
This is an initial implementation of BVH8 optimization structure and packated triangle intersection. The aim is to get faster ray to scene intersection checks. Scene BVH4 BVH8 barbershop_interior 10:24.94 10:10.74 bmw27 02:41.25 02:38.83 classroom 08:16.49 07:56.15 fishy_cat 04:24.56 04:17.29 koro 06:03.06 06:01.45 pavillon_barcelona 09:21.26 09:02.98 victor 23:39.65 22:53.71 As memory goes, peak usage raises by about 4.7% in a complex scenes. Note that BVH8 is disabled when using OSL, this is because OSL kernel does not get per-microarchitecture optimizations and hence always considers BVH3 is used. Original BVH8 patch from Anton Gavrikov. Batched triangles intersection from Victoria Zhislina. Extra work and tests and fixes from Maxym Dmytrychenko.
276 lines
6.4 KiB
C++
276 lines
6.4 KiB
C++
/*
|
|
* Adapted from code copyright 2009-2010 NVIDIA Corporation
|
|
* Modifications Copyright 2011, Blender Foundation.
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "bvh/bvh_node.h"
|
|
|
|
#include "bvh/bvh.h"
|
|
#include "bvh/bvh_build.h"
|
|
|
|
#include "util/util_vector.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* BVH Node */
|
|
|
|
int BVHNode::getSubtreeSize(BVH_STAT stat) const
|
|
{
|
|
int cnt = 0;
|
|
|
|
switch(stat)
|
|
{
|
|
case BVH_STAT_NODE_COUNT:
|
|
cnt = 1;
|
|
break;
|
|
case BVH_STAT_LEAF_COUNT:
|
|
cnt = is_leaf() ? 1 : 0;
|
|
break;
|
|
case BVH_STAT_INNER_COUNT:
|
|
cnt = is_leaf() ? 0 : 1;
|
|
break;
|
|
case BVH_STAT_TRIANGLE_COUNT:
|
|
cnt = is_leaf() ? reinterpret_cast<const LeafNode*>(this)->num_triangles() : 0;
|
|
break;
|
|
case BVH_STAT_CHILDNODE_COUNT:
|
|
cnt = num_children();
|
|
break;
|
|
case BVH_STAT_QNODE_COUNT:
|
|
cnt = 1;
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *node = get_child(i);
|
|
if(node->is_leaf()) {
|
|
cnt += 1;
|
|
}
|
|
else {
|
|
for(int j = 0; j < node->num_children(); j++) {
|
|
cnt += node->get_child(j)->getSubtreeSize(stat);
|
|
}
|
|
}
|
|
}
|
|
return cnt;
|
|
case BVH_STAT_ONODE_COUNT:
|
|
cnt = 1;
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *node = get_child(i);
|
|
if(node->is_leaf()) {
|
|
cnt += 1;
|
|
}
|
|
else {
|
|
for(int j = 0; j < node->num_children(); j++)
|
|
{
|
|
BVHNode *node_next = node->get_child(j);
|
|
if(node_next->is_leaf()) {
|
|
cnt += 1;
|
|
}
|
|
else {
|
|
for(int k = 0; k < node_next->num_children(); k++) {
|
|
cnt += node_next->get_child(k)->getSubtreeSize(stat);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return cnt;
|
|
case BVH_STAT_UNALIGNED_INNER_ONODE_COUNT:
|
|
{
|
|
bool has_unaligned = false;
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *node = get_child(i);
|
|
if(node->is_leaf()) {
|
|
has_unaligned |= node->is_unaligned;
|
|
}
|
|
else {
|
|
for(int j = 0; j < node->num_children(); j++) {
|
|
BVHNode *node_next = node->get_child(j);
|
|
if(node_next->is_leaf()) {
|
|
has_unaligned |= node_next->is_unaligned;
|
|
}
|
|
else {
|
|
for(int k = 0; k < node_next->num_children(); k++) {
|
|
cnt += node_next->get_child(k)->getSubtreeSize(stat);
|
|
has_unaligned |= node_next->get_child(k)->is_unaligned;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
cnt += has_unaligned? 1: 0;
|
|
}
|
|
return cnt;
|
|
case BVH_STAT_ALIGNED_COUNT:
|
|
if(!is_unaligned) {
|
|
cnt = 1;
|
|
}
|
|
break;
|
|
case BVH_STAT_UNALIGNED_COUNT:
|
|
if(is_unaligned) {
|
|
cnt = 1;
|
|
}
|
|
break;
|
|
case BVH_STAT_ALIGNED_INNER_COUNT:
|
|
if(!is_leaf()) {
|
|
bool has_unaligned = false;
|
|
for(int j = 0; j < num_children(); j++) {
|
|
has_unaligned |= get_child(j)->is_unaligned;
|
|
}
|
|
cnt += has_unaligned? 0: 1;
|
|
}
|
|
break;
|
|
case BVH_STAT_UNALIGNED_INNER_COUNT:
|
|
if(!is_leaf()) {
|
|
bool has_unaligned = false;
|
|
for(int j = 0; j < num_children(); j++) {
|
|
has_unaligned |= get_child(j)->is_unaligned;
|
|
}
|
|
cnt += has_unaligned? 1: 0;
|
|
}
|
|
break;
|
|
case BVH_STAT_ALIGNED_INNER_QNODE_COUNT:
|
|
{
|
|
bool has_unaligned = false;
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *node = get_child(i);
|
|
if(node->is_leaf()) {
|
|
has_unaligned |= node->is_unaligned;
|
|
}
|
|
else {
|
|
for(int j = 0; j < node->num_children(); j++) {
|
|
cnt += node->get_child(j)->getSubtreeSize(stat);
|
|
has_unaligned |= node->get_child(j)->is_unaligned;
|
|
}
|
|
}
|
|
}
|
|
cnt += has_unaligned? 0: 1;
|
|
}
|
|
return cnt;
|
|
case BVH_STAT_UNALIGNED_INNER_QNODE_COUNT:
|
|
{
|
|
bool has_unaligned = false;
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *node = get_child(i);
|
|
if(node->is_leaf()) {
|
|
has_unaligned |= node->is_unaligned;
|
|
}
|
|
else {
|
|
for(int j = 0; j < node->num_children(); j++) {
|
|
cnt += node->get_child(j)->getSubtreeSize(stat);
|
|
has_unaligned |= node->get_child(j)->is_unaligned;
|
|
}
|
|
}
|
|
}
|
|
cnt += has_unaligned? 1: 0;
|
|
}
|
|
return cnt;
|
|
case BVH_STAT_ALIGNED_LEAF_COUNT:
|
|
cnt = (is_leaf() && !is_unaligned) ? 1 : 0;
|
|
break;
|
|
case BVH_STAT_UNALIGNED_LEAF_COUNT:
|
|
cnt = (is_leaf() && is_unaligned) ? 1 : 0;
|
|
break;
|
|
case BVH_STAT_DEPTH:
|
|
if(is_leaf()) {
|
|
cnt = 1;
|
|
}
|
|
else {
|
|
for(int i = 0; i < num_children(); i++) {
|
|
cnt = max(cnt, get_child(i)->getSubtreeSize(stat));
|
|
}
|
|
cnt += 1;
|
|
}
|
|
return cnt;
|
|
default:
|
|
assert(0); /* unknown mode */
|
|
}
|
|
|
|
if(!is_leaf())
|
|
for(int i = 0; i < num_children(); i++)
|
|
cnt += get_child(i)->getSubtreeSize(stat);
|
|
|
|
return cnt;
|
|
}
|
|
|
|
void BVHNode::deleteSubtree()
|
|
{
|
|
for(int i = 0; i < num_children(); i++)
|
|
if(get_child(i))
|
|
get_child(i)->deleteSubtree();
|
|
|
|
delete this;
|
|
}
|
|
|
|
float BVHNode::computeSubtreeSAHCost(const BVHParams& p, float probability) const
|
|
{
|
|
float SAH = probability * p.cost(num_children(), num_triangles());
|
|
|
|
for(int i = 0; i < num_children(); i++) {
|
|
BVHNode *child = get_child(i);
|
|
SAH += child->computeSubtreeSAHCost(p, probability * child->bounds.safe_area()/bounds.safe_area());
|
|
}
|
|
|
|
return SAH;
|
|
}
|
|
|
|
uint BVHNode::update_visibility()
|
|
{
|
|
if(!is_leaf() && visibility == 0) {
|
|
InnerNode *inner = (InnerNode*)this;
|
|
BVHNode *child0 = inner->children[0];
|
|
BVHNode *child1 = inner->children[1];
|
|
|
|
visibility = child0->update_visibility()|child1->update_visibility();
|
|
}
|
|
|
|
return visibility;
|
|
}
|
|
|
|
void BVHNode::update_time()
|
|
{
|
|
if(!is_leaf()) {
|
|
InnerNode *inner = (InnerNode*)this;
|
|
BVHNode *child0 = inner->children[0];
|
|
BVHNode *child1 = inner->children[1];
|
|
child0->update_time();
|
|
child1->update_time();
|
|
time_from = min(child0->time_from, child1->time_from);
|
|
time_to = max(child0->time_to, child1->time_to);
|
|
}
|
|
}
|
|
|
|
/* Inner Node */
|
|
|
|
void InnerNode::print(int depth) const
|
|
{
|
|
for(int i = 0; i < depth; i++)
|
|
printf(" ");
|
|
|
|
printf("inner node %p\n", (void*)this);
|
|
|
|
if(children[0])
|
|
children[0]->print(depth+1);
|
|
if(children[1])
|
|
children[1]->print(depth+1);
|
|
}
|
|
|
|
void LeafNode::print(int depth) const
|
|
{
|
|
for(int i = 0; i < depth; i++)
|
|
printf(" ");
|
|
|
|
printf("leaf node %d to %d\n", lo, hi);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|