Files
blender/extern/libmv/third_party/ssba/Math/v3d_linear_utils.h
Sergey Sharybin 27d42c63d9 Camera tracking integration
===========================

Commiting camera tracking integration gsoc project into trunk.

This commit includes:

- Bundled version of libmv library (with some changes against official repo,
  re-sync with libmv repo a bit later)
- New datatype ID called MovieClip which is optimized to work with movie
  clips (both of movie files and image sequences) and doing camera/motion
  tracking operations.
- New editor called Clip Editor which is currently used for motion/tracking
  stuff only, but which can be easily extended to work with masks too.

  This editor supports:
  * Loading movie files/image sequences
  * Build proxies with different size for loaded movie clip, also supports
    building undistorted proxies to increase speed of playback in
    undistorted mode.
  * Manual lens distortion mode calibration using grid and grease pencil
  * Supervised 2D tracking using two different algorithms KLT and SAD.
  * Basic algorithm for feature detection
  * Camera motion solving. scene orientation

- New constraints to "link" scene objects with solved motions from clip:

  * Follow Track (make object follow 2D motion of track with given name
    or parent object to reconstructed 3D position of track)
  * Camera Solver to make camera moving in the same way as reconstructed camera

This commit NOT includes changes from tomato branch:

- New nodes (they'll be commited as separated patch)
- Automatic image offset guessing for image input node and image editor
  (need to do more tests and gather more feedback)
- Code cleanup in libmv-capi. It's not so critical cleanup, just increasing
  readability and understanadability of code. Better to make this chaneg when
  Keir will finish his current patch.

More details about this project can be found on this page:
    http://wiki.blender.org/index.php/User:Nazg-gul/GSoC-2011

Further development of small features would be done in trunk, bigger/experimental
features would first be implemented in tomato branch.
2011-11-07 12:55:18 +00:00

392 lines
11 KiB
C++

// -*- C++ -*-
/*
Copyright (c) 2008 University of North Carolina at Chapel Hill
This file is part of SSBA (Simple Sparse Bundle Adjustment).
SSBA is free software: you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at your option) any
later version.
SSBA is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details.
You should have received a copy of the GNU Lesser General Public License along
with SSBA. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef V3D_LINEAR_UTILS_H
#define V3D_LINEAR_UTILS_H
#include "Math/v3d_linear.h"
#include <iostream>
namespace V3D
{
template <typename Elem, int Size>
struct InlineVector : public InlineVectorBase<Elem, Size>
{
}; // end struct InlineVector
template <typename Elem>
struct Vector : public VectorBase<Elem>
{
Vector()
: VectorBase<Elem>()
{ }
Vector(unsigned int size)
: VectorBase<Elem>(size)
{ }
Vector(unsigned int size, Elem * values)
: VectorBase<Elem>(size, values)
{ }
Vector(Vector<Elem> const& a)
: VectorBase<Elem>(a)
{ }
Vector<Elem>& operator=(Vector<Elem> const& a)
{
(VectorBase<Elem>::operator=)(a);
return *this;
}
Vector<Elem>& operator+=(Vector<Elem> const& rhs)
{
addVectorsIP(rhs, *this);
return *this;
}
Vector<Elem>& operator*=(Elem scale)
{
scaleVectorsIP(scale, *this);
return *this;
}
Vector<Elem> operator+(Vector<Elem> const& rhs) const
{
Vector<Elem> res(this->size());
addVectors(*this, rhs, res);
return res;
}
Vector<Elem> operator-(Vector<Elem> const& rhs) const
{
Vector<Elem> res(this->size());
subtractVectors(*this, rhs, res);
return res;
}
Elem operator*(Vector<Elem> const& rhs) const
{
return innerProduct(*this, rhs);
}
}; // end struct Vector
template <typename Elem, int Rows, int Cols>
struct InlineMatrix : public InlineMatrixBase<Elem, Rows, Cols>
{
}; // end struct InlineMatrix
template <typename Elem>
struct Matrix : public MatrixBase<Elem>
{
Matrix()
: MatrixBase<Elem>()
{ }
Matrix(unsigned int rows, unsigned int cols)
: MatrixBase<Elem>(rows, cols)
{ }
Matrix(unsigned int rows, unsigned int cols, Elem * values)
: MatrixBase<Elem>(rows, cols, values)
{ }
Matrix(Matrix<Elem> const& a)
: MatrixBase<Elem>(a)
{ }
Matrix<Elem>& operator=(Matrix<Elem> const& a)
{
(MatrixBase<Elem>::operator=)(a);
return *this;
}
Matrix<Elem>& operator+=(Matrix<Elem> const& rhs)
{
addMatricesIP(rhs, *this);
return *this;
}
Matrix<Elem>& operator*=(Elem scale)
{
scaleMatrixIP(scale, *this);
return *this;
}
Matrix<Elem> operator+(Matrix<Elem> const& rhs) const
{
Matrix<Elem> res(this->num_rows(), this->num_cols());
addMatrices(*this, rhs, res);
return res;
}
Matrix<Elem> operator-(Matrix<Elem> const& rhs) const
{
Matrix<Elem> res(this->num_rows(), this->num_cols());
subtractMatrices(*this, rhs, res);
return res;
}
}; // end struct Matrix
//----------------------------------------------------------------------
typedef InlineVector<float, 2> Vector2f;
typedef InlineVector<double, 2> Vector2d;
typedef InlineVector<float, 3> Vector3f;
typedef InlineVector<double, 3> Vector3d;
typedef InlineVector<float, 4> Vector4f;
typedef InlineVector<double, 4> Vector4d;
typedef InlineMatrix<float, 2, 2> Matrix2x2f;
typedef InlineMatrix<double, 2, 2> Matrix2x2d;
typedef InlineMatrix<float, 3, 3> Matrix3x3f;
typedef InlineMatrix<double, 3, 3> Matrix3x3d;
typedef InlineMatrix<float, 4, 4> Matrix4x4f;
typedef InlineMatrix<double, 4, 4> Matrix4x4d;
typedef InlineMatrix<float, 2, 3> Matrix2x3f;
typedef InlineMatrix<double, 2, 3> Matrix2x3d;
typedef InlineMatrix<float, 3, 4> Matrix3x4f;
typedef InlineMatrix<double, 3, 4> Matrix3x4d;
template <typename Elem>
struct VectorArray
{
VectorArray(unsigned count, unsigned size)
: _count(count), _size(size), _values(0), _vectors(0)
{
unsigned const nTotal = _count * _size;
if (count > 0) _vectors = new Vector<Elem>[count];
if (nTotal > 0) _values = new Elem[nTotal];
for (unsigned i = 0; i < _count; ++i) new (&_vectors[i]) Vector<Elem>(_size, _values + i*_size);
}
VectorArray(unsigned count, unsigned size, Elem initVal)
: _count(count), _size(size), _values(0), _vectors(0)
{
unsigned const nTotal = _count * _size;
if (count > 0) _vectors = new Vector<Elem>[count];
if (nTotal > 0) _values = new Elem[nTotal];
for (unsigned i = 0; i < _count; ++i) new (&_vectors[i]) Vector<Elem>(_size, _values + i*_size);
std::fill(_values, _values + nTotal, initVal);
}
~VectorArray()
{
delete [] _values;
delete [] _vectors;
}
unsigned count() const { return _count; }
unsigned size() const { return _size; }
//! Get the submatrix at position ix
Vector<Elem> const& operator[](unsigned ix) const
{
return _vectors[ix];
}
//! Get the submatrix at position ix
Vector<Elem>& operator[](unsigned ix)
{
return _vectors[ix];
}
protected:
unsigned _count, _size;
Elem * _values;
Vector<Elem> * _vectors;
private:
VectorArray(VectorArray const&);
void operator=(VectorArray const&);
};
template <typename Elem>
struct MatrixArray
{
MatrixArray(unsigned count, unsigned nRows, unsigned nCols)
: _count(count), _rows(nRows), _columns(nCols), _values(0), _matrices(0)
{
unsigned const nTotal = _count * _rows * _columns;
if (count > 0) _matrices = new Matrix<Elem>[count];
if (nTotal > 0) _values = new double[nTotal];
for (unsigned i = 0; i < _count; ++i)
new (&_matrices[i]) Matrix<Elem>(_rows, _columns, _values + i*(_rows*_columns));
}
~MatrixArray()
{
delete [] _matrices;
delete [] _values;
}
//! Get the submatrix at position ix
Matrix<Elem> const& operator[](unsigned ix) const
{
return _matrices[ix];
}
//! Get the submatrix at position ix
Matrix<Elem>& operator[](unsigned ix)
{
return _matrices[ix];
}
unsigned count() const { return _count; }
unsigned num_rows() const { return _rows; }
unsigned num_cols() const { return _columns; }
protected:
unsigned _count, _rows, _columns;
double * _values;
Matrix<Elem> * _matrices;
private:
MatrixArray(MatrixArray const&);
void operator=(MatrixArray const&);
};
//----------------------------------------------------------------------
template <typename Elem, int Size>
inline InlineVector<Elem, Size>
operator+(InlineVector<Elem, Size> const& v, InlineVector<Elem, Size> const& w)
{
InlineVector<Elem, Size> res;
addVectors(v, w, res);
return res;
}
template <typename Elem, int Size>
inline InlineVector<Elem, Size>
operator-(InlineVector<Elem, Size> const& v, InlineVector<Elem, Size> const& w)
{
InlineVector<Elem, Size> res;
subtractVectors(v, w, res);
return res;
}
template <typename Elem, int Size>
inline InlineVector<Elem, Size>
operator*(Elem scale, InlineVector<Elem, Size> const& v)
{
InlineVector<Elem, Size> res;
scaleVector(scale, v, res);
return res;
}
template <typename Elem, int Rows, int Cols>
inline InlineVector<Elem, Rows>
operator*(InlineMatrix<Elem, Rows, Cols> const& A, InlineVector<Elem, Cols> const& v)
{
InlineVector<Elem, Rows> res;
multiply_A_v(A, v, res);
return res;
}
template <typename Elem, int RowsA, int ColsA, int ColsB>
inline InlineMatrix<Elem, RowsA, ColsB>
operator*(InlineMatrix<Elem, RowsA, ColsA> const& A, InlineMatrix<Elem, ColsA, ColsB> const& B)
{
InlineMatrix<Elem, RowsA, ColsB> res;
multiply_A_B(A, B, res);
return res;
}
template <typename Elem, int Rows, int Cols>
inline InlineMatrix<Elem, Cols, Rows>
transposedMatrix(InlineMatrix<Elem, Rows, Cols> const& A)
{
InlineMatrix<Elem, Cols, Rows> At;
makeTransposedMatrix(A, At);
return At;
}
template <typename Elem>
inline InlineMatrix<Elem, 3, 3>
invertedMatrix(InlineMatrix<Elem, 3, 3> const& A)
{
Elem a = A[0][0], b = A[0][1], c = A[0][2];
Elem d = A[1][0], e = A[1][1], f = A[1][2];
Elem g = A[2][0], h = A[2][1], i = A[2][2];
Elem const det = a*e*i + b*f*g + c*d*h - c*e*g - b*d*i - a*f*h;
InlineMatrix<Elem, 3, 3> res;
res[0][0] = e*i-f*h; res[0][1] = c*h-b*i; res[0][2] = b*f-c*e;
res[1][0] = f*g-d*i; res[1][1] = a*i-c*g; res[1][2] = c*d-a*f;
res[2][0] = d*h-e*g; res[2][1] = b*g-a*h; res[2][2] = a*e-b*d;
scaleMatrixIP(1.0/det, res);
return res;
}
template <typename Elem>
inline InlineVector<Elem, 2>
makeVector2(Elem a, Elem b)
{
InlineVector<Elem, 2> res;
res[0] = a; res[1] = b;
return res;
}
template <typename Elem>
inline InlineVector<Elem, 3>
makeVector3(Elem a, Elem b, Elem c)
{
InlineVector<Elem, 3> res;
res[0] = a; res[1] = b; res[2] = c;
return res;
}
template <typename Vec>
inline void
displayVector(Vec const& v)
{
using namespace std;
for (int r = 0; r < v.size(); ++r)
cout << v[r] << " ";
cout << endl;
}
template <typename Mat>
inline void
displayMatrix(Mat const& A)
{
using namespace std;
for (int r = 0; r < A.num_rows(); ++r)
{
for (int c = 0; c < A.num_cols(); ++c)
cout << A[r][c] << " ";
cout << endl;
}
}
} // end namespace V3D
#endif