Files
blender/intern/cycles/kernel/split/kernel_background_buffer_update.h
Sergey Sharybin 2c503d8303 Cycles: Restructure kernel files organization
Since the kernel split work we're now having quite a few of new files, majority
of which are related on the kernel entry points. Keeping those files in the
root kernel folder will eventually make it really hard to follow which files are
actual implementation of Cycles kernel.

Those files are now moved to kernel/kernels/<device_type>. This way adding extra
entry points will be less noisy. It is also nice to have all device-specific
files grouped together.

Another change is in the way how split kernel invokes logic. Previously all the
logic was implemented directly in the .cl files, which makes it a bit tricky to
re-use the logic across other devices. Since we'll likely be looking into doing
same split work for CUDA devices eventually it makes sense to move logic from
.cl files to header files. Those files are stored in kernel/split. This does not
mean the header files will not give error messages when tried to be included
from other devices and their arguments will likely be changed, but having such
separation is a good start anyway.

There should be no functional changes.

Reviewers: juicyfruit, dingto

Differential Revision: https://developer.blender.org/D1314
2015-05-22 16:31:34 +05:00

283 lines
13 KiB
C

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "kernel_split_common.h"
/*
* Note on kernel_background_buffer_update kernel.
* This is the fourth kernel in the ray tracing logic, and the third
* of the path iteration kernels. This kernel takes care of rays that hit
* the background (sceneintersect kernel), and for the rays of
* state RAY_UPDATE_BUFFER it updates the ray's accumulated radiance in
* the output buffer. This kernel also takes care of rays that have been determined
* to-be-regenerated.
*
* We will empty QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue in this kernel
*
* Typically all rays that are in state RAY_HIT_BACKGROUND, RAY_UPDATE_BUFFER
* will be eventually set to RAY_TO_REGENERATE state in this kernel. Finally all rays of ray_state
* RAY_TO_REGENERATE will be regenerated and put in queue QUEUE_ACTIVE_AND_REGENERATED_RAYS.
*
* The input and output are as follows,
*
* rng_coop ---------------------------------------------|--- kernel_background_buffer_update --|--- PathRadiance_coop
* throughput_coop --------------------------------------| |--- L_transparent_coop
* per_sample_output_buffers ----------------------------| |--- per_sample_output_buffers
* Ray_coop ---------------------------------------------| |--- ray_state
* PathState_coop ---------------------------------------| |--- Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
* L_transparent_coop -----------------------------------| |--- Queue_data (QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* ray_state --------------------------------------------| |--- Queue_index (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS)
* Queue_data (QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS) ----| |--- Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS)
* Queue_index (QUEUE_ACTIVE_AND_REGENERATED_RAYS) ------| |--- work_array
* parallel_samples -------------------------------------| |--- PathState_coop
* end_sample -------------------------------------------| |--- throughput_coop
* kg (globals + data) ----------------------------------| |--- rng_coop
* rng_state --------------------------------------------| |--- Ray
* PathRadiance_coop ------------------------------------| |
* sw ---------------------------------------------------| |
* sh ---------------------------------------------------| |
* sx ---------------------------------------------------| |
* sy ---------------------------------------------------| |
* stride -----------------------------------------------| |
* work_array -------------------------------------------| |--- work_array
* queuesize --------------------------------------------| |
* start_sample -----------------------------------------| |--- work_pool_wgs
* work_pool_wgs ----------------------------------------| |
* num_samples ------------------------------------------| |
*
* note on shader_data : shader_data argument is neither an input nor an output for this kernel. It is just filled and consumed here itself.
* Note on Queues :
* This kernel fetches rays from QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue.
*
* State of queues when this kernel is called :
* At entry,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE rays
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with RAY_UPDATE_BUFFER, RAY_HIT_BACKGROUND, RAY_TO_REGENERATE rays
* At exit,
* QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE and RAY_REGENERATED rays
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be empty
*/
ccl_device void kernel_background_buffer_update(
ccl_global char *globals,
ccl_constant KernelData *data,
ccl_global char *shader_data,
ccl_global float *per_sample_output_buffers,
ccl_global uint *rng_state,
ccl_global uint *rng_coop, /* Required for buffer Update */
ccl_global float3 *throughput_coop, /* Required for background hit processing */
PathRadiance *PathRadiance_coop, /* Required for background hit processing and buffer Update */
ccl_global Ray *Ray_coop, /* Required for background hit processing */
ccl_global PathState *PathState_coop, /* Required for background hit processing */
ccl_global float *L_transparent_coop, /* Required for background hit processing and buffer Update */
ccl_global char *ray_state, /* Stores information on the current state of a ray */
int sw, int sh, int sx, int sy, int stride,
int rng_state_offset_x,
int rng_state_offset_y,
int rng_state_stride,
ccl_global unsigned int *work_array, /* Denotes work of each ray */
ccl_global int *Queue_data, /* Queues memory */
ccl_global int *Queue_index, /* Tracks the number of elements in each queue */
int queuesize, /* Size (capacity) of each queue */
int end_sample,
int start_sample,
#ifdef __WORK_STEALING__
ccl_global unsigned int *work_pool_wgs,
unsigned int num_samples,
#endif
#ifdef __KERNEL_DEBUG__
DebugData *debugdata_coop,
#endif
int parallel_samples /* Number of samples to be processed in parallel */
)
{
ccl_local unsigned int local_queue_atomics;
if(get_local_id(0) == 0 && get_local_id(1) == 0) {
local_queue_atomics = 0;
}
barrier(CLK_LOCAL_MEM_FENCE);
int ray_index = get_global_id(1) * get_global_size(0) + get_global_id(0);
if(ray_index == 0) {
/* We will empty this queue in this kernel */
Queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
}
char enqueue_flag = 0;
ray_index = get_ray_index(ray_index, QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS, Queue_data, queuesize, 1);
#ifdef __COMPUTE_DEVICE_GPU__
/* If we are executing on a GPU device, we exit all threads that are not required.
* If we are executing on a CPU device, then we need to keep all threads active
* since we have barrier() calls later in the kernel. CPU devices
* expect all threads to execute barrier statement.
*/
if(ray_index == QUEUE_EMPTY_SLOT)
return;
#endif
#ifndef __COMPUTE_DEVICE_GPU__
if(ray_index != QUEUE_EMPTY_SLOT) {
#endif
/* Load kernel globals structure and ShaderData strucuture */
KernelGlobals *kg = (KernelGlobals *)globals;
ShaderData *sd = (ShaderData *)shader_data;
#ifdef __KERNEL_DEBUG__
DebugData *debug_data = &debugdata_coop[ray_index];
#endif
ccl_global PathState *state = &PathState_coop[ray_index];
PathRadiance *L = L = &PathRadiance_coop[ray_index];
ccl_global Ray *ray = &Ray_coop[ray_index];
ccl_global float3 *throughput = &throughput_coop[ray_index];
ccl_global float *L_transparent = &L_transparent_coop[ray_index];
ccl_global uint *rng = &rng_coop[ray_index];
#ifdef __WORK_STEALING__
unsigned int my_work;
ccl_global float *initial_per_sample_output_buffers;
ccl_global uint *initial_rng;
#endif
unsigned int sample;
unsigned int tile_x;
unsigned int tile_y;
unsigned int pixel_x;
unsigned int pixel_y;
unsigned int my_sample_tile;
#ifdef __WORK_STEALING__
my_work = work_array[ray_index];
sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
get_pixel_tile_position(&pixel_x, &pixel_y, &tile_x, &tile_y, my_work, sw, sh, sx, sy, parallel_samples, ray_index);
my_sample_tile = 0;
initial_per_sample_output_buffers = per_sample_output_buffers;
initial_rng = rng_state;
#else // __WORK_STEALING__
sample = work_array[ray_index];
int tile_index = ray_index / parallel_samples;
/* buffer and rng_state's stride is "stride". Find x and y using ray_index */
tile_x = tile_index % sw;
tile_y = tile_index / sw;
my_sample_tile = ray_index - (tile_index * parallel_samples);
#endif
rng_state += (rng_state_offset_x + tile_x) + (rng_state_offset_y + tile_y) * rng_state_stride;
per_sample_output_buffers += (((tile_x + (tile_y * stride)) * parallel_samples) + my_sample_tile) * kernel_data.film.pass_stride;
if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
/* eval background shader if nothing hit */
if(kernel_data.background.transparent && (state->flag & PATH_RAY_CAMERA)) {
*L_transparent = (*L_transparent) + average((*throughput));
#ifdef __PASSES__
if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
#endif
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
}
if(IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND))
{
#ifdef __BACKGROUND__
/* sample background shader */
float3 L_background = indirect_background(kg, state, ray, sd);
path_radiance_accum_background(L, (*throughput), L_background, state->bounce);
#endif
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER);
}
}
if(IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER)) {
float3 L_sum = path_radiance_clamp_and_sum(kg, L);
kernel_write_light_passes(kg, per_sample_output_buffers, L, sample);
#ifdef __KERNEL_DEBUG__
kernel_write_debug_passes(kg, per_sample_output_buffers, state, debug_data, sample);
#endif
float4 L_rad = make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - (*L_transparent));
/* accumulate result in output buffer */
kernel_write_pass_float4(per_sample_output_buffers, sample, L_rad);
path_rng_end(kg, rng_state, *rng);
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
}
if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
#ifdef __WORK_STEALING__
/* We have completed current work; So get next work */
int valid_work = get_next_work(work_pool_wgs, &my_work, sw, sh, num_samples, parallel_samples, ray_index);
if(!valid_work) {
/* If work is invalid, this means no more work is available and the thread may exit */
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
}
#else
if((sample + parallel_samples) >= end_sample) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_INACTIVE);
}
#endif
if(IS_STATE(ray_state, ray_index, RAY_TO_REGENERATE)) {
#ifdef __WORK_STEALING__
work_array[ray_index] = my_work;
/* Get the sample associated with the current work */
sample = get_my_sample(my_work, sw, sh, parallel_samples, ray_index) + start_sample;
/* Get pixel and tile position associated with current work */
get_pixel_tile_position(&pixel_x, &pixel_y, &tile_x, &tile_y, my_work, sw, sh, sx, sy, parallel_samples, ray_index);
my_sample_tile = 0;
/* Remap rng_state according to the current work */
rng_state = initial_rng + ((rng_state_offset_x + tile_x) + (rng_state_offset_y + tile_y) * rng_state_stride);
/* Remap per_sample_output_buffers according to the current work */
per_sample_output_buffers = initial_per_sample_output_buffers
+ (((tile_x + (tile_y * stride)) * parallel_samples) + my_sample_tile) * kernel_data.film.pass_stride;
#else
work_array[ray_index] = sample + parallel_samples;
sample = work_array[ray_index];
/* Get ray position from ray index */
pixel_x = sx + ((ray_index / parallel_samples) % sw);
pixel_y = sy + ((ray_index / parallel_samples) / sw);
#endif
/* initialize random numbers and ray */
kernel_path_trace_setup(kg, rng_state, sample, pixel_x, pixel_y, rng, ray);
if(ray->t != 0.0f) {
/* Initialize throughput, L_transparent, Ray, PathState; These rays proceed with path-iteration*/
*throughput = make_float3(1.0f, 1.0f, 1.0f);
*L_transparent = 0.0f;
path_radiance_init(L, kernel_data.film.use_light_pass);
path_state_init(kg, state, rng, sample, ray);
#ifdef __KERNEL_DEBUG__
debug_data_init(debug_data);
#endif
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
enqueue_flag = 1;
} else {
/*These rays do not participate in path-iteration */
float4 L_rad = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
/* accumulate result in output buffer */
kernel_write_pass_float4(per_sample_output_buffers, sample, L_rad);
path_rng_end(kg, rng_state, *rng);
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_TO_REGENERATE);
}
}
}
#ifndef __COMPUTE_DEVICE_GPU__
}
#endif
/* Enqueue RAY_REGENERATED rays into QUEUE_ACTIVE_AND_REGENERATED_RAYS; These rays
* will be made active during next SceneIntersectkernel
*/
enqueue_ray_index_local(ray_index, QUEUE_ACTIVE_AND_REGENERATED_RAYS, enqueue_flag, queuesize, &local_queue_atomics, Queue_data, Queue_index);
}