
This feature takes some inspiration from "RenderMan: An Advanced Path Tracing Architecture for Movie Rendering" and "A Hierarchical Automatic Stopping Condition for Monte Carlo Global Illumination" The basic principle is as follows: While samples are being added to a pixel, the adaptive sampler writes half of the samples to a separate buffer. This gives it two separate estimates of the same pixel, and by comparing their difference it estimates convergence. Once convergence drops below a given threshold, the pixel is considered done. When a pixel has not converged yet and needs more samples than the minimum, its immediate neighbors are also set to take more samples. This is done in order to more reliably detect sharp features such as caustics. A 3x3 box filter that is run periodically over the tile buffer is used for that purpose. After a tile has finished rendering, the values of all passes are scaled as if they were rendered with the full number of samples. This way, any code operating on these buffers, for example the denoiser, does not need to be changed for per-pixel sample counts. Reviewed By: brecht, #cycles Differential Revision: https://developer.blender.org/D4686
429 lines
17 KiB
C
429 lines
17 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "kernel/kernel_id_passes.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
#ifdef __DENOISING_FEATURES__
|
|
|
|
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
int sample,
|
|
float path_total,
|
|
float path_total_shaded)
|
|
{
|
|
if (kernel_data.film.pass_denoising_data == 0)
|
|
return;
|
|
|
|
buffer += sample_is_even(kernel_data.integrator.sampling_pattern, sample) ?
|
|
DENOISING_PASS_SHADOW_B :
|
|
DENOISING_PASS_SHADOW_A;
|
|
|
|
path_total = ensure_finite(path_total);
|
|
path_total_shaded = ensure_finite(path_total_shaded);
|
|
|
|
kernel_write_pass_float(buffer, path_total);
|
|
kernel_write_pass_float(buffer + 1, path_total_shaded);
|
|
|
|
float value = path_total_shaded / max(path_total, 1e-7f);
|
|
kernel_write_pass_float(buffer + 2, value * value);
|
|
}
|
|
|
|
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
|
|
ShaderData *sd,
|
|
ccl_addr_space PathState *state,
|
|
PathRadiance *L)
|
|
{
|
|
if (state->denoising_feature_weight == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
|
|
|
|
/* Skip implicitly transparent surfaces. */
|
|
if (sd->flag & SD_HAS_ONLY_VOLUME) {
|
|
return;
|
|
}
|
|
|
|
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
|
|
float3 diffuse_albedo = make_float3(0.0f, 0.0f, 0.0f);
|
|
float3 specular_albedo = make_float3(0.0f, 0.0f, 0.0f);
|
|
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
|
|
|
|
for (int i = 0; i < sd->num_closure; i++) {
|
|
ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if (!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
|
|
continue;
|
|
|
|
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
|
|
normal += sc->N * sc->sample_weight;
|
|
sum_weight += sc->sample_weight;
|
|
|
|
float3 closure_albedo = sc->weight;
|
|
/* Closures that include a Fresnel term typically have weights close to 1 even though their
|
|
* actual contribution is significantly lower.
|
|
* To account for this, we scale their weight by the average fresnel factor (the same is also
|
|
* done for the sample weight in the BSDF setup, so we don't need to scale that here). */
|
|
if (CLOSURE_IS_BSDF_MICROFACET_FRESNEL(sc->type)) {
|
|
MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
|
|
closure_albedo *= bsdf->extra->fresnel_color;
|
|
}
|
|
else if (sc->type == CLOSURE_BSDF_PRINCIPLED_SHEEN_ID) {
|
|
PrincipledSheenBsdf *bsdf = (PrincipledSheenBsdf *)sc;
|
|
closure_albedo *= bsdf->avg_value;
|
|
}
|
|
|
|
if (bsdf_get_specular_roughness_squared(sc) > sqr(0.075f)) {
|
|
diffuse_albedo += closure_albedo;
|
|
sum_nonspecular_weight += sc->sample_weight;
|
|
}
|
|
else {
|
|
specular_albedo += closure_albedo;
|
|
}
|
|
}
|
|
|
|
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
|
|
if ((sum_weight == 0.0f) || (sum_nonspecular_weight * 4.0f > sum_weight)) {
|
|
if (sum_weight != 0.0f) {
|
|
normal /= sum_weight;
|
|
}
|
|
|
|
/* Transform normal into camera space. */
|
|
const Transform worldtocamera = kernel_data.cam.worldtocamera;
|
|
normal = transform_direction(&worldtocamera, normal);
|
|
|
|
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
|
|
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight *
|
|
state->denoising_feature_throughput * diffuse_albedo);
|
|
|
|
state->denoising_feature_weight = 0.0f;
|
|
}
|
|
else {
|
|
state->denoising_feature_throughput *= specular_albedo;
|
|
}
|
|
}
|
|
#endif /* __DENOISING_FEATURES__ */
|
|
|
|
#ifdef __KERNEL_DEBUG__
|
|
ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
PathRadiance *L)
|
|
{
|
|
int flag = kernel_data.film.pass_flag;
|
|
if (flag & PASSMASK(BVH_TRAVERSED_NODES)) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
|
|
L->debug_data.num_bvh_traversed_nodes);
|
|
}
|
|
if (flag & PASSMASK(BVH_TRAVERSED_INSTANCES)) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
|
|
L->debug_data.num_bvh_traversed_instances);
|
|
}
|
|
if (flag & PASSMASK(BVH_INTERSECTIONS)) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
|
|
L->debug_data.num_bvh_intersections);
|
|
}
|
|
if (flag & PASSMASK(RAY_BOUNCES)) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
|
|
L->debug_data.num_ray_bounces);
|
|
}
|
|
}
|
|
#endif /* __KERNEL_DEBUG__ */
|
|
|
|
#ifdef __KERNEL_CPU__
|
|
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
|
|
kernel_write_id_pass_cpu(buffer, depth * 2, id, matte_weight, kg->coverage_##name)
|
|
ccl_device_inline size_t kernel_write_id_pass_cpu(
|
|
float *buffer, size_t depth, float id, float matte_weight, CoverageMap *map)
|
|
{
|
|
if (map) {
|
|
(*map)[id] += matte_weight;
|
|
return 0;
|
|
}
|
|
#else /* __KERNEL_CPU__ */
|
|
# define WRITE_ID_SLOT(buffer, depth, id, matte_weight, name) \
|
|
kernel_write_id_slots_gpu(buffer, depth * 2, id, matte_weight)
|
|
ccl_device_inline size_t kernel_write_id_slots_gpu(ccl_global float *buffer,
|
|
size_t depth,
|
|
float id,
|
|
float matte_weight)
|
|
{
|
|
#endif /* __KERNEL_CPU__ */
|
|
kernel_write_id_slots(buffer, depth, id, matte_weight);
|
|
return depth * 2;
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
PathRadiance *L,
|
|
ShaderData *sd,
|
|
ccl_addr_space PathState *state,
|
|
float3 throughput)
|
|
{
|
|
#ifdef __PASSES__
|
|
int path_flag = state->flag;
|
|
|
|
if (!(path_flag & PATH_RAY_CAMERA))
|
|
return;
|
|
|
|
int flag = kernel_data.film.pass_flag;
|
|
int light_flag = kernel_data.film.light_pass_flag;
|
|
|
|
if (!((flag | light_flag) & PASS_ANY))
|
|
return;
|
|
|
|
if (!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
|
|
if (!(sd->flag & SD_TRANSPARENT) || kernel_data.film.pass_alpha_threshold == 0.0f ||
|
|
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold) {
|
|
if (state->sample == 0) {
|
|
if (flag & PASSMASK(DEPTH)) {
|
|
float depth = camera_distance(kg, sd->P);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
|
|
}
|
|
if (flag & PASSMASK(OBJECT_ID)) {
|
|
float id = object_pass_id(kg, sd->object);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
|
|
}
|
|
if (flag & PASSMASK(MATERIAL_ID)) {
|
|
float id = shader_pass_id(kg, sd);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
|
|
}
|
|
}
|
|
|
|
if (flag & PASSMASK(NORMAL)) {
|
|
float3 normal = shader_bsdf_average_normal(kg, sd);
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
|
|
}
|
|
if (flag & PASSMASK(UV)) {
|
|
float3 uv = primitive_uv(kg, sd);
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
|
|
}
|
|
if (flag & PASSMASK(MOTION)) {
|
|
float4 speed = primitive_motion_vector(kg, sd);
|
|
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
|
|
}
|
|
|
|
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
|
|
}
|
|
}
|
|
|
|
if (kernel_data.film.cryptomatte_passes) {
|
|
const float matte_weight = average(throughput) *
|
|
(1.0f - average(shader_bsdf_transparency(kg, sd)));
|
|
if (matte_weight > 0.0f) {
|
|
ccl_global float *cryptomatte_buffer = buffer + kernel_data.film.pass_cryptomatte;
|
|
if (kernel_data.film.cryptomatte_passes & CRYPT_OBJECT) {
|
|
float id = object_cryptomatte_id(kg, sd->object);
|
|
cryptomatte_buffer += WRITE_ID_SLOT(
|
|
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, object);
|
|
}
|
|
if (kernel_data.film.cryptomatte_passes & CRYPT_MATERIAL) {
|
|
float id = shader_cryptomatte_id(kg, sd->shader);
|
|
cryptomatte_buffer += WRITE_ID_SLOT(
|
|
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, material);
|
|
}
|
|
if (kernel_data.film.cryptomatte_passes & CRYPT_ASSET) {
|
|
float id = object_cryptomatte_asset_id(kg, sd->object);
|
|
cryptomatte_buffer += WRITE_ID_SLOT(
|
|
cryptomatte_buffer, kernel_data.film.cryptomatte_depth, id, matte_weight, asset);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (light_flag & PASSMASK_COMPONENT(DIFFUSE))
|
|
L->color_diffuse += shader_bsdf_diffuse(kg, sd) * throughput;
|
|
if (light_flag & PASSMASK_COMPONENT(GLOSSY))
|
|
L->color_glossy += shader_bsdf_glossy(kg, sd) * throughput;
|
|
if (light_flag & PASSMASK_COMPONENT(TRANSMISSION))
|
|
L->color_transmission += shader_bsdf_transmission(kg, sd) * throughput;
|
|
|
|
if (light_flag & PASSMASK(MIST)) {
|
|
/* bring depth into 0..1 range */
|
|
float mist_start = kernel_data.film.mist_start;
|
|
float mist_inv_depth = kernel_data.film.mist_inv_depth;
|
|
|
|
float depth = camera_distance(kg, sd->P);
|
|
float mist = saturate((depth - mist_start) * mist_inv_depth);
|
|
|
|
/* falloff */
|
|
float mist_falloff = kernel_data.film.mist_falloff;
|
|
|
|
if (mist_falloff == 1.0f)
|
|
;
|
|
else if (mist_falloff == 2.0f)
|
|
mist = mist * mist;
|
|
else if (mist_falloff == 0.5f)
|
|
mist = sqrtf(mist);
|
|
else
|
|
mist = powf(mist, mist_falloff);
|
|
|
|
/* modulate by transparency */
|
|
float3 alpha = shader_bsdf_alpha(kg, sd);
|
|
L->mist += (1.0f - mist) * average(throughput * alpha);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
PathRadiance *L)
|
|
{
|
|
#ifdef __PASSES__
|
|
int light_flag = kernel_data.film.light_pass_flag;
|
|
|
|
if (!kernel_data.film.use_light_pass)
|
|
return;
|
|
|
|
if (light_flag & PASSMASK(DIFFUSE_INDIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
|
|
if (light_flag & PASSMASK(GLOSSY_INDIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
|
|
if (light_flag & PASSMASK(TRANSMISSION_INDIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect,
|
|
L->indirect_transmission);
|
|
if (light_flag & PASSMASK(VOLUME_INDIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_indirect, L->indirect_volume);
|
|
if (light_flag & PASSMASK(DIFFUSE_DIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
|
|
if (light_flag & PASSMASK(GLOSSY_DIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
|
|
if (light_flag & PASSMASK(TRANSMISSION_DIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct,
|
|
L->direct_transmission);
|
|
if (light_flag & PASSMASK(VOLUME_DIRECT))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_volume_direct, L->direct_volume);
|
|
|
|
if (light_flag & PASSMASK(EMISSION))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
|
|
if (light_flag & PASSMASK(BACKGROUND))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
|
|
if (light_flag & PASSMASK(AO))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
|
|
|
|
if (light_flag & PASSMASK(DIFFUSE_COLOR))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
|
|
if (light_flag & PASSMASK(GLOSSY_COLOR))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
|
|
if (light_flag & PASSMASK(TRANSMISSION_COLOR))
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color,
|
|
L->color_transmission);
|
|
if (light_flag & PASSMASK(SHADOW)) {
|
|
float4 shadow = L->shadow;
|
|
shadow.w = kernel_data.film.pass_shadow_scale;
|
|
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
|
|
}
|
|
if (light_flag & PASSMASK(MIST))
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_result(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
int sample,
|
|
PathRadiance *L)
|
|
{
|
|
PROFILING_INIT(kg, PROFILING_WRITE_RESULT);
|
|
PROFILING_OBJECT(PRIM_NONE);
|
|
|
|
float alpha;
|
|
float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
|
|
|
|
if (kernel_data.film.pass_flag & PASSMASK(COMBINED)) {
|
|
kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
|
|
}
|
|
|
|
kernel_write_light_passes(kg, buffer, L);
|
|
|
|
#ifdef __DENOISING_FEATURES__
|
|
if (kernel_data.film.pass_denoising_data) {
|
|
# ifdef __SHADOW_TRICKS__
|
|
kernel_write_denoising_shadow(kg,
|
|
buffer + kernel_data.film.pass_denoising_data,
|
|
sample,
|
|
average(L->path_total),
|
|
average(L->path_total_shaded));
|
|
# else
|
|
kernel_write_denoising_shadow(
|
|
kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
|
|
# endif
|
|
if (kernel_data.film.pass_denoising_clean) {
|
|
float3 noisy, clean;
|
|
path_radiance_split_denoising(kg, L, &noisy, &clean);
|
|
kernel_write_pass_float3_variance(
|
|
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR, noisy);
|
|
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean, clean);
|
|
}
|
|
else {
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
|
|
DENOISING_PASS_COLOR,
|
|
ensure_finite3(L_sum));
|
|
}
|
|
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
|
|
DENOISING_PASS_NORMAL,
|
|
L->denoising_normal);
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data +
|
|
DENOISING_PASS_ALBEDO,
|
|
L->denoising_albedo);
|
|
kernel_write_pass_float_variance(
|
|
buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH, L->denoising_depth);
|
|
}
|
|
#endif /* __DENOISING_FEATURES__ */
|
|
|
|
#ifdef __KERNEL_DEBUG__
|
|
kernel_write_debug_passes(kg, buffer, L);
|
|
#endif
|
|
|
|
/* Adaptive Sampling. Fill the additional buffer with the odd samples and calculate our stopping
|
|
criteria. This is the heuristic from "A hierarchical automatic stopping condition for Monte
|
|
Carlo global illumination" except that here it is applied per pixel and not in hierarchical
|
|
tiles. */
|
|
if (kernel_data.film.pass_adaptive_aux_buffer &&
|
|
kernel_data.integrator.adaptive_threshold > 0.0f) {
|
|
if (sample_is_even(kernel_data.integrator.sampling_pattern, sample)) {
|
|
kernel_write_pass_float4(buffer + kernel_data.film.pass_adaptive_aux_buffer,
|
|
make_float4(L_sum.x * 2.0f, L_sum.y * 2.0f, L_sum.z * 2.0f, 0.0f));
|
|
}
|
|
#ifdef __KERNEL_CPU__
|
|
if (sample > kernel_data.integrator.adaptive_min_samples &&
|
|
(sample & (ADAPTIVE_SAMPLE_STEP - 1)) == (ADAPTIVE_SAMPLE_STEP - 1)) {
|
|
kernel_do_adaptive_stopping(kg, buffer, sample);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/* Write the sample count as negative numbers initially to mark the samples as in progress.
|
|
* Once the tile has finished rendering, the sign gets flipped and all the pixel values
|
|
* are scaled as if they were taken at a uniform sample count. */
|
|
if (kernel_data.film.pass_sample_count) {
|
|
/* Make sure it's a negative number. In progressive refine mode, this bit gets flipped between
|
|
* passes. */
|
|
#ifdef __ATOMIC_PASS_WRITE__
|
|
atomic_fetch_and_or_uint32((ccl_global uint *)(buffer + kernel_data.film.pass_sample_count),
|
|
0x80000000);
|
|
#else
|
|
if (buffer[kernel_data.film.pass_sample_count] > 0) {
|
|
buffer[kernel_data.film.pass_sample_count] *= -1.0f;
|
|
}
|
|
#endif
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_sample_count, -1.0f);
|
|
}
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|