
By default lighting from the world is computed solely with indirect light sampling. However for more complex environment maps this can be too noisy, as sampling the BSDF may not easily find the highlights in the environment map image. By enabling this option, the world background will be sampled as a lamp, with lighter parts automatically given more samples. Map Resolution specifies the size of the importance map (res x res). Before rendering starts, an importance map is generated by "baking" a grayscale image from the world shader. This will then be used to determine which parts of the background are light and so should receive more samples than darker parts. Higher resolutions will result in more accurate sampling but take more setup time and memory. Patch by Mike Farnsworth, thanks!
491 lines
14 KiB
C++
491 lines
14 KiB
C++
/*
|
|
* Copyright 2011, Blender Foundation.
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "device.h"
|
|
#include "light.h"
|
|
#include "mesh.h"
|
|
#include "object.h"
|
|
#include "scene.h"
|
|
#include "shader.h"
|
|
|
|
#include "util_foreach.h"
|
|
#include "util_progress.h"
|
|
|
|
#include "kernel_montecarlo.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
static void dump_background_pixels(Device *device, DeviceScene *dscene, int res, vector<float3>& pixels)
|
|
{
|
|
/* create input */
|
|
int width = res;
|
|
int height = res;
|
|
|
|
device_vector<uint4> d_input;
|
|
device_vector<float4> d_output;
|
|
|
|
uint4 *d_input_data = d_input.resize(width*height);
|
|
|
|
for(int y = 0; y < height; y++) {
|
|
for(int x = 0; x < width; x++) {
|
|
float u = x/(float)width;
|
|
float v = y/(float)height;
|
|
float3 D = -equirectangular_to_direction(u, v);
|
|
|
|
uint4 in = make_uint4(__float_as_int(D.x), __float_as_int(D.y), __float_as_int(D.z), 0);
|
|
d_input_data[x + y*width] = in;
|
|
}
|
|
}
|
|
|
|
/* compute on device */
|
|
float4 *d_output_data = d_output.resize(width*height);
|
|
memset((void*)d_output.data_pointer, 0, d_output.memory_size());
|
|
|
|
device->const_copy_to("__data", &dscene->data, sizeof(dscene->data));
|
|
|
|
device->mem_alloc(d_input, MEM_READ_ONLY);
|
|
device->mem_copy_to(d_input);
|
|
device->mem_alloc(d_output, MEM_WRITE_ONLY);
|
|
|
|
DeviceTask main_task(DeviceTask::SHADER);
|
|
main_task.shader_input = d_input.device_pointer;
|
|
main_task.shader_output = d_output.device_pointer;
|
|
main_task.shader_eval_type = SHADER_EVAL_BACKGROUND;
|
|
main_task.shader_x = 0;
|
|
main_task.shader_w = width*height;
|
|
|
|
list<DeviceTask> split_tasks;
|
|
main_task.split_max_size(split_tasks, 128*128);
|
|
|
|
foreach(DeviceTask& task, split_tasks) {
|
|
device->task_add(task);
|
|
device->task_wait();
|
|
}
|
|
|
|
device->mem_copy_from(d_output, 0, 1, d_output.size(), sizeof(float4));
|
|
device->mem_free(d_input);
|
|
device->mem_free(d_output);
|
|
|
|
d_output_data = reinterpret_cast<float4*>(d_output.data_pointer);
|
|
|
|
pixels.resize(width*height);
|
|
|
|
for(int y = 0; y < height; y++) {
|
|
for(int x = 0; x < width; x++) {
|
|
pixels[y*width + x].x = d_output_data[y*width + x].x;
|
|
pixels[y*width + x].y = d_output_data[y*width + x].y;
|
|
pixels[y*width + x].z = d_output_data[y*width + x].z;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Light */
|
|
|
|
Light::Light()
|
|
{
|
|
type = LIGHT_POINT;
|
|
|
|
co = make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
dir = make_float3(0.0f, 0.0f, 0.0f);
|
|
size = 0.0f;
|
|
|
|
axisu = make_float3(0.0f, 0.0f, 0.0f);
|
|
sizeu = 1.0f;
|
|
axisv = make_float3(0.0f, 0.0f, 0.0f);
|
|
sizev = 1.0f;
|
|
|
|
map_resolution = 512;
|
|
|
|
cast_shadow = true;
|
|
shader = 0;
|
|
}
|
|
|
|
void Light::tag_update(Scene *scene)
|
|
{
|
|
scene->light_manager->need_update = true;
|
|
}
|
|
|
|
/* Light Manager */
|
|
|
|
LightManager::LightManager()
|
|
{
|
|
need_update = true;
|
|
}
|
|
|
|
LightManager::~LightManager()
|
|
{
|
|
}
|
|
|
|
void LightManager::device_update_distribution(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
progress.set_status("Updating Lights", "Computing distribution");
|
|
|
|
/* option to always sample all point lights */
|
|
bool multi_light = false;
|
|
|
|
/* count */
|
|
size_t num_lights = scene->lights.size();
|
|
size_t num_triangles = 0;
|
|
|
|
foreach(Object *object, scene->objects) {
|
|
Mesh *mesh = object->mesh;
|
|
bool have_emission = false;
|
|
|
|
/* skip if we have no emission shaders */
|
|
foreach(uint sindex, mesh->used_shaders) {
|
|
Shader *shader = scene->shaders[sindex];
|
|
|
|
if(shader->sample_as_light && shader->has_surface_emission) {
|
|
have_emission = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* count triangles */
|
|
if(have_emission) {
|
|
for(size_t i = 0; i < mesh->triangles.size(); i++) {
|
|
Shader *shader = scene->shaders[mesh->shader[i]];
|
|
|
|
if(shader->sample_as_light && shader->has_surface_emission)
|
|
num_triangles++;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t num_distribution = num_triangles;
|
|
|
|
if(!multi_light)
|
|
num_distribution += num_lights;
|
|
|
|
/* emission area */
|
|
float4 *distribution = dscene->light_distribution.resize(num_distribution + 1);
|
|
float totarea = 0.0f;
|
|
|
|
/* triangles */
|
|
size_t offset = 0;
|
|
int j = 0;
|
|
|
|
foreach(Object *object, scene->objects) {
|
|
Mesh *mesh = object->mesh;
|
|
bool have_emission = false;
|
|
|
|
/* skip if we have no emission shaders */
|
|
foreach(uint sindex, mesh->used_shaders) {
|
|
Shader *shader = scene->shaders[sindex];
|
|
|
|
if(shader->sample_as_light && shader->has_surface_emission) {
|
|
have_emission = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* sum area */
|
|
if(have_emission) {
|
|
Transform tfm = object->tfm;
|
|
int object_id = j;
|
|
|
|
if(mesh->transform_applied)
|
|
object_id = ~object_id;
|
|
|
|
for(size_t i = 0; i < mesh->triangles.size(); i++) {
|
|
Shader *shader = scene->shaders[mesh->shader[i]];
|
|
|
|
if(shader->sample_as_light && shader->has_surface_emission) {
|
|
distribution[offset].x = totarea;
|
|
distribution[offset].y = __int_as_float(i + mesh->tri_offset);
|
|
distribution[offset].z = 1.0f;
|
|
distribution[offset].w = __int_as_float(object_id);
|
|
offset++;
|
|
|
|
Mesh::Triangle t = mesh->triangles[i];
|
|
float3 p1 = transform(&tfm, mesh->verts[t.v[0]]);
|
|
float3 p2 = transform(&tfm, mesh->verts[t.v[1]]);
|
|
float3 p3 = transform(&tfm, mesh->verts[t.v[2]]);
|
|
|
|
totarea += triangle_area(p1, p2, p3);
|
|
}
|
|
}
|
|
}
|
|
|
|
if(progress.get_cancel()) return;
|
|
|
|
j++;
|
|
}
|
|
|
|
float trianglearea = totarea;
|
|
|
|
/* point lights */
|
|
if(!multi_light) {
|
|
float lightarea = (totarea > 0.0f)? totarea/scene->lights.size(): 1.0f;
|
|
|
|
for(int i = 0; i < scene->lights.size(); i++, offset++) {
|
|
distribution[offset].x = totarea;
|
|
distribution[offset].y = __int_as_float(~(int)i);
|
|
distribution[offset].z = 1.0f;
|
|
distribution[offset].w = scene->lights[i]->size;
|
|
totarea += lightarea;
|
|
}
|
|
}
|
|
|
|
/* normalize cumulative distribution functions */
|
|
distribution[num_distribution].x = totarea;
|
|
distribution[num_distribution].y = 0.0f;
|
|
distribution[num_distribution].z = 0.0f;
|
|
distribution[num_distribution].w = 0.0f;
|
|
|
|
if(totarea > 0.0f) {
|
|
for(size_t i = 0; i < num_distribution; i++)
|
|
distribution[i].x /= totarea;
|
|
distribution[num_distribution].x = 1.0f;
|
|
}
|
|
|
|
if(progress.get_cancel()) return;
|
|
|
|
/* update device */
|
|
KernelIntegrator *kintegrator = &dscene->data.integrator;
|
|
kintegrator->use_direct_light = (totarea > 0.0f) || (multi_light && num_lights);
|
|
|
|
if(kintegrator->use_direct_light) {
|
|
/* number of emissives */
|
|
kintegrator->num_distribution = (totarea > 0.0f)? num_distribution: 0;
|
|
|
|
/* precompute pdfs */
|
|
kintegrator->pdf_triangles = 0.0f;
|
|
kintegrator->pdf_lights = 0.0f;
|
|
|
|
if(multi_light) {
|
|
/* sample one of all triangles and all lights */
|
|
kintegrator->num_all_lights = num_lights;
|
|
|
|
if(trianglearea > 0.0f)
|
|
kintegrator->pdf_triangles = 1.0f/trianglearea;
|
|
if(num_lights)
|
|
kintegrator->pdf_lights = 1.0f;
|
|
}
|
|
else {
|
|
/* sample one, with 0.5 probability of light or triangle */
|
|
kintegrator->num_all_lights = 0;
|
|
|
|
if(trianglearea > 0.0f) {
|
|
kintegrator->pdf_triangles = 1.0f/trianglearea;
|
|
if(num_lights)
|
|
kintegrator->pdf_triangles *= 0.5f;
|
|
}
|
|
|
|
if(num_lights) {
|
|
kintegrator->pdf_lights = 1.0f/num_lights;
|
|
if(trianglearea > 0.0f)
|
|
kintegrator->pdf_lights *= 0.5f;
|
|
}
|
|
}
|
|
|
|
/* CDF */
|
|
device->tex_alloc("__light_distribution", dscene->light_distribution);
|
|
}
|
|
else
|
|
dscene->light_distribution.clear();
|
|
}
|
|
|
|
void LightManager::device_update_background(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
KernelIntegrator *kintegrator = &dscene->data.integrator;
|
|
Light *background_light = NULL;
|
|
|
|
/* find background light */
|
|
foreach(Light *light, scene->lights) {
|
|
if(light->type == LIGHT_BACKGROUND) {
|
|
background_light = light;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* no background light found, signal renderer to skip sampling */
|
|
if(!background_light) {
|
|
kintegrator->pdf_background_res = 0;
|
|
return;
|
|
}
|
|
|
|
progress.set_status("Updating Lights", "Importance map");
|
|
|
|
assert(kintegrator->use_direct_light);
|
|
|
|
/* get the resolution from the light's size (we stuff it in there) */
|
|
int res = background_light->map_resolution;
|
|
kintegrator->pdf_background_res = res;
|
|
|
|
assert(res > 0);
|
|
|
|
vector<float3> pixels;
|
|
dump_background_pixels(device, dscene, res, pixels);
|
|
|
|
if(progress.get_cancel())
|
|
return;
|
|
|
|
/* build row distributions and column distribution for the infinite area environment light */
|
|
int cdf_count = res + 1;
|
|
float2 *marg_cdf = dscene->light_background_marginal_cdf.resize(cdf_count);
|
|
float2 *cond_cdf = dscene->light_background_conditional_cdf.resize(cdf_count * cdf_count);
|
|
|
|
/* conditional CDFs (rows, U direction) */
|
|
for(int i = 0; i < res; i++) {
|
|
float sin_theta = sinf(M_PI_F * (i + 0.5f) / res);
|
|
float3 env_color = pixels[i * res];
|
|
float ave_luminamce = average(env_color);
|
|
|
|
cond_cdf[i * cdf_count].x = ave_luminamce * sin_theta;
|
|
cond_cdf[i * cdf_count].y = 0.0f;
|
|
|
|
for(int j = 1; j < res; j++) {
|
|
env_color = pixels[i * res + j];
|
|
ave_luminamce = average(env_color);
|
|
|
|
cond_cdf[i * cdf_count + j].x = ave_luminamce * sin_theta;
|
|
cond_cdf[i * cdf_count + j].y = cond_cdf[i * cdf_count + j - 1].y + cond_cdf[i * cdf_count + j - 1].x / res;
|
|
}
|
|
|
|
float cdf_total = cond_cdf[i * cdf_count + res - 1].y + cond_cdf[i * cdf_count + res - 1].x / res;
|
|
|
|
/* stuff the total into the brightness value for the last entry, because
|
|
we are going to normalize the CDFs to 0.0 to 1.0 afterwards */
|
|
cond_cdf[i * cdf_count + res].x = cdf_total;
|
|
|
|
if(cdf_total > 0.0f)
|
|
for(int j = 1; j < res; j++)
|
|
cond_cdf[i * cdf_count + j].y /= cdf_total;
|
|
|
|
cond_cdf[i * cdf_count + res].y = 1.0f;
|
|
}
|
|
|
|
/* marginal CDFs (column, V direction, sum of rows) */
|
|
marg_cdf[0].x = cond_cdf[res].x;
|
|
marg_cdf[0].y = 0.0f;
|
|
|
|
for(int i = 1; i < res; i++) {
|
|
marg_cdf[i].x = cond_cdf[i * cdf_count + res].x;
|
|
marg_cdf[i].y = marg_cdf[i - 1].y + marg_cdf[i - 1].x / res;
|
|
}
|
|
|
|
float cdf_total = marg_cdf[res - 1].y + marg_cdf[res - 1].x / res;
|
|
marg_cdf[res].x = cdf_total;
|
|
|
|
if(cdf_total > 0.0f)
|
|
for(int i = 1; i < res; i++)
|
|
marg_cdf[i].y /= cdf_total;
|
|
|
|
marg_cdf[res].y = 1.0f;
|
|
|
|
/* update device */
|
|
device->tex_alloc("__light_background_marginal_cdf", dscene->light_background_marginal_cdf);
|
|
device->tex_alloc("__light_background_conditional_cdf", dscene->light_background_conditional_cdf);
|
|
}
|
|
|
|
void LightManager::device_update_points(Device *device, DeviceScene *dscene, Scene *scene)
|
|
{
|
|
if(scene->lights.size() == 0)
|
|
return;
|
|
|
|
float4 *light_data = dscene->light_data.resize(scene->lights.size()*LIGHT_SIZE);
|
|
|
|
for(size_t i = 0; i < scene->lights.size(); i++) {
|
|
Light *light = scene->lights[i];
|
|
float3 co = light->co;
|
|
float3 dir = normalize(light->dir);
|
|
int shader_id = scene->shader_manager->get_shader_id(scene->lights[i]->shader);
|
|
|
|
if(!light->cast_shadow)
|
|
shader_id &= ~SHADER_CAST_SHADOW;
|
|
|
|
if(light->type == LIGHT_POINT) {
|
|
shader_id &= ~SHADER_AREA_LIGHT;
|
|
|
|
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z);
|
|
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), light->size, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
else if(light->type == LIGHT_DISTANT) {
|
|
shader_id &= ~SHADER_AREA_LIGHT;
|
|
|
|
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), dir.x, dir.y, dir.z);
|
|
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), light->size, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
else if(light->type == LIGHT_BACKGROUND) {
|
|
shader_id &= ~SHADER_AREA_LIGHT;
|
|
|
|
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), 0.0f, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 1] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
|
|
}
|
|
else if(light->type == LIGHT_AREA) {
|
|
float3 axisu = light->axisu*(light->sizeu*light->size);
|
|
float3 axisv = light->axisv*(light->sizev*light->size);
|
|
|
|
light_data[i*LIGHT_SIZE + 0] = make_float4(__int_as_float(light->type), co.x, co.y, co.z);
|
|
light_data[i*LIGHT_SIZE + 1] = make_float4(__int_as_float(shader_id), axisu.x, axisu.y, axisu.z);
|
|
light_data[i*LIGHT_SIZE + 2] = make_float4(0.0f, axisv.x, axisv.y, axisv.z);
|
|
light_data[i*LIGHT_SIZE + 3] = make_float4(0.0f, dir.x, dir.y, dir.z);
|
|
}
|
|
}
|
|
|
|
device->tex_alloc("__light_data", dscene->light_data);
|
|
}
|
|
|
|
void LightManager::device_update(Device *device, DeviceScene *dscene, Scene *scene, Progress& progress)
|
|
{
|
|
if(!need_update)
|
|
return;
|
|
|
|
device_free(device, dscene);
|
|
|
|
device_update_points(device, dscene, scene);
|
|
if(progress.get_cancel()) return;
|
|
|
|
device_update_distribution(device, dscene, scene, progress);
|
|
if(progress.get_cancel()) return;
|
|
|
|
device_update_background(device, dscene, scene, progress);
|
|
if(progress.get_cancel()) return;
|
|
|
|
need_update = false;
|
|
}
|
|
|
|
void LightManager::device_free(Device *device, DeviceScene *dscene)
|
|
{
|
|
device->tex_free(dscene->light_distribution);
|
|
device->tex_free(dscene->light_data);
|
|
device->tex_free(dscene->light_background_marginal_cdf);
|
|
device->tex_free(dscene->light_background_conditional_cdf);
|
|
|
|
dscene->light_distribution.clear();
|
|
dscene->light_data.clear();
|
|
dscene->light_background_marginal_cdf.clear();
|
|
dscene->light_background_conditional_cdf.clear();
|
|
}
|
|
|
|
void LightManager::tag_update(Scene *scene)
|
|
{
|
|
need_update = true;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|