {
printblock = NULL;
}
pb = printblock;
totpb = 0;
membl = membase->first;
if (membl) {
membl = MEMNEXT(membl);
}
while (membl && pb) {
pb->name = membl->name;
pb->len = membl->len;
pb->items = 1;
totpb++;
pb++;
#ifdef USE_MALLOC_USABLE_SIZE
if (membl->alignment == 0) {
mem_in_use_slop += (sizeof(MemHead) + sizeof(MemTail) + malloc_usable_size((void *)membl)) -
membl->len;
}
#endif
if (membl->next) {
membl = MEMNEXT(membl->next);
}
else {
break;
}
}
/* sort by name and add together blocks with the same name */
if (totpb > 1) {
qsort(printblock, totpb, sizeof(MemPrintBlock), compare_name);
}
for (a = 0, b = 0; a < totpb; a++) {
if (a == b) {
continue;
}
else if (strcmp(printblock[a].name, printblock[b].name) == 0) {
printblock[b].len += printblock[a].len;
printblock[b].items++;
}
else {
b++;
memcpy(&printblock[b], &printblock[a], sizeof(MemPrintBlock));
}
}
totpb = b + 1;
/* sort by length and print */
if (totpb > 1) {
qsort(printblock, totpb, sizeof(MemPrintBlock), compare_len);
}
printf("\ntotal memory len: %.3f MB\n", (double)mem_in_use / (double)(1024 * 1024));
printf("peak memory len: %.3f MB\n", (double)peak_mem / (double)(1024 * 1024));
printf("slop memory len: %.3f MB\n", (double)mem_in_use_slop / (double)(1024 * 1024));
printf(" ITEMS TOTAL-MiB AVERAGE-KiB TYPE\n");
for (a = 0, pb = printblock; a < totpb; a++, pb++) {
printf("%6d (%8.3f %8.3f) %s\n",
pb->items,
(double)pb->len / (double)(1024 * 1024),
(double)pb->len / 1024.0 / (double)pb->items,
pb->name);
}
if (printblock != NULL) {
free(printblock);
}
mem_unlock_thread();
#ifdef HAVE_MALLOC_STATS
printf("System Statistics:\n");
malloc_stats();
#endif
}
static const char mem_printmemlist_pydict_script[] =
"mb_userinfo = {}\n"
"totmem = 0\n"
"for mb_item in membase:\n"
" mb_item_user_size = mb_userinfo.setdefault(mb_item['name'], [0,0])\n"
" mb_item_user_size[0] += 1 # Add a user\n"
" mb_item_user_size[1] += mb_item['len'] # Increment the size\n"
" totmem += mb_item['len']\n"
"print('(membase) items:', len(membase), '| unique-names:',\n"
" len(mb_userinfo), '| total-mem:', totmem)\n"
"mb_userinfo_sort = list(mb_userinfo.items())\n"
"for sort_name, sort_func in (('size', lambda a: -a[1][1]),\n"
" ('users', lambda a: -a[1][0]),\n"
" ('name', lambda a: a[0])):\n"
" print('\\nSorting by:', sort_name)\n"
" mb_userinfo_sort.sort(key = sort_func)\n"
" for item in mb_userinfo_sort:\n"
" print('name:%%s, users:%%i, len:%%i' %%\n"
" (item[0], item[1][0], item[1][1]))\n";
/* Prints in python syntax for easy */
static void MEM_guarded_printmemlist_internal(int pydict)
{
MemHead *membl;
mem_lock_thread();
membl = membase->first;
if (membl) {
membl = MEMNEXT(membl);
}
if (pydict) {
print_error("# membase_debug.py\n");
print_error("membase = [\n");
}
while (membl) {
if (pydict) {
print_error(" {'len':" SIZET_FORMAT
", "
"'name':'''%s''', "
"'pointer':'%p'},\n",
SIZET_ARG(membl->len),
membl->name,
(void *)(membl + 1));
}
else {
#ifdef DEBUG_MEMCOUNTER
print_error("%s len: " SIZET_FORMAT " %p, count: %d\n",
membl->name,
SIZET_ARG(membl->len),
membl + 1,
membl->_count);
#else
print_error("%s len: " SIZET_FORMAT " %p\n",
membl->name,
SIZET_ARG(membl->len),
(void *)(membl + 1));
#endif
#ifdef DEBUG_BACKTRACE
print_memhead_backtrace(membl);
#endif
}
if (membl->next) {
membl = MEMNEXT(membl->next);
}
else {
break;
}
}
if (pydict) {
print_error("]\n\n");
print_error(mem_printmemlist_pydict_script);
}
mem_unlock_thread();
}
void MEM_guarded_callbackmemlist(void (*func)(void *))
{
MemHead *membl;
mem_lock_thread();
membl = membase->first;
if (membl) {
membl = MEMNEXT(membl);
}
while (membl) {
func(membl + 1);
if (membl->next) {
membl = MEMNEXT(membl->next);
}
else {
break;
}
}
mem_unlock_thread();
}
#if 0
short MEM_guarded_testN(void *vmemh)
{
MemHead *membl;
mem_lock_thread();
membl = membase->first;
if (membl)
membl = MEMNEXT(membl);
while (membl) {
if (vmemh == membl + 1) {
mem_unlock_thread();
return 1;
}
if (membl->next)
membl = MEMNEXT(membl->next);
else
break;
}
mem_unlock_thread();
print_error("Memoryblock %p: pointer not in memlist\n", vmemh);
return 0;
}
#endif
void MEM_guarded_printmemlist(void)
{
MEM_guarded_printmemlist_internal(0);
}
void MEM_guarded_printmemlist_pydict(void)
{
MEM_guarded_printmemlist_internal(1);
}
void MEM_guarded_freeN(void *vmemh)
{
MemTail *memt;
MemHead *memh = vmemh;
const char *name;
if (memh == NULL) {
MemorY_ErroR("free", "attempt to free NULL pointer");
/* print_error(err_stream, "%d\n", (memh+4000)->tag1); */
return;
}
if (sizeof(intptr_t) == 8) {
if (((intptr_t)memh) & 0x7) {
MemorY_ErroR("free", "attempt to free illegal pointer");
return;
}
}
else {
if (((intptr_t)memh) & 0x3) {
MemorY_ErroR("free", "attempt to free illegal pointer");
return;
}
}
memh--;
if (memh->tag1 == MEMFREE && memh->tag2 == MEMFREE) {
MemorY_ErroR(memh->name, "double free");
return;
}
if ((memh->tag1 == MEMTAG1) && (memh->tag2 == MEMTAG2) && ((memh->len & 0x3) == 0)) {
memt = (MemTail *)(((char *)memh) + sizeof(MemHead) + memh->len);
if (memt->tag3 == MEMTAG3) {
if (leak_detector_has_run) {
MemorY_ErroR(memh->name, free_after_leak_detection_message);
}
memh->tag1 = MEMFREE;
memh->tag2 = MEMFREE;
memt->tag3 = MEMFREE;
/* after tags !!! */
rem_memblock(memh);
return;
}
MemorY_ErroR(memh->name, "end corrupt");
name = check_memlist(memh);
if (name != NULL) {
if (name != memh->name) {
MemorY_ErroR(name, "is also corrupt");
}
}
}
else {
mem_lock_thread();
name = check_memlist(memh);
mem_unlock_thread();
if (name == NULL) {
MemorY_ErroR("free", "pointer not in memlist");
}
else {
MemorY_ErroR(name, "error in header");
}
}
totblock--;
/* here a DUMP should happen */
}
/* --------------------------------------------------------------------- */
/* local functions */
/* --------------------------------------------------------------------- */
static void addtail(volatile localListBase *listbase, void *vlink)
{
struct localLink *link = vlink;
/* for a generic API error checks here is fine but
* the limited use here they will never be NULL */
#if 0
if (link == NULL)
return;
if (listbase == NULL)
return;
#endif
link->next = NULL;
link->prev = listbase->last;
if (listbase->last) {
((struct localLink *)listbase->last)->next = link;
}
if (listbase->first == NULL) {
listbase->first = link;
}
listbase->last = link;
}
static void remlink(volatile localListBase *listbase, void *vlink)
{
struct localLink *link = vlink;
/* for a generic API error checks here is fine but
* the limited use here they will never be NULL */
#if 0
if (link == NULL)
return;
if (listbase == NULL)
return;
#endif
if (link->next) {
link->next->prev = link->prev;
}
if (link->prev) {
link->prev->next = link->next;
}
if (listbase->last == link) {
listbase->last = link->prev;
}
if (listbase->first == link) {
listbase->first = link->next;
}
}
static void rem_memblock(MemHead *memh)
{
mem_lock_thread();
remlink(membase, &memh->next);
if (memh->prev) {
if (memh->next) {
MEMNEXT(memh->prev)->nextname = MEMNEXT(memh->next)->name;
}
else {
MEMNEXT(memh->prev)->nextname = NULL;
}
}
mem_unlock_thread();
atomic_sub_and_fetch_u(&totblock, 1);
atomic_sub_and_fetch_z(&mem_in_use, memh->len);
#ifdef DEBUG_MEMDUPLINAME
if (memh->need_free_name)
free((char *)memh->name);
#endif
if (UNLIKELY(malloc_debug_memset && memh->len)) {
memset(memh + 1, 255, memh->len);
}
if (LIKELY(memh->alignment == 0)) {
free(memh);
}
else {
aligned_free(MEMHEAD_REAL_PTR(memh));
}
}
static void MemorY_ErroR(const char *block, const char *error)
{
print_error("Memoryblock %s: %s\n", block, error);
#ifdef WITH_ASSERT_ABORT
abort();
#endif
}
static const char *check_memlist(MemHead *memh)
{
MemHead *forw, *back, *forwok, *backok;
const char *name;
forw = membase->first;
if (forw) {
forw = MEMNEXT(forw);
}
forwok = NULL;
while (forw) {
if (forw->tag1 != MEMTAG1 || forw->tag2 != MEMTAG2) {
break;
}
forwok = forw;
if (forw->next) {
forw = MEMNEXT(forw->next);
}
else {
forw = NULL;
}
}
back = (MemHead *)membase->last;
if (back) {
back = MEMNEXT(back);
}
backok = NULL;
while (back) {
if (back->tag1 != MEMTAG1 || back->tag2 != MEMTAG2) {
break;
}
backok = back;
if (back->prev) {
back = MEMNEXT(back->prev);
}
else {
back = NULL;
}
}
if (forw != back) {
return ("MORE THAN 1 MEMORYBLOCK CORRUPT");
}
if (forw == NULL && back == NULL) {
/* no wrong headers found then but in search of memblock */
forw = membase->first;
if (forw) {
forw = MEMNEXT(forw);
}
forwok = NULL;
while (forw) {
if (forw == memh) {
break;
}
if (forw->tag1 != MEMTAG1 || forw->tag2 != MEMTAG2) {
break;
}
forwok = forw;
if (forw->next) {
forw = MEMNEXT(forw->next);
}
else {
forw = NULL;
}
}
if (forw == NULL) {
return NULL;
}
back = (MemHead *)membase->last;
if (back) {
back = MEMNEXT(back);
}
backok = NULL;
while (back) {
if (back == memh) {
break;
}
if (back->tag1 != MEMTAG1 || back->tag2 != MEMTAG2) {
break;
}
backok = back;
if (back->prev) {
back = MEMNEXT(back->prev);
}
else {
back = NULL;
}
}
}
if (forwok) {
name = forwok->nextname;
}
else {
name = "No name found";
}
if (forw == memh) {
/* to be sure but this block is removed from the list */
if (forwok) {
if (backok) {
forwok->next = (MemHead *)&backok->next;
backok->prev = (MemHead *)&forwok->next;
forwok->nextname = backok->name;
}
else {
forwok->next = NULL;
membase->last = (struct localLink *)&forwok->next;
}
}
else {
if (backok) {
backok->prev = NULL;
membase->first = &backok->next;
}
else {
membase->first = membase->last = NULL;
}
}
}
else {
MemorY_ErroR(name, "Additional error in header");
return ("Additional error in header");
}
return (name);
}
size_t MEM_guarded_get_peak_memory(void)
{
size_t _peak_mem;
mem_lock_thread();
_peak_mem = peak_mem;
mem_unlock_thread();
return _peak_mem;
}
void MEM_guarded_reset_peak_memory(void)
{
mem_lock_thread();
peak_mem = mem_in_use;
mem_unlock_thread();
}
size_t MEM_guarded_get_memory_in_use(void)
{
size_t _mem_in_use;
mem_lock_thread();
_mem_in_use = mem_in_use;
mem_unlock_thread();
return _mem_in_use;
}
unsigned int MEM_guarded_get_memory_blocks_in_use(void)
{
unsigned int _totblock;
mem_lock_thread();
_totblock = totblock;
mem_unlock_thread();
return _totblock;
}
#ifndef NDEBUG
const char *MEM_guarded_name_ptr(void *vmemh)
{
if (vmemh) {
MemHead *memh = vmemh;
memh--;
return memh->name;
}
else {
return "MEM_guarded_name_ptr(NULL)";
}
}
#endif /* NDEBUG */