Files
blender/intern/cycles/kernel/kernel_passes.h
Lukas Stockner 43b374e8c5 Cycles: Implement denoising option for reducing noise in the rendered image
This commit contains the first part of the new Cycles denoising option,
which filters the resulting image using information gathered during rendering
to get rid of noise while preserving visual features as well as possible.

To use the option, enable it in the render layer options. The default settings
fit a wide range of scenes, but the user can tweak individual settings to
control the tradeoff between a noise-free image, image details, and calculation
time.

Note that the denoiser may still change in the future and that some features
are not implemented yet. The most important missing feature is animation
denoising, which uses information from multiple frames at once to produce a
flicker-free and smoother result. These features will be added in the future.

Finally, thanks to all the people who supported this project:

- Google (through the GSoC) and Theory Studios for sponsoring the development
- The authors of the papers I used for implementing the denoiser (more details
  on them will be included in the technical docs)
- The other Cycles devs for feedback on the code, especially Sergey for
  mentoring the GSoC project and Brecht for the code review!
- And of course the users who helped with testing, reported bugs and things
  that could and/or should work better!
2017-05-07 14:40:58 +02:00

407 lines
15 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, int sample, float value)
{
ccl_global float *buf = buffer;
#if defined(__SPLIT_KERNEL__)
atomic_add_and_fetch_float(buf, value);
#else
*buf = (sample == 0)? value: *buf + value;
#endif /* __SPLIT_KERNEL__ */
}
ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, int sample, float3 value)
{
#if defined(__SPLIT_KERNEL__)
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
atomic_add_and_fetch_float(buf_x, value.x);
atomic_add_and_fetch_float(buf_y, value.y);
atomic_add_and_fetch_float(buf_z, value.z);
#else
ccl_global float3 *buf = (ccl_global float3*)buffer;
*buf = (sample == 0)? value: *buf + value;
#endif /* __SPLIT_KERNEL__ */
}
ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, int sample, float4 value)
{
#if defined(__SPLIT_KERNEL__)
ccl_global float *buf_x = buffer + 0;
ccl_global float *buf_y = buffer + 1;
ccl_global float *buf_z = buffer + 2;
ccl_global float *buf_w = buffer + 3;
atomic_add_and_fetch_float(buf_x, value.x);
atomic_add_and_fetch_float(buf_y, value.y);
atomic_add_and_fetch_float(buf_z, value.z);
atomic_add_and_fetch_float(buf_w, value.w);
#else
ccl_global float4 *buf = (ccl_global float4*)buffer;
*buf = (sample == 0)? value: *buf + value;
#endif /* __SPLIT_KERNEL__ */
}
#ifdef __DENOISING_FEATURES__
ccl_device_inline void kernel_write_pass_float_variance(ccl_global float *buffer, int sample, float value)
{
kernel_write_pass_float(buffer, sample, value);
/* The online one-pass variance update that's used for the megakernel can't easily be implemented
* with atomics, so for the split kernel the E[x^2] - 1/N * (E[x])^2 fallback is used. */
# ifdef __SPLIT_KERNEL__
kernel_write_pass_float(buffer+1, sample, value*value);
# else
if(sample == 0) {
kernel_write_pass_float(buffer+1, sample, 0.0f);
}
else {
float new_mean = buffer[0] * (1.0f / (sample + 1));
float old_mean = (buffer[0] - value) * (1.0f / sample);
kernel_write_pass_float(buffer+1, sample, (value - new_mean) * (value - old_mean));
}
# endif
}
# if defined(__SPLIT_KERNEL__)
# define kernel_write_pass_float3_unaligned kernel_write_pass_float3
# else
ccl_device_inline void kernel_write_pass_float3_unaligned(ccl_global float *buffer, int sample, float3 value)
{
buffer[0] = (sample == 0)? value.x: buffer[0] + value.x;
buffer[1] = (sample == 0)? value.y: buffer[1] + value.y;
buffer[2] = (sample == 0)? value.z: buffer[2] + value.z;
}
# endif
ccl_device_inline void kernel_write_pass_float3_variance(ccl_global float *buffer, int sample, float3 value)
{
kernel_write_pass_float3_unaligned(buffer, sample, value);
# ifdef __SPLIT_KERNEL__
kernel_write_pass_float3_unaligned(buffer+3, sample, value*value);
# else
if(sample == 0) {
kernel_write_pass_float3_unaligned(buffer+3, sample, make_float3(0.0f, 0.0f, 0.0f));
}
else {
float3 sum = make_float3(buffer[0], buffer[1], buffer[2]);
float3 new_mean = sum * (1.0f / (sample + 1));
float3 old_mean = (sum - value) * (1.0f / sample);
kernel_write_pass_float3_unaligned(buffer+3, sample, (value - new_mean) * (value - old_mean));
}
# endif
}
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg, ccl_global float *buffer,
int sample, float path_total, float path_total_shaded)
{
if(kernel_data.film.pass_denoising_data == 0)
return;
buffer += (sample & 1)? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
path_total = ensure_finite(path_total);
path_total_shaded = ensure_finite(path_total_shaded);
kernel_write_pass_float(buffer, sample/2, path_total);
kernel_write_pass_float(buffer+1, sample/2, path_total_shaded);
float value = path_total_shaded / max(path_total, 1e-7f);
# ifdef __SPLIT_KERNEL__
kernel_write_pass_float(buffer+2, sample/2, value*value);
# else
if(sample < 2) {
kernel_write_pass_float(buffer+2, sample/2, 0.0f);
}
else {
float old_value = (buffer[1] - path_total_shaded) / max(buffer[0] - path_total, 1e-7f);
float new_value = buffer[1] / max(buffer[0], 1e-7f);
kernel_write_pass_float(buffer+2, sample, (value - new_value) * (value - old_value));
}
# endif
}
#endif /* __DENOISING_FEATURES__ */
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
ShaderData *sd,
ccl_global PathState *state,
PathRadiance *L)
{
#ifdef __DENOISING_FEATURES__
if(state->denoising_feature_weight == 0.0f) {
return;
}
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
float3 albedo = make_float3(0.0f, 0.0f, 0.0f);
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
for(int i = 0; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
continue;
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
normal += sc->N * sc->sample_weight;
sum_weight += sc->sample_weight;
if(!bsdf_is_specular_like(sc)) {
albedo += sc->weight;
sum_nonspecular_weight += sc->sample_weight;
}
}
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
if((sum_weight == 0.0f) || (sum_nonspecular_weight*4.0f > sum_weight)) {
if(sum_weight != 0.0f) {
normal /= sum_weight;
}
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo);
state->denoising_feature_weight = 0.0f;
}
#else
(void) kg;
(void) sd;
(void) state;
(void) L;
#endif /* __DENOISING_FEATURES__ */
}
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L,
ShaderData *sd, int sample, ccl_addr_space PathState *state, float3 throughput)
{
#ifdef __PASSES__
int path_flag = state->flag;
if(!(path_flag & PATH_RAY_CAMERA))
return;
int flag = kernel_data.film.pass_flag;
if(!(flag & PASS_ALL))
return;
if(!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
if(!(sd->flag & SD_TRANSPARENT) ||
kernel_data.film.pass_alpha_threshold == 0.0f ||
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold)
{
if(sample == 0) {
if(flag & PASS_DEPTH) {
float depth = camera_distance(kg, sd->P);
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, sample, depth);
}
if(flag & PASS_OBJECT_ID) {
float id = object_pass_id(kg, sd->object);
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, sample, id);
}
if(flag & PASS_MATERIAL_ID) {
float id = shader_pass_id(kg, sd);
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, sample, id);
}
}
if(flag & PASS_NORMAL) {
float3 normal = sd->N;
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, sample, normal);
}
if(flag & PASS_UV) {
float3 uv = primitive_uv(kg, sd);
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, sample, uv);
}
if(flag & PASS_MOTION) {
float4 speed = primitive_motion_vector(kg, sd);
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, sample, speed);
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, sample, 1.0f);
}
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
}
}
if(flag & (PASS_DIFFUSE_INDIRECT|PASS_DIFFUSE_COLOR|PASS_DIFFUSE_DIRECT))
L->color_diffuse += shader_bsdf_diffuse(kg, sd)*throughput;
if(flag & (PASS_GLOSSY_INDIRECT|PASS_GLOSSY_COLOR|PASS_GLOSSY_DIRECT))
L->color_glossy += shader_bsdf_glossy(kg, sd)*throughput;
if(flag & (PASS_TRANSMISSION_INDIRECT|PASS_TRANSMISSION_COLOR|PASS_TRANSMISSION_DIRECT))
L->color_transmission += shader_bsdf_transmission(kg, sd)*throughput;
if(flag & (PASS_SUBSURFACE_INDIRECT|PASS_SUBSURFACE_COLOR|PASS_SUBSURFACE_DIRECT))
L->color_subsurface += shader_bsdf_subsurface(kg, sd)*throughput;
if(flag & PASS_MIST) {
/* bring depth into 0..1 range */
float mist_start = kernel_data.film.mist_start;
float mist_inv_depth = kernel_data.film.mist_inv_depth;
float depth = camera_distance(kg, sd->P);
float mist = saturate((depth - mist_start)*mist_inv_depth);
/* falloff */
float mist_falloff = kernel_data.film.mist_falloff;
if(mist_falloff == 1.0f)
;
else if(mist_falloff == 2.0f)
mist = mist*mist;
else if(mist_falloff == 0.5f)
mist = sqrtf(mist);
else
mist = powf(mist, mist_falloff);
/* modulate by transparency */
float3 alpha = shader_bsdf_alpha(kg, sd);
L->mist += (1.0f - mist)*average(throughput*alpha);
}
#endif
}
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L, int sample)
{
#ifdef __PASSES__
int flag = kernel_data.film.pass_flag;
if(!kernel_data.film.use_light_pass)
return;
if(flag & PASS_DIFFUSE_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, sample, L->indirect_diffuse);
if(flag & PASS_GLOSSY_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, sample, L->indirect_glossy);
if(flag & PASS_TRANSMISSION_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, sample, L->indirect_transmission);
if(flag & PASS_SUBSURFACE_INDIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, sample, L->indirect_subsurface);
if(flag & PASS_DIFFUSE_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, sample, L->direct_diffuse);
if(flag & PASS_GLOSSY_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, sample, L->direct_glossy);
if(flag & PASS_TRANSMISSION_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, sample, L->direct_transmission);
if(flag & PASS_SUBSURFACE_DIRECT)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, sample, L->direct_subsurface);
if(flag & PASS_EMISSION)
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, sample, L->emission);
if(flag & PASS_BACKGROUND)
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, sample, L->background);
if(flag & PASS_AO)
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, sample, L->ao);
if(flag & PASS_DIFFUSE_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, sample, L->color_diffuse);
if(flag & PASS_GLOSSY_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, sample, L->color_glossy);
if(flag & PASS_TRANSMISSION_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, sample, L->color_transmission);
if(flag & PASS_SUBSURFACE_COLOR)
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, sample, L->color_subsurface);
if(flag & PASS_SHADOW) {
float4 shadow = L->shadow;
shadow.w = kernel_data.film.pass_shadow_scale;
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, sample, shadow);
}
if(flag & PASS_MIST)
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, sample, 1.0f - L->mist);
#endif
}
ccl_device_inline void kernel_write_result(KernelGlobals *kg, ccl_global float *buffer,
int sample, PathRadiance *L, float alpha, bool is_shadow_catcher)
{
if(L) {
float3 L_sum;
#ifdef __SHADOW_TRICKS__
if(is_shadow_catcher) {
L_sum = path_radiance_sum_shadowcatcher(kg, L, &alpha);
}
else
#endif /* __SHADOW_TRICKS__ */
{
L_sum = path_radiance_clamp_and_sum(kg, L);
}
kernel_write_pass_float4(buffer, sample, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
kernel_write_light_passes(kg, buffer, L, sample);
#ifdef __DENOISING_FEATURES__
if(kernel_data.film.pass_denoising_data) {
# ifdef __SHADOW_TRICKS__
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, average(L->path_total), average(L->path_total_shaded));
# else
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
# endif
if(kernel_data.film.pass_denoising_clean) {
float3 noisy, clean;
path_radiance_split_denoising(kg, L, &noisy, &clean);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
sample, noisy);
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean,
sample, clean);
}
else {
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
sample, L_sum);
}
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL,
sample, L->denoising_normal);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO,
sample, L->denoising_albedo);
kernel_write_pass_float_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH,
sample, L->denoising_depth);
}
#endif /* __DENOISING_FEATURES__ */
}
else {
kernel_write_pass_float4(buffer, sample, make_float4(0.0f, 0.0f, 0.0f, 0.0f));
#ifdef __DENOISING_FEATURES__
if(kernel_data.film.pass_denoising_data) {
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
sample, make_float3(0.0f, 0.0f, 0.0f));
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL,
sample, make_float3(0.0f, 0.0f, 0.0f));
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO,
sample, make_float3(0.0f, 0.0f, 0.0f));
kernel_write_pass_float_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH,
sample, 0.0f);
if(kernel_data.film.pass_denoising_clean) {
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean,
sample, make_float3(0.0f, 0.0f, 0.0f));
}
}
#endif /* __DENOISING_FEATURES__ */
}
}
CCL_NAMESPACE_END