
This was originally done with the first sample in the kernel for better performance, but it doesn't work anymore with atomics. Any benefit was very minor anyway, too small to measure it seems.
373 lines
13 KiB
C
373 lines
13 KiB
C
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device_inline void kernel_write_pass_float(ccl_global float *buffer, float value)
|
|
{
|
|
ccl_global float *buf = buffer;
|
|
#if defined(__SPLIT_KERNEL__)
|
|
atomic_add_and_fetch_float(buf, value);
|
|
#else
|
|
*buf += value;
|
|
#endif /* __SPLIT_KERNEL__ */
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_pass_float3(ccl_global float *buffer, float3 value)
|
|
{
|
|
#if defined(__SPLIT_KERNEL__)
|
|
ccl_global float *buf_x = buffer + 0;
|
|
ccl_global float *buf_y = buffer + 1;
|
|
ccl_global float *buf_z = buffer + 2;
|
|
|
|
atomic_add_and_fetch_float(buf_x, value.x);
|
|
atomic_add_and_fetch_float(buf_y, value.y);
|
|
atomic_add_and_fetch_float(buf_z, value.z);
|
|
#else
|
|
ccl_global float3 *buf = (ccl_global float3*)buffer;
|
|
*buf += value;
|
|
#endif /* __SPLIT_KERNEL__ */
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_pass_float4(ccl_global float *buffer, float4 value)
|
|
{
|
|
#if defined(__SPLIT_KERNEL__)
|
|
ccl_global float *buf_x = buffer + 0;
|
|
ccl_global float *buf_y = buffer + 1;
|
|
ccl_global float *buf_z = buffer + 2;
|
|
ccl_global float *buf_w = buffer + 3;
|
|
|
|
atomic_add_and_fetch_float(buf_x, value.x);
|
|
atomic_add_and_fetch_float(buf_y, value.y);
|
|
atomic_add_and_fetch_float(buf_z, value.z);
|
|
atomic_add_and_fetch_float(buf_w, value.w);
|
|
#else
|
|
ccl_global float4 *buf = (ccl_global float4*)buffer;
|
|
*buf += value;
|
|
#endif /* __SPLIT_KERNEL__ */
|
|
}
|
|
|
|
#ifdef __DENOISING_FEATURES__
|
|
ccl_device_inline void kernel_write_pass_float_variance(ccl_global float *buffer, float value)
|
|
{
|
|
kernel_write_pass_float(buffer, value);
|
|
|
|
/* The online one-pass variance update that's used for the megakernel can't easily be implemented
|
|
* with atomics, so for the split kernel the E[x^2] - 1/N * (E[x])^2 fallback is used. */
|
|
kernel_write_pass_float(buffer+1, value*value);
|
|
}
|
|
|
|
# if defined(__SPLIT_KERNEL__)
|
|
# define kernel_write_pass_float3_unaligned kernel_write_pass_float3
|
|
# else
|
|
ccl_device_inline void kernel_write_pass_float3_unaligned(ccl_global float *buffer, float3 value)
|
|
{
|
|
buffer[0] += value.x;
|
|
buffer[1] += value.y;
|
|
buffer[2] += value.z;
|
|
}
|
|
# endif
|
|
|
|
ccl_device_inline void kernel_write_pass_float3_variance(ccl_global float *buffer, float3 value)
|
|
{
|
|
kernel_write_pass_float3_unaligned(buffer, value);
|
|
kernel_write_pass_float3_unaligned(buffer+3, value*value);
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_denoising_shadow(KernelGlobals *kg, ccl_global float *buffer,
|
|
int sample, float path_total, float path_total_shaded)
|
|
{
|
|
if(kernel_data.film.pass_denoising_data == 0)
|
|
return;
|
|
|
|
buffer += (sample & 1)? DENOISING_PASS_SHADOW_B : DENOISING_PASS_SHADOW_A;
|
|
|
|
path_total = ensure_finite(path_total);
|
|
path_total_shaded = ensure_finite(path_total_shaded);
|
|
|
|
kernel_write_pass_float(buffer, path_total);
|
|
kernel_write_pass_float(buffer+1, path_total_shaded);
|
|
|
|
float value = path_total_shaded / max(path_total, 1e-7f);
|
|
kernel_write_pass_float(buffer+2, value*value);
|
|
}
|
|
#endif /* __DENOISING_FEATURES__ */
|
|
|
|
ccl_device_inline void kernel_update_denoising_features(KernelGlobals *kg,
|
|
ShaderData *sd,
|
|
ccl_addr_space PathState *state,
|
|
PathRadiance *L)
|
|
{
|
|
#ifdef __DENOISING_FEATURES__
|
|
if(state->denoising_feature_weight == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
L->denoising_depth += ensure_finite(state->denoising_feature_weight * sd->ray_length);
|
|
|
|
/* Skip implicitly transparent surfaces. */
|
|
if(sd->flag & SD_HAS_ONLY_VOLUME) {
|
|
return;
|
|
}
|
|
|
|
float3 normal = make_float3(0.0f, 0.0f, 0.0f);
|
|
float3 albedo = make_float3(0.0f, 0.0f, 0.0f);
|
|
float sum_weight = 0.0f, sum_nonspecular_weight = 0.0f;
|
|
|
|
for(int i = 0; i < sd->num_closure; i++) {
|
|
ShaderClosure *sc = &sd->closure[i];
|
|
|
|
if(!CLOSURE_IS_BSDF_OR_BSSRDF(sc->type))
|
|
continue;
|
|
|
|
/* All closures contribute to the normal feature, but only diffuse-like ones to the albedo. */
|
|
normal += sc->N * sc->sample_weight;
|
|
sum_weight += sc->sample_weight;
|
|
if(!bsdf_is_specular_like(sc)) {
|
|
albedo += sc->weight;
|
|
sum_nonspecular_weight += sc->sample_weight;
|
|
}
|
|
}
|
|
|
|
/* Wait for next bounce if 75% or more sample weight belongs to specular-like closures. */
|
|
if((sum_weight == 0.0f) || (sum_nonspecular_weight*4.0f > sum_weight)) {
|
|
if(sum_weight != 0.0f) {
|
|
normal /= sum_weight;
|
|
}
|
|
L->denoising_normal += ensure_finite3(state->denoising_feature_weight * normal);
|
|
L->denoising_albedo += ensure_finite3(state->denoising_feature_weight * albedo);
|
|
|
|
state->denoising_feature_weight = 0.0f;
|
|
}
|
|
#else
|
|
(void) kg;
|
|
(void) sd;
|
|
(void) state;
|
|
(void) L;
|
|
#endif /* __DENOISING_FEATURES__ */
|
|
}
|
|
|
|
#ifdef __KERNEL_DEBUG__
|
|
ccl_device_inline void kernel_write_debug_passes(KernelGlobals *kg,
|
|
ccl_global float *buffer,
|
|
PathRadiance *L)
|
|
{
|
|
int flag = kernel_data.film.pass_flag;
|
|
if(flag & PASS_BVH_TRAVERSED_NODES) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_nodes,
|
|
L->debug_data.num_bvh_traversed_nodes);
|
|
}
|
|
if(flag & PASS_BVH_TRAVERSED_INSTANCES) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_traversed_instances,
|
|
L->debug_data.num_bvh_traversed_instances);
|
|
}
|
|
if(flag & PASS_BVH_INTERSECTIONS) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_bvh_intersections,
|
|
L->debug_data.num_bvh_intersections);
|
|
}
|
|
if(flag & PASS_RAY_BOUNCES) {
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_ray_bounces,
|
|
L->debug_data.num_ray_bounces);
|
|
}
|
|
}
|
|
#endif /* __KERNEL_DEBUG__ */
|
|
|
|
ccl_device_inline void kernel_write_data_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L,
|
|
ShaderData *sd, ccl_addr_space PathState *state, float3 throughput)
|
|
{
|
|
#ifdef __PASSES__
|
|
int path_flag = state->flag;
|
|
|
|
if(!(path_flag & PATH_RAY_CAMERA))
|
|
return;
|
|
|
|
int flag = kernel_data.film.pass_flag;
|
|
|
|
if(!(flag & PASS_ALL))
|
|
return;
|
|
|
|
if(!(path_flag & PATH_RAY_SINGLE_PASS_DONE)) {
|
|
if(!(sd->flag & SD_TRANSPARENT) ||
|
|
kernel_data.film.pass_alpha_threshold == 0.0f ||
|
|
average(shader_bsdf_alpha(kg, sd)) >= kernel_data.film.pass_alpha_threshold)
|
|
{
|
|
if(state->sample == 0) {
|
|
if(flag & PASS_DEPTH) {
|
|
float depth = camera_distance(kg, sd->P);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_depth, depth);
|
|
}
|
|
if(flag & PASS_OBJECT_ID) {
|
|
float id = object_pass_id(kg, sd->object);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_object_id, id);
|
|
}
|
|
if(flag & PASS_MATERIAL_ID) {
|
|
float id = shader_pass_id(kg, sd);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_material_id, id);
|
|
}
|
|
}
|
|
|
|
if(flag & PASS_NORMAL) {
|
|
float3 normal = shader_bsdf_average_normal(kg, sd);
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_normal, normal);
|
|
}
|
|
if(flag & PASS_UV) {
|
|
float3 uv = primitive_uv(kg, sd);
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_uv, uv);
|
|
}
|
|
if(flag & PASS_MOTION) {
|
|
float4 speed = primitive_motion_vector(kg, sd);
|
|
kernel_write_pass_float4(buffer + kernel_data.film.pass_motion, speed);
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_motion_weight, 1.0f);
|
|
}
|
|
|
|
state->flag |= PATH_RAY_SINGLE_PASS_DONE;
|
|
}
|
|
}
|
|
|
|
if(flag & (PASS_DIFFUSE_INDIRECT|PASS_DIFFUSE_COLOR|PASS_DIFFUSE_DIRECT))
|
|
L->color_diffuse += shader_bsdf_diffuse(kg, sd)*throughput;
|
|
if(flag & (PASS_GLOSSY_INDIRECT|PASS_GLOSSY_COLOR|PASS_GLOSSY_DIRECT))
|
|
L->color_glossy += shader_bsdf_glossy(kg, sd)*throughput;
|
|
if(flag & (PASS_TRANSMISSION_INDIRECT|PASS_TRANSMISSION_COLOR|PASS_TRANSMISSION_DIRECT))
|
|
L->color_transmission += shader_bsdf_transmission(kg, sd)*throughput;
|
|
if(flag & (PASS_SUBSURFACE_INDIRECT|PASS_SUBSURFACE_COLOR|PASS_SUBSURFACE_DIRECT))
|
|
L->color_subsurface += shader_bsdf_subsurface(kg, sd)*throughput;
|
|
|
|
if(flag & PASS_MIST) {
|
|
/* bring depth into 0..1 range */
|
|
float mist_start = kernel_data.film.mist_start;
|
|
float mist_inv_depth = kernel_data.film.mist_inv_depth;
|
|
|
|
float depth = camera_distance(kg, sd->P);
|
|
float mist = saturate((depth - mist_start)*mist_inv_depth);
|
|
|
|
/* falloff */
|
|
float mist_falloff = kernel_data.film.mist_falloff;
|
|
|
|
if(mist_falloff == 1.0f)
|
|
;
|
|
else if(mist_falloff == 2.0f)
|
|
mist = mist*mist;
|
|
else if(mist_falloff == 0.5f)
|
|
mist = sqrtf(mist);
|
|
else
|
|
mist = powf(mist, mist_falloff);
|
|
|
|
/* modulate by transparency */
|
|
float3 alpha = shader_bsdf_alpha(kg, sd);
|
|
L->mist += (1.0f - mist)*average(throughput*alpha);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_light_passes(KernelGlobals *kg, ccl_global float *buffer, PathRadiance *L)
|
|
{
|
|
#ifdef __PASSES__
|
|
int flag = kernel_data.film.pass_flag;
|
|
|
|
if(!kernel_data.film.use_light_pass)
|
|
return;
|
|
|
|
if(flag & PASS_DIFFUSE_INDIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_indirect, L->indirect_diffuse);
|
|
if(flag & PASS_GLOSSY_INDIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_indirect, L->indirect_glossy);
|
|
if(flag & PASS_TRANSMISSION_INDIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_indirect, L->indirect_transmission);
|
|
if(flag & PASS_SUBSURFACE_INDIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_indirect, L->indirect_subsurface);
|
|
if(flag & PASS_DIFFUSE_DIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_direct, L->direct_diffuse);
|
|
if(flag & PASS_GLOSSY_DIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_direct, L->direct_glossy);
|
|
if(flag & PASS_TRANSMISSION_DIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_direct, L->direct_transmission);
|
|
if(flag & PASS_SUBSURFACE_DIRECT)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_direct, L->direct_subsurface);
|
|
|
|
if(flag & PASS_EMISSION)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_emission, L->emission);
|
|
if(flag & PASS_BACKGROUND)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_background, L->background);
|
|
if(flag & PASS_AO)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_ao, L->ao);
|
|
|
|
if(flag & PASS_DIFFUSE_COLOR)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_diffuse_color, L->color_diffuse);
|
|
if(flag & PASS_GLOSSY_COLOR)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_glossy_color, L->color_glossy);
|
|
if(flag & PASS_TRANSMISSION_COLOR)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_transmission_color, L->color_transmission);
|
|
if(flag & PASS_SUBSURFACE_COLOR)
|
|
kernel_write_pass_float3(buffer + kernel_data.film.pass_subsurface_color, L->color_subsurface);
|
|
if(flag & PASS_SHADOW) {
|
|
float4 shadow = L->shadow;
|
|
shadow.w = kernel_data.film.pass_shadow_scale;
|
|
kernel_write_pass_float4(buffer + kernel_data.film.pass_shadow, shadow);
|
|
}
|
|
if(flag & PASS_MIST)
|
|
kernel_write_pass_float(buffer + kernel_data.film.pass_mist, 1.0f - L->mist);
|
|
#endif
|
|
}
|
|
|
|
ccl_device_inline void kernel_write_result(KernelGlobals *kg, ccl_global float *buffer,
|
|
int sample, PathRadiance *L)
|
|
{
|
|
float alpha;
|
|
float3 L_sum = path_radiance_clamp_and_sum(kg, L, &alpha);
|
|
|
|
kernel_write_pass_float4(buffer, make_float4(L_sum.x, L_sum.y, L_sum.z, alpha));
|
|
|
|
kernel_write_light_passes(kg, buffer, L);
|
|
|
|
#ifdef __DENOISING_FEATURES__
|
|
if(kernel_data.film.pass_denoising_data) {
|
|
# ifdef __SHADOW_TRICKS__
|
|
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, average(L->path_total), average(L->path_total_shaded));
|
|
# else
|
|
kernel_write_denoising_shadow(kg, buffer + kernel_data.film.pass_denoising_data, sample, 0.0f, 0.0f);
|
|
# endif
|
|
if(kernel_data.film.pass_denoising_clean) {
|
|
float3 noisy, clean;
|
|
path_radiance_split_denoising(kg, L, &noisy, &clean);
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
|
|
noisy);
|
|
kernel_write_pass_float3_unaligned(buffer + kernel_data.film.pass_denoising_clean,
|
|
clean);
|
|
}
|
|
else {
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_COLOR,
|
|
ensure_finite3(L_sum));
|
|
}
|
|
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_NORMAL,
|
|
L->denoising_normal);
|
|
kernel_write_pass_float3_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_ALBEDO,
|
|
L->denoising_albedo);
|
|
kernel_write_pass_float_variance(buffer + kernel_data.film.pass_denoising_data + DENOISING_PASS_DEPTH,
|
|
L->denoising_depth);
|
|
}
|
|
#endif /* __DENOISING_FEATURES__ */
|
|
|
|
|
|
#ifdef __KERNEL_DEBUG__
|
|
kernel_write_debug_passes(kg, buffer, L);
|
|
#endif
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|