Files
blender/source/blender/python/mathutils/mathutils_Euler.c
2015-02-15 13:46:47 +11:00

802 lines
22 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/python/mathutils/mathutils_Euler.c
* \ingroup pymathutils
*/
#include <Python.h>
#include "mathutils.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "../generic/python_utildefines.h"
#ifndef MATH_STANDALONE
# include "BLI_dynstr.h"
#endif
#define EULER_SIZE 3
/* ----------------------------------mathutils.Euler() ------------------- */
/* makes a new euler for you to play with */
static PyObject *Euler_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *seq = NULL;
const char *order_str = NULL;
float eul[EULER_SIZE] = {0.0f, 0.0f, 0.0f};
short order = EULER_ORDER_XYZ;
if (kwds && PyDict_Size(kwds)) {
PyErr_SetString(PyExc_TypeError,
"mathutils.Euler(): "
"takes no keyword args");
return NULL;
}
if (!PyArg_ParseTuple(args, "|Os:mathutils.Euler", &seq, &order_str))
return NULL;
switch (PyTuple_GET_SIZE(args)) {
case 0:
break;
case 2:
if ((order = euler_order_from_string(order_str, "mathutils.Euler()")) == -1)
return NULL;
/* fall-through */
case 1:
if (mathutils_array_parse(eul, EULER_SIZE, EULER_SIZE, seq, "mathutils.Euler()") == -1)
return NULL;
break;
}
return Euler_CreatePyObject(eul, order, type);
}
/* internal use, assume read callback is done */
static const char *euler_order_str(EulerObject *self)
{
static const char order[][4] = {"XYZ", "XZY", "YXZ", "YZX", "ZXY", "ZYX"};
return order[self->order - EULER_ORDER_XYZ];
}
short euler_order_from_string(const char *str, const char *error_prefix)
{
if ((str[0] && str[1] && str[2] && str[3] == '\0')) {
#ifdef __LITTLE_ENDIAN__
# define MAKE_ID3(a, b, c) (((a)) | ((b) << 8) | ((c) << 16))
#else
# define MAKE_ID3(a, b, c) (((a) << 24) | ((b) << 16) | ((c) << 8))
#endif
switch (*((PY_INT32_T *)str)) {
case MAKE_ID3('X', 'Y', 'Z'): return EULER_ORDER_XYZ;
case MAKE_ID3('X', 'Z', 'Y'): return EULER_ORDER_XZY;
case MAKE_ID3('Y', 'X', 'Z'): return EULER_ORDER_YXZ;
case MAKE_ID3('Y', 'Z', 'X'): return EULER_ORDER_YZX;
case MAKE_ID3('Z', 'X', 'Y'): return EULER_ORDER_ZXY;
case MAKE_ID3('Z', 'Y', 'X'): return EULER_ORDER_ZYX;
}
#undef MAKE_ID3
}
PyErr_Format(PyExc_ValueError,
"%s: invalid euler order '%s'",
error_prefix, str);
return -1;
}
/* note: BaseMath_ReadCallback must be called beforehand */
static PyObject *Euler_ToTupleExt(EulerObject *self, int ndigits)
{
PyObject *ret;
int i;
ret = PyTuple_New(EULER_SIZE);
if (ndigits >= 0) {
for (i = 0; i < EULER_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->eul[i], ndigits)));
}
}
else {
for (i = 0; i < EULER_SIZE; i++) {
PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->eul[i]));
}
}
return ret;
}
/* -----------------------------METHODS----------------------------
* return a quaternion representation of the euler */
PyDoc_STRVAR(Euler_to_quaternion_doc,
".. method:: to_quaternion()\n"
"\n"
" Return a quaternion representation of the euler.\n"
"\n"
" :return: Quaternion representation of the euler.\n"
" :rtype: :class:`Quaternion`\n"
);
static PyObject *Euler_to_quaternion(EulerObject *self)
{
float quat[4];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
eulO_to_quat(quat, self->eul, self->order);
return Quaternion_CreatePyObject(quat, NULL);
}
/* return a matrix representation of the euler */
PyDoc_STRVAR(Euler_to_matrix_doc,
".. method:: to_matrix()\n"
"\n"
" Return a matrix representation of the euler.\n"
"\n"
" :return: A 3x3 roation matrix representation of the euler.\n"
" :rtype: :class:`Matrix`\n"
);
static PyObject *Euler_to_matrix(EulerObject *self)
{
float mat[9];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
eulO_to_mat3((float (*)[3])mat, self->eul, self->order);
return Matrix_CreatePyObject(mat, 3, 3, NULL);
}
PyDoc_STRVAR(Euler_zero_doc,
".. method:: zero()\n"
"\n"
" Set all values to zero.\n"
);
static PyObject *Euler_zero(EulerObject *self)
{
zero_v3(self->eul);
if (BaseMath_WriteCallback(self) == -1)
return NULL;
Py_RETURN_NONE;
}
PyDoc_STRVAR(Euler_rotate_axis_doc,
".. method:: rotate_axis(axis, angle)\n"
"\n"
" Rotates the euler a certain amount and returning a unique euler rotation\n"
" (no 720 degree pitches).\n"
"\n"
" :arg axis: single character in ['X, 'Y', 'Z'].\n"
" :type axis: string\n"
" :arg angle: angle in radians.\n"
" :type angle: float\n"
);
static PyObject *Euler_rotate_axis(EulerObject *self, PyObject *args)
{
float angle = 0.0f;
int axis; /* actually a character */
if (!PyArg_ParseTuple(args, "Cf:rotate_axis", &axis, &angle)) {
PyErr_SetString(PyExc_TypeError,
"Euler.rotate_axis(): "
"expected an axis 'X', 'Y', 'Z' and an angle (float)");
return NULL;
}
if (!(ELEM(axis, 'X', 'Y', 'Z'))) {
PyErr_SetString(PyExc_ValueError,
"Euler.rotate_axis(): "
"expected axis to be 'X', 'Y' or 'Z'");
return NULL;
}
if (BaseMath_ReadCallback(self) == -1)
return NULL;
rotate_eulO(self->eul, self->order, (char)axis, angle);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Euler_rotate_doc,
".. method:: rotate(other)\n"
"\n"
" Rotates the euler by another mathutils value.\n"
"\n"
" :arg other: rotation component of mathutils value\n"
" :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"
);
static PyObject *Euler_rotate(EulerObject *self, PyObject *value)
{
float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_any_to_rotmat(other_rmat, value, "euler.rotate(value)") == -1)
return NULL;
eulO_to_mat3(self_rmat, self->eul, self->order);
mul_m3_m3m3(rmat, other_rmat, self_rmat);
mat3_to_compatible_eulO(self->eul, self->eul, self->order, rmat);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
PyDoc_STRVAR(Euler_make_compatible_doc,
".. method:: make_compatible(other)\n"
"\n"
" Make this euler compatible with another,\n"
" so interpolating between them works as intended.\n"
"\n"
" .. note:: the rotation order is not taken into account for this function.\n"
);
static PyObject *Euler_make_compatible(EulerObject *self, PyObject *value)
{
float teul[EULER_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return NULL;
if (mathutils_array_parse(teul, EULER_SIZE, EULER_SIZE, value,
"euler.make_compatible(other), invalid 'other' arg") == -1)
{
return NULL;
}
compatible_eul(self->eul, teul);
(void)BaseMath_WriteCallback(self);
Py_RETURN_NONE;
}
/* ----------------------------Euler.rotate()-----------------------
* return a copy of the euler */
PyDoc_STRVAR(Euler_copy_doc,
".. function:: copy()\n"
"\n"
" Returns a copy of this euler.\n"
"\n"
" :return: A copy of the euler.\n"
" :rtype: :class:`Euler`\n"
"\n"
" .. note:: use this to get a copy of a wrapped euler with\n"
" no reference to the original data.\n"
);
static PyObject *Euler_copy(EulerObject *self)
{
if (BaseMath_ReadCallback(self) == -1)
return NULL;
return Euler_CreatePyObject(self->eul, self->order, Py_TYPE(self));
}
static PyObject *Euler_deepcopy(EulerObject *self, PyObject *args)
{
if (!mathutils_deepcopy_args_check(args))
return NULL;
return Euler_copy(self);
}
/* ----------------------------print object (internal)--------------
* print the object to screen */
static PyObject *Euler_repr(EulerObject *self)
{
PyObject *ret, *tuple;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
tuple = Euler_ToTupleExt(self, -1);
ret = PyUnicode_FromFormat("Euler(%R, '%s')", tuple, euler_order_str(self));
Py_DECREF(tuple);
return ret;
}
#ifndef MATH_STANDALONE
static PyObject *Euler_str(EulerObject *self)
{
DynStr *ds;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
ds = BLI_dynstr_new();
BLI_dynstr_appendf(ds, "<Euler (x=%.4f, y=%.4f, z=%.4f), order='%s'>",
self->eul[0], self->eul[1], self->eul[2], euler_order_str(self));
return mathutils_dynstr_to_py(ds); /* frees ds */
}
#endif
static PyObject *Euler_richcmpr(PyObject *a, PyObject *b, int op)
{
PyObject *res;
int ok = -1; /* zero is true */
if (EulerObject_Check(a) && EulerObject_Check(b)) {
EulerObject *eulA = (EulerObject *)a;
EulerObject *eulB = (EulerObject *)b;
if (BaseMath_ReadCallback(eulA) == -1 || BaseMath_ReadCallback(eulB) == -1)
return NULL;
ok = ((eulA->order == eulB->order) && EXPP_VectorsAreEqual(eulA->eul, eulB->eul, EULER_SIZE, 1)) ? 0 : -1;
}
switch (op) {
case Py_NE:
ok = !ok;
/* fall-through */
case Py_EQ:
res = ok ? Py_False : Py_True;
break;
case Py_LT:
case Py_LE:
case Py_GT:
case Py_GE:
res = Py_NotImplemented;
break;
default:
PyErr_BadArgument();
return NULL;
}
return Py_INCREF_RET(res);
}
/* ---------------------SEQUENCE PROTOCOLS------------------------ */
/* ----------------------------len(object)------------------------ */
/* sequence length */
static int Euler_len(EulerObject *UNUSED(self))
{
return EULER_SIZE;
}
/* ----------------------------object[]--------------------------- */
/* sequence accessor (get) */
static PyObject *Euler_item(EulerObject *self, int i)
{
if (i < 0) i = EULER_SIZE - i;
if (i < 0 || i >= EULER_SIZE) {
PyErr_SetString(PyExc_IndexError,
"euler[attribute]: "
"array index out of range");
return NULL;
}
if (BaseMath_ReadIndexCallback(self, i) == -1)
return NULL;
return PyFloat_FromDouble(self->eul[i]);
}
/* ----------------------------object[]------------------------- */
/* sequence accessor (set) */
static int Euler_ass_item(EulerObject *self, int i, PyObject *value)
{
float f = PyFloat_AsDouble(value);
if (f == -1 && PyErr_Occurred()) { /* parsed item not a number */
PyErr_SetString(PyExc_TypeError,
"euler[attribute] = x: "
"assigned value not a number");
return -1;
}
if (i < 0) i = EULER_SIZE - i;
if (i < 0 || i >= EULER_SIZE) {
PyErr_SetString(PyExc_IndexError,
"euler[attribute] = x: "
"array assignment index out of range");
return -1;
}
self->eul[i] = f;
if (BaseMath_WriteIndexCallback(self, i) == -1)
return -1;
return 0;
}
/* ----------------------------object[z:y]------------------------ */
/* sequence slice (get) */
static PyObject *Euler_slice(EulerObject *self, int begin, int end)
{
PyObject *tuple;
int count;
if (BaseMath_ReadCallback(self) == -1)
return NULL;
CLAMP(begin, 0, EULER_SIZE);
if (end < 0) end = (EULER_SIZE + 1) + end;
CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin, end);
tuple = PyTuple_New(end - begin);
for (count = begin; count < end; count++) {
PyTuple_SET_ITEM(tuple, count - begin, PyFloat_FromDouble(self->eul[count]));
}
return tuple;
}
/* ----------------------------object[z:y]------------------------ */
/* sequence slice (set) */
static int Euler_ass_slice(EulerObject *self, int begin, int end, PyObject *seq)
{
int i, size;
float eul[EULER_SIZE];
if (BaseMath_ReadCallback(self) == -1)
return -1;
CLAMP(begin, 0, EULER_SIZE);
if (end < 0) end = (EULER_SIZE + 1) + end;
CLAMP(end, 0, EULER_SIZE);
begin = MIN2(begin, end);
if ((size = mathutils_array_parse(eul, 0, EULER_SIZE, seq, "mathutils.Euler[begin:end] = []")) == -1)
return -1;
if (size != (end - begin)) {
PyErr_SetString(PyExc_ValueError,
"euler[begin:end] = []: "
"size mismatch in slice assignment");
return -1;
}
for (i = 0; i < EULER_SIZE; i++)
self->eul[begin + i] = eul[i];
(void)BaseMath_WriteCallback(self);
return 0;
}
static PyObject *Euler_subscript(EulerObject *self, PyObject *item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += EULER_SIZE;
return Euler_item(self, i);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyTuple_New(0);
}
else if (step == 1) {
return Euler_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with eulers");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"euler indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return NULL;
}
}
static int Euler_ass_subscript(EulerObject *self, PyObject *item, PyObject *value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += EULER_SIZE;
return Euler_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx(item, EULER_SIZE, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Euler_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_IndexError,
"slice steps not supported with euler");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"euler indices must be integers, not %.200s",
Py_TYPE(item)->tp_name);
return -1;
}
}
/* -----------------PROTCOL DECLARATIONS-------------------------- */
static PySequenceMethods Euler_SeqMethods = {
(lenfunc) Euler_len, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(ssizeargfunc) NULL, /* sq_repeat */
(ssizeargfunc) Euler_item, /* sq_item */
(ssizessizeargfunc) NULL, /* sq_slice, deprecated */
(ssizeobjargproc) Euler_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) NULL, /* sq_ass_slice, deprecated */
(objobjproc) NULL, /* sq_contains */
(binaryfunc) NULL, /* sq_inplace_concat */
(ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyMappingMethods Euler_AsMapping = {
(lenfunc)Euler_len,
(binaryfunc)Euler_subscript,
(objobjargproc)Euler_ass_subscript
};
/* euler axis, euler.x/y/z */
PyDoc_STRVAR(Euler_axis_doc,
"Euler axis angle in radians.\n\n:type: float"
);
static PyObject *Euler_axis_get(EulerObject *self, void *type)
{
return Euler_item(self, GET_INT_FROM_POINTER(type));
}
static int Euler_axis_set(EulerObject *self, PyObject *value, void *type)
{
return Euler_ass_item(self, GET_INT_FROM_POINTER(type), value);
}
/* rotation order */
PyDoc_STRVAR(Euler_order_doc,
"Euler rotation order.\n\n:type: string in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX']"
);
static PyObject *Euler_order_get(EulerObject *self, void *UNUSED(closure))
{
if (BaseMath_ReadCallback(self) == -1) /* can read order too */
return NULL;
return PyUnicode_FromString(euler_order_str(self));
}
static int Euler_order_set(EulerObject *self, PyObject *value, void *UNUSED(closure))
{
const char *order_str;
short order;
if (((order_str = _PyUnicode_AsString(value)) == NULL) ||
((order = euler_order_from_string(order_str, "euler.order")) == -1))
{
return -1;
}
self->order = order;
(void)BaseMath_WriteCallback(self); /* order can be written back */
return 0;
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Euler_getseters[] = {
{(char *)"x", (getter)Euler_axis_get, (setter)Euler_axis_set, Euler_axis_doc, (void *)0},
{(char *)"y", (getter)Euler_axis_get, (setter)Euler_axis_set, Euler_axis_doc, (void *)1},
{(char *)"z", (getter)Euler_axis_get, (setter)Euler_axis_set, Euler_axis_doc, (void *)2},
{(char *)"order", (getter)Euler_order_get, (setter)Euler_order_set, Euler_order_doc, (void *)NULL},
{(char *)"is_wrapped", (getter)BaseMathObject_is_wrapped_get, (setter)NULL, BaseMathObject_is_wrapped_doc, NULL},
{(char *)"owner", (getter)BaseMathObject_owner_get, (setter)NULL, BaseMathObject_owner_doc, NULL},
{NULL, NULL, NULL, NULL, NULL} /* Sentinel */
};
/* -----------------------METHOD DEFINITIONS ---------------------- */
static struct PyMethodDef Euler_methods[] = {
{"zero", (PyCFunction) Euler_zero, METH_NOARGS, Euler_zero_doc},
{"to_matrix", (PyCFunction) Euler_to_matrix, METH_NOARGS, Euler_to_matrix_doc},
{"to_quaternion", (PyCFunction) Euler_to_quaternion, METH_NOARGS, Euler_to_quaternion_doc},
{"rotate_axis", (PyCFunction) Euler_rotate_axis, METH_VARARGS, Euler_rotate_axis_doc},
{"rotate", (PyCFunction) Euler_rotate, METH_O, Euler_rotate_doc},
{"make_compatible", (PyCFunction) Euler_make_compatible, METH_O, Euler_make_compatible_doc},
{"copy", (PyCFunction) Euler_copy, METH_NOARGS, Euler_copy_doc},
{"__copy__", (PyCFunction) Euler_copy, METH_NOARGS, Euler_copy_doc},
{"__deepcopy__", (PyCFunction) Euler_deepcopy, METH_VARARGS, Euler_copy_doc},
{NULL, NULL, 0, NULL}
};
/* ------------------PY_OBECT DEFINITION-------------------------- */
PyDoc_STRVAR(euler_doc,
".. class:: Euler(angles, order='XYZ')\n"
"\n"
" This object gives access to Eulers in Blender.\n"
"\n"
" :param angles: Three angles, in radians.\n"
" :type angles: 3d vector\n"
" :param order: Optional order of the angles, a permutation of ``XYZ``.\n"
" :type order: str\n"
);
PyTypeObject euler_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"Euler", /* tp_name */
sizeof(EulerObject), /* tp_basicsize */
0, /* tp_itemsize */
(destructor)BaseMathObject_dealloc, /* tp_dealloc */
NULL, /* tp_print */
NULL, /* tp_getattr */
NULL, /* tp_setattr */
NULL, /* tp_compare */
(reprfunc) Euler_repr, /* tp_repr */
NULL, /* tp_as_number */
&Euler_SeqMethods, /* tp_as_sequence */
&Euler_AsMapping, /* tp_as_mapping */
NULL, /* tp_hash */
NULL, /* tp_call */
#ifndef MATH_STANDALONE
(reprfunc) Euler_str, /* tp_str */
#else
NULL, /* tp_str */
#endif
NULL, /* tp_getattro */
NULL, /* tp_setattro */
NULL, /* tp_as_buffer */
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /* tp_flags */
euler_doc, /* tp_doc */
(traverseproc)BaseMathObject_traverse, /* tp_traverse */
(inquiry)BaseMathObject_clear, /* tp_clear */
(richcmpfunc)Euler_richcmpr, /* tp_richcompare */
0, /* tp_weaklistoffset */
NULL, /* tp_iter */
NULL, /* tp_iternext */
Euler_methods, /* tp_methods */
NULL, /* tp_members */
Euler_getseters, /* tp_getset */
NULL, /* tp_base */
NULL, /* tp_dict */
NULL, /* tp_descr_get */
NULL, /* tp_descr_set */
0, /* tp_dictoffset */
NULL, /* tp_init */
NULL, /* tp_alloc */
Euler_new, /* tp_new */
NULL, /* tp_free */
NULL, /* tp_is_gc */
NULL, /* tp_bases */
NULL, /* tp_mro */
NULL, /* tp_cache */
NULL, /* tp_subclasses */
NULL, /* tp_weaklist */
NULL /* tp_del */
};
PyObject *Euler_CreatePyObject(
const float eul[3], const short order,
PyTypeObject *base_type)
{
EulerObject *self;
float *eul_alloc;
eul_alloc = PyMem_Malloc(EULER_SIZE * sizeof(float));
if (UNLIKELY(eul_alloc == NULL)) {
PyErr_SetString(PyExc_MemoryError,
"Euler(): "
"problem allocating data");
return NULL;
}
self = BASE_MATH_NEW(EulerObject, euler_Type, base_type);
if (self) {
self->eul = eul_alloc;
/* init callbacks as NULL */
self->cb_user = NULL;
self->cb_type = self->cb_subtype = 0;
if (eul) {
copy_v3_v3(self->eul, eul);
}
else {
zero_v3(self->eul);
}
self->flag = BASE_MATH_FLAG_DEFAULT;
self->order = order;
}
else {
PyMem_Free(eul_alloc);
}
return (PyObject *)self;
}
PyObject *Euler_CreatePyObject_wrap(
float eul[3], const short order,
PyTypeObject *base_type)
{
EulerObject *self;
self = BASE_MATH_NEW(EulerObject, euler_Type, base_type);
if (self) {
/* init callbacks as NULL */
self->cb_user = NULL;
self->cb_type = self->cb_subtype = 0;
self->eul = eul;
self->flag = BASE_MATH_FLAG_DEFAULT | BASE_MATH_FLAG_IS_WRAP;
self->order = order;
}
return (PyObject *)self;
}
PyObject *Euler_CreatePyObject_cb(
PyObject *cb_user, const short order,
unsigned char cb_type, unsigned char cb_subtype)
{
EulerObject *self = (EulerObject *)Euler_CreatePyObject(NULL, order, NULL);
if (self) {
Py_INCREF(cb_user);
self->cb_user = cb_user;
self->cb_type = cb_type;
self->cb_subtype = cb_subtype;
PyObject_GC_Track(self);
}
return (PyObject *)self;
}