Files
blender/source/blender/blenkernel/intern/implicit.c
2010-11-05 13:37:18 +00:00

1901 lines
53 KiB
C

/* implicit.c
*
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) Blender Foundation
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_meshdata_types.h"
#include "BLI_threads.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BKE_cloth.h"
#include "BKE_collision.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_utildefines.h"
#define CLOTH_OPENMP_LIMIT 25
#ifdef _WIN32
#include <windows.h>
static LARGE_INTEGER _itstart, _itend;
static LARGE_INTEGER ifreq;
static void itstart(void)
{
static int first = 1;
if(first) {
QueryPerformanceFrequency(&ifreq);
first = 0;
}
QueryPerformanceCounter(&_itstart);
}
static void itend(void)
{
QueryPerformanceCounter(&_itend);
}
double itval()
{
return ((double)_itend.QuadPart -
(double)_itstart.QuadPart)/((double)ifreq.QuadPart);
}
#else
#include <sys/time.h>
// intrinsics need better compile flag checking
// #include <xmmintrin.h>
// #include <pmmintrin.h>
// #include <pthread.h>
static struct timeval _itstart, _itend;
static struct timezone itz;
void itstart(void)
{
gettimeofday(&_itstart, &itz);
}
static void itend(void)
{
gettimeofday(&_itend,&itz);
}
double itval()
{
double t1, t2;
t1 = (double)_itstart.tv_sec + (double)_itstart.tv_usec/(1000*1000);
t2 = (double)_itend.tv_sec + (double)_itend.tv_usec/(1000*1000);
return t2-t1;
}
#endif
static float I[3][3] = {{1,0,0},{0,1,0},{0,0,1}};
static float ZERO[3][3] = {{0,0,0}, {0,0,0}, {0,0,0}};
/*
#define C99
#ifdef C99
#defineDO_INLINE inline
#else
#defineDO_INLINE static
#endif
*/
struct Cloth;
//////////////////////////////////////////
/* fast vector / matrix library, enhancements are welcome :) -dg */
/////////////////////////////////////////
/* DEFINITIONS */
typedef float lfVector[3];
typedef struct fmatrix3x3 {
float m[3][3]; /* 3x3 matrix */
unsigned int c,r; /* column and row number */
int pinned; /* is this vertex allowed to move? */
float n1,n2,n3; /* three normal vectors for collision constrains */
unsigned int vcount; /* vertex count */
unsigned int scount; /* spring count */
} fmatrix3x3;
///////////////////////////
// float[3] vector
///////////////////////////
/* simple vector code */
/* STATUS: verified */
DO_INLINE void mul_fvector_S(float to[3], float from[3], float scalar)
{
to[0] = from[0] * scalar;
to[1] = from[1] * scalar;
to[2] = from[2] * scalar;
}
/* simple cross product */
/* STATUS: verified */
DO_INLINE void cross_fvector(float to[3], float vectorA[3], float vectorB[3])
{
to[0] = vectorA[1] * vectorB[2] - vectorA[2] * vectorB[1];
to[1] = vectorA[2] * vectorB[0] - vectorA[0] * vectorB[2];
to[2] = vectorA[0] * vectorB[1] - vectorA[1] * vectorB[0];
}
/* simple v^T * v product ("outer product") */
/* STATUS: HAS TO BE verified (*should* work) */
DO_INLINE void mul_fvectorT_fvector(float to[3][3], float vectorA[3], float vectorB[3])
{
mul_fvector_S(to[0], vectorB, vectorA[0]);
mul_fvector_S(to[1], vectorB, vectorA[1]);
mul_fvector_S(to[2], vectorB, vectorA[2]);
}
/* simple v^T * v product with scalar ("outer product") */
/* STATUS: HAS TO BE verified (*should* work) */
DO_INLINE void mul_fvectorT_fvectorS(float to[3][3], float vectorA[3], float vectorB[3], float aS)
{
mul_fvectorT_fvector(to, vectorA, vectorB);
mul_fvector_S(to[0], to[0], aS);
mul_fvector_S(to[1], to[1], aS);
mul_fvector_S(to[2], to[2], aS);
}
/* printf vector[3] on console: for debug output */
static void print_fvector(float m3[3])
{
printf("%f\n%f\n%f\n\n",m3[0],m3[1],m3[2]);
}
///////////////////////////
// long float vector float (*)[3]
///////////////////////////
/* print long vector on console: for debug output */
DO_INLINE void print_lfvector(float (*fLongVector)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
print_fvector(fLongVector[i]);
}
}
/* create long vector */
DO_INLINE lfVector *create_lfvector(unsigned int verts)
{
// TODO: check if memory allocation was successfull */
return (lfVector *)MEM_callocN (verts * sizeof(lfVector), "cloth_implicit_alloc_vector");
// return (lfVector *)cloth_aligned_malloc(&MEMORY_BASE, verts * sizeof(lfVector));
}
/* delete long vector */
DO_INLINE void del_lfvector(float (*fLongVector)[3])
{
if (fLongVector != NULL)
{
MEM_freeN (fLongVector);
// cloth_aligned_free(&MEMORY_BASE, fLongVector);
}
}
/* copy long vector */
DO_INLINE void cp_lfvector(float (*to)[3], float (*from)[3], unsigned int verts)
{
memcpy(to, from, verts * sizeof(lfVector));
}
/* init long vector with float[3] */
DO_INLINE void init_lfvector(float (*fLongVector)[3], float vector[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECCOPY(fLongVector[i], vector);
}
}
/* zero long vector with float[3] */
DO_INLINE void zero_lfvector(float (*to)[3], unsigned int verts)
{
memset(to, 0.0f, verts * sizeof(lfVector));
}
/* multiply long vector with scalar*/
DO_INLINE void mul_lfvectorS(float (*to)[3], float (*fLongVector)[3], float scalar, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
mul_fvector_S(to[i], fLongVector[i], scalar);
}
}
/* multiply long vector with scalar*/
/* A -= B * float */
DO_INLINE void submul_lfvectorS(float (*to)[3], float (*fLongVector)[3], float scalar, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUBMUL(to[i], fLongVector[i], scalar);
}
}
/* dot product for big vector */
DO_INLINE float dot_lfvector(float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
long i = 0;
float temp = 0.0;
// XXX brecht, disabled this for now (first schedule line was already disabled),
// due to non-commutative nature of floating point ops this makes the sim give
// different results each time you run it!
// schedule(guided, 2)
//#pragma omp parallel for reduction(+: temp) if(verts > CLOTH_OPENMP_LIMIT)
for(i = 0; i < (long)verts; i++)
{
temp += INPR(fLongVectorA[i], fLongVectorB[i]);
}
return temp;
}
/* A = B + C --> for big vector */
DO_INLINE void add_lfvector_lfvector(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADD(to[i], fLongVectorA[i], fLongVectorB[i]);
}
}
/* A = B + C * float --> for big vector */
DO_INLINE void add_lfvector_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADDS(to[i], fLongVectorA[i], fLongVectorB[i], bS);
}
}
/* A = B * float + C * float --> for big vector */
DO_INLINE void add_lfvectorS_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float aS, float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECADDSS(to[i], fLongVectorA[i], aS, fLongVectorB[i], bS);
}
}
/* A = B - C * float --> for big vector */
DO_INLINE void sub_lfvector_lfvectorS(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], float bS, unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUBS(to[i], fLongVectorA[i], fLongVectorB[i], bS);
}
}
/* A = B - C --> for big vector */
DO_INLINE void sub_lfvector_lfvector(float (*to)[3], float (*fLongVectorA)[3], float (*fLongVectorB)[3], unsigned int verts)
{
unsigned int i = 0;
for(i = 0; i < verts; i++)
{
VECSUB(to[i], fLongVectorA[i], fLongVectorB[i]);
}
}
///////////////////////////
// 3x3 matrix
///////////////////////////
#if 0
/* printf 3x3 matrix on console: for debug output */
static void print_fmatrix(float m3[3][3])
{
printf("%f\t%f\t%f\n",m3[0][0],m3[0][1],m3[0][2]);
printf("%f\t%f\t%f\n",m3[1][0],m3[1][1],m3[1][2]);
printf("%f\t%f\t%f\n\n",m3[2][0],m3[2][1],m3[2][2]);
}
#endif
/* copy 3x3 matrix */
DO_INLINE void cp_fmatrix(float to[3][3], float from[3][3])
{
// memcpy(to, from, sizeof (float) * 9);
VECCOPY(to[0], from[0]);
VECCOPY(to[1], from[1]);
VECCOPY(to[2], from[2]);
}
/* copy 3x3 matrix */
DO_INLINE void initdiag_fmatrixS(float to[3][3], float aS)
{
cp_fmatrix(to, ZERO);
to[0][0] = aS;
to[1][1] = aS;
to[2][2] = aS;
}
/* calculate determinant of 3x3 matrix */
DO_INLINE float det_fmatrix(float m[3][3])
{
return m[0][0]*m[1][1]*m[2][2] + m[1][0]*m[2][1]*m[0][2] + m[0][1]*m[1][2]*m[2][0]
-m[0][0]*m[1][2]*m[2][1] - m[0][1]*m[1][0]*m[2][2] - m[2][0]*m[1][1]*m[0][2];
}
DO_INLINE void inverse_fmatrix(float to[3][3], float from[3][3])
{
unsigned int i, j;
float d;
if((d=det_fmatrix(from))==0)
{
printf("can't build inverse");
exit(0);
}
for(i=0;i<3;i++)
{
for(j=0;j<3;j++)
{
int i1=(i+1)%3;
int i2=(i+2)%3;
int j1=(j+1)%3;
int j2=(j+2)%3;
// reverse indexs i&j to take transpose
to[j][i] = (from[i1][j1]*from[i2][j2]-from[i1][j2]*from[i2][j1])/d;
/*
if(i==j)
to[i][j] = 1.0f / from[i][j];
else
to[i][j] = 0;
*/
}
}
}
/* 3x3 matrix multiplied by a scalar */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_S(float matrix[3][3], float scalar)
{
mul_fvector_S(matrix[0], matrix[0],scalar);
mul_fvector_S(matrix[1], matrix[1],scalar);
mul_fvector_S(matrix[2], matrix[2],scalar);
}
/* a vector multiplied by a 3x3 matrix */
/* STATUS: verified */
DO_INLINE void mul_fvector_fmatrix(float *to, float *from, float matrix[3][3])
{
to[0] = matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] = matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] = matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 3x3 matrix multiplied by a vector */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_fvector(float *to, float matrix[3][3], float *from)
{
to[0] = INPR(matrix[0],from);
to[1] = INPR(matrix[1],from);
to[2] = INPR(matrix[2],from);
}
/* 3x3 matrix multiplied by a 3x3 matrix */
/* STATUS: verified */
DO_INLINE void mul_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
mul_fvector_fmatrix(to[0], matrixA[0],matrixB);
mul_fvector_fmatrix(to[1], matrixA[1],matrixB);
mul_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* 3x3 matrix addition with 3x3 matrix */
DO_INLINE void add_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADD(to[0], matrixA[0], matrixB[0]);
VECADD(to[1], matrixA[1], matrixB[1]);
VECADD(to[2], matrixA[2], matrixB[2]);
}
/* 3x3 matrix add-addition with 3x3 matrix */
DO_INLINE void addadd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADDADD(to[0], matrixA[0], matrixB[0]);
VECADDADD(to[1], matrixA[1], matrixB[1]);
VECADDADD(to[2], matrixA[2], matrixB[2]);
}
/* 3x3 matrix sub-addition with 3x3 matrix */
DO_INLINE void addsub_fmatrixS_fmatrixS(float to[3][3], float matrixA[3][3], float aS, float matrixB[3][3], float bS)
{
VECADDSUBSS(to[0], matrixA[0], aS, matrixB[0], bS);
VECADDSUBSS(to[1], matrixA[1], aS, matrixB[1], bS);
VECADDSUBSS(to[2], matrixA[2], aS, matrixB[2], bS);
}
/* A -= B + C (3x3 matrix sub-addition with 3x3 matrix) */
DO_INLINE void subadd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECSUBADD(to[0], matrixA[0], matrixB[0]);
VECSUBADD(to[1], matrixA[1], matrixB[1]);
VECSUBADD(to[2], matrixA[2], matrixB[2]);
}
/* A -= B*x + C*y (3x3 matrix sub-addition with 3x3 matrix) */
DO_INLINE void subadd_fmatrixS_fmatrixS(float to[3][3], float matrixA[3][3], float aS, float matrixB[3][3], float bS)
{
VECSUBADDSS(to[0], matrixA[0], aS, matrixB[0], bS);
VECSUBADDSS(to[1], matrixA[1], aS, matrixB[1], bS);
VECSUBADDSS(to[2], matrixA[2], aS, matrixB[2], bS);
}
/* A = B - C (3x3 matrix subtraction with 3x3 matrix) */
DO_INLINE void sub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECSUB(to[0], matrixA[0], matrixB[0]);
VECSUB(to[1], matrixA[1], matrixB[1]);
VECSUB(to[2], matrixA[2], matrixB[2]);
}
/* A += B - C (3x3 matrix add-subtraction with 3x3 matrix) */
DO_INLINE void addsub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
VECADDSUB(to[0], matrixA[0], matrixB[0]);
VECADDSUB(to[1], matrixA[1], matrixB[1]);
VECADDSUB(to[2], matrixA[2], matrixB[2]);
}
/////////////////////////////////////////////////////////////////
// special functions
/////////////////////////////////////////////////////////////////
/* a vector multiplied and added to/by a 3x3 matrix */
DO_INLINE void muladd_fvector_fmatrix(float to[3], float from[3], float matrix[3][3])
{
to[0] += matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] += matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] += matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 3x3 matrix multiplied and added to/by a 3x3 matrix and added to another 3x3 matrix */
DO_INLINE void muladd_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
muladd_fvector_fmatrix(to[0], matrixA[0],matrixB);
muladd_fvector_fmatrix(to[1], matrixA[1],matrixB);
muladd_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* a vector multiplied and sub'd to/by a 3x3 matrix */
DO_INLINE void mulsub_fvector_fmatrix(float to[3], float from[3], float matrix[3][3])
{
to[0] -= matrix[0][0]*from[0] + matrix[1][0]*from[1] + matrix[2][0]*from[2];
to[1] -= matrix[0][1]*from[0] + matrix[1][1]*from[1] + matrix[2][1]*from[2];
to[2] -= matrix[0][2]*from[0] + matrix[1][2]*from[1] + matrix[2][2]*from[2];
}
/* 3x3 matrix multiplied and sub'd to/by a 3x3 matrix and added to another 3x3 matrix */
DO_INLINE void mulsub_fmatrix_fmatrix(float to[3][3], float matrixA[3][3], float matrixB[3][3])
{
mulsub_fvector_fmatrix(to[0], matrixA[0],matrixB);
mulsub_fvector_fmatrix(to[1], matrixA[1],matrixB);
mulsub_fvector_fmatrix(to[2], matrixA[2],matrixB);
}
/* 3x3 matrix multiplied+added by a vector */
/* STATUS: verified */
DO_INLINE void muladd_fmatrix_fvector(float to[3], float matrix[3][3], float from[3])
{
to[0] += INPR(matrix[0],from);
to[1] += INPR(matrix[1],from);
to[2] += INPR(matrix[2],from);
}
/* 3x3 matrix multiplied+sub'ed by a vector */
DO_INLINE void mulsub_fmatrix_fvector(float to[3], float matrix[3][3], float from[3])
{
to[0] -= INPR(matrix[0],from);
to[1] -= INPR(matrix[1],from);
to[2] -= INPR(matrix[2],from);
}
/////////////////////////////////////////////////////////////////
///////////////////////////
// SPARSE SYMMETRIC big matrix with 3x3 matrix entries
///////////////////////////
/* printf a big matrix on console: for debug output */
#if 0
static void print_bfmatrix(fmatrix3x3 *m3)
{
unsigned int i = 0;
for(i = 0; i < m3[0].vcount + m3[0].scount; i++)
{
print_fmatrix(m3[i].m);
}
}
#endif
/* create big matrix */
DO_INLINE fmatrix3x3 *create_bfmatrix(unsigned int verts, unsigned int springs)
{
// TODO: check if memory allocation was successfull */
fmatrix3x3 *temp = (fmatrix3x3 *)MEM_callocN (sizeof (fmatrix3x3) * (verts + springs), "cloth_implicit_alloc_matrix");
temp[0].vcount = verts;
temp[0].scount = springs;
return temp;
}
/* delete big matrix */
DO_INLINE void del_bfmatrix(fmatrix3x3 *matrix)
{
if (matrix != NULL)
{
MEM_freeN (matrix);
}
}
/* copy big matrix */
DO_INLINE void cp_bfmatrix(fmatrix3x3 *to, fmatrix3x3 *from)
{
// TODO bounds checking
memcpy(to, from, sizeof(fmatrix3x3) * (from[0].vcount+from[0].scount) );
}
/* init big matrix */
// slow in parallel
DO_INLINE void init_bfmatrix(fmatrix3x3 *matrix, float m3[3][3])
{
unsigned int i;
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
cp_fmatrix(matrix[i].m, m3);
}
}
/* init the diagonal of big matrix */
// slow in parallel
DO_INLINE void initdiag_bfmatrix(fmatrix3x3 *matrix, float m3[3][3])
{
unsigned int i,j;
float tmatrix[3][3] = {{0,0,0},{0,0,0},{0,0,0}};
for(i = 0; i < matrix[0].vcount; i++)
{
cp_fmatrix(matrix[i].m, m3);
}
for(j = matrix[0].vcount; j < matrix[0].vcount+matrix[0].scount; j++)
{
cp_fmatrix(matrix[j].m, tmatrix);
}
}
/* multiply big matrix with scalar*/
DO_INLINE void mul_bfmatrix_S(fmatrix3x3 *matrix, float scalar)
{
unsigned int i = 0;
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
mul_fmatrix_S(matrix[i].m, scalar);
}
}
/* SPARSE SYMMETRIC multiply big matrix with long vector*/
/* STATUS: verified */
DO_INLINE void mul_bfmatrix_lfvector( float (*to)[3], fmatrix3x3 *from, lfVector *fLongVector)
{
unsigned int i = 0;
unsigned int vcount = from[0].vcount;
lfVector *temp = create_lfvector(vcount);
zero_lfvector(to, vcount);
#pragma omp parallel sections private(i) if(vcount > CLOTH_OPENMP_LIMIT)
{
#pragma omp section
{
for(i = from[0].vcount; i < from[0].vcount+from[0].scount; i++)
{
muladd_fmatrix_fvector(to[from[i].c], from[i].m, fLongVector[from[i].r]);
}
}
#pragma omp section
{
for(i = 0; i < from[0].vcount+from[0].scount; i++)
{
muladd_fmatrix_fvector(temp[from[i].r], from[i].m, fLongVector[from[i].c]);
}
}
}
add_lfvector_lfvector(to, to, temp, from[0].vcount);
del_lfvector(temp);
}
/* SPARSE SYMMETRIC multiply big matrix with long vector (for diagonal preconditioner) */
/* STATUS: verified */
DO_INLINE void mul_prevfmatrix_lfvector( float (*to)[3], fmatrix3x3 *from, lfVector *fLongVector)
{
unsigned int i = 0;
for(i = 0; i < from[0].vcount; i++)
{
mul_fmatrix_fvector(to[from[i].r], from[i].m, fLongVector[from[i].c]);
}
}
/* SPARSE SYMMETRIC add big matrix with big matrix: A = B + C*/
DO_INLINE void add_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
add_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC add big matrix with big matrix: A += B + C */
DO_INLINE void addadd_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
addadd_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC subadd big matrix with big matrix: A -= B + C */
DO_INLINE void subadd_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
subadd_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* A = B - C (SPARSE SYMMETRIC sub big matrix with big matrix) */
DO_INLINE void sub_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
sub_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC sub big matrix with big matrix S (special constraint matrix with limited entries) */
DO_INLINE void sub_bfmatrix_Smatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount; i++)
{
sub_fmatrix_fmatrix(to[matrix[i].c].m, from[matrix[i].c].m, matrix[i].m);
}
}
/* A += B - C (SPARSE SYMMETRIC addsub big matrix with big matrix) */
DO_INLINE void addsub_bfmatrix_bfmatrix( fmatrix3x3 *to, fmatrix3x3 *from, fmatrix3x3 *matrix)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
addsub_fmatrix_fmatrix(to[i].m, from[i].m, matrix[i].m);
}
}
/* SPARSE SYMMETRIC sub big matrix with big matrix*/
/* A -= B * float + C * float --> for big matrix */
/* VERIFIED */
DO_INLINE void subadd_bfmatrixS_bfmatrixS( fmatrix3x3 *to, fmatrix3x3 *from, float aS, fmatrix3x3 *matrix, float bS)
{
unsigned int i = 0;
/* process diagonal elements */
for(i = 0; i < matrix[0].vcount+matrix[0].scount; i++)
{
subadd_fmatrixS_fmatrixS(to[i].m, from[i].m, aS, matrix[i].m, bS);
}
}
///////////////////////////////////////////////////////////////////
// simulator start
///////////////////////////////////////////////////////////////////
typedef struct Implicit_Data
{
lfVector *X, *V, *Xnew, *Vnew, *olddV, *F, *B, *dV, *z;
fmatrix3x3 *A, *dFdV, *dFdX, *S, *P, *Pinv, *bigI, *M;
} Implicit_Data;
int implicit_init (Object *UNUSED(ob), ClothModifierData *clmd)
{
unsigned int i = 0;
unsigned int pinned = 0;
Cloth *cloth = NULL;
ClothVertex *verts = NULL;
ClothSpring *spring = NULL;
Implicit_Data *id = NULL;
LinkNode *search = NULL;
if(G.rt > 0)
printf("implicit_init\n");
// init memory guard
// MEMORY_BASE.first = MEMORY_BASE.last = NULL;
cloth = (Cloth *)clmd->clothObject;
verts = cloth->verts;
// create implicit base
id = (Implicit_Data *)MEM_callocN (sizeof(Implicit_Data), "implicit vecmat");
cloth->implicit = id;
/* process diagonal elements */
id->A = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->dFdV = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->dFdX = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->S = create_bfmatrix(cloth->numverts, 0);
id->Pinv = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->P = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->bigI = create_bfmatrix(cloth->numverts, cloth->numsprings); // TODO 0 springs
id->M = create_bfmatrix(cloth->numverts, cloth->numsprings);
id->X = create_lfvector(cloth->numverts);
id->Xnew = create_lfvector(cloth->numverts);
id->V = create_lfvector(cloth->numverts);
id->Vnew = create_lfvector(cloth->numverts);
id->olddV = create_lfvector(cloth->numverts);
zero_lfvector(id->olddV, cloth->numverts);
id->F = create_lfvector(cloth->numverts);
id->B = create_lfvector(cloth->numverts);
id->dV = create_lfvector(cloth->numverts);
id->z = create_lfvector(cloth->numverts);
for(i=0;i<cloth->numverts;i++)
{
id->A[i].r = id->A[i].c = id->dFdV[i].r = id->dFdV[i].c = id->dFdX[i].r = id->dFdX[i].c = id->P[i].c = id->P[i].r = id->Pinv[i].c = id->Pinv[i].r = id->bigI[i].c = id->bigI[i].r = id->M[i].r = id->M[i].c = i;
if(verts [i].flags & CLOTH_VERT_FLAG_PINNED)
{
id->S[pinned].pinned = 1;
id->S[pinned].c = id->S[pinned].r = i;
pinned++;
}
initdiag_fmatrixS(id->M[i].m, verts[i].mass);
}
// S is special and needs specific vcount and scount
id->S[0].vcount = pinned; id->S[0].scount = 0;
// init springs
search = cloth->springs;
for(i=0;i<cloth->numsprings;i++)
{
spring = search->link;
// dFdV_start[i].r = big_I[i].r = big_zero[i].r =
id->A[i+cloth->numverts].r = id->dFdV[i+cloth->numverts].r = id->dFdX[i+cloth->numverts].r =
id->P[i+cloth->numverts].r = id->Pinv[i+cloth->numverts].r = id->bigI[i+cloth->numverts].r = id->M[i+cloth->numverts].r = spring->ij;
// dFdV_start[i].c = big_I[i].c = big_zero[i].c =
id->A[i+cloth->numverts].c = id->dFdV[i+cloth->numverts].c = id->dFdX[i+cloth->numverts].c =
id->P[i+cloth->numverts].c = id->Pinv[i+cloth->numverts].c = id->bigI[i+cloth->numverts].c = id->M[i+cloth->numverts].c = spring->kl;
spring->matrix_index = i + cloth->numverts;
search = search->next;
}
initdiag_bfmatrix(id->bigI, I);
for(i = 0; i < cloth->numverts; i++)
{
VECCOPY(id->X[i], verts[i].x);
}
return 1;
}
int implicit_free (ClothModifierData *clmd)
{
Implicit_Data *id;
Cloth *cloth;
cloth = (Cloth *)clmd->clothObject;
if(cloth)
{
id = cloth->implicit;
if(id)
{
del_bfmatrix(id->A);
del_bfmatrix(id->dFdV);
del_bfmatrix(id->dFdX);
del_bfmatrix(id->S);
del_bfmatrix(id->P);
del_bfmatrix(id->Pinv);
del_bfmatrix(id->bigI);
del_bfmatrix(id->M);
del_lfvector(id->X);
del_lfvector(id->Xnew);
del_lfvector(id->V);
del_lfvector(id->Vnew);
del_lfvector(id->olddV);
del_lfvector(id->F);
del_lfvector(id->B);
del_lfvector(id->dV);
del_lfvector(id->z);
MEM_freeN(id);
}
}
return 1;
}
DO_INLINE float fb(float length, float L)
{
float x = length/L;
return (-11.541f*pow(x,4)+34.193f*pow(x,3)-39.083f*pow(x,2)+23.116f*x-9.713f);
}
DO_INLINE float fbderiv(float length, float L)
{
float x = length/L;
return (-46.164f*pow(x,3)+102.579f*pow(x,2)-78.166f*x+23.116f);
}
DO_INLINE float fbstar(float length, float L, float kb, float cb)
{
float tempfb = kb * fb(length, L);
float fbstar = cb * (length - L);
if(tempfb < fbstar)
return fbstar;
else
return tempfb;
}
// function to calculae bending spring force (taken from Choi & Co)
DO_INLINE float fbstar_jacobi(float length, float L, float kb, float cb)
{
float tempfb = kb * fb(length, L);
float fbstar = cb * (length - L);
if(tempfb < fbstar)
{
return cb;
}
else
{
return kb * fbderiv(length, L);
}
}
DO_INLINE void filter(lfVector *V, fmatrix3x3 *S)
{
unsigned int i=0;
for(i=0;i<S[0].vcount;i++)
{
mul_fvector_fmatrix(V[S[i].r], V[S[i].r], S[i].m);
}
}
static int cg_filtered(lfVector *ldV, fmatrix3x3 *lA, lfVector *lB, lfVector *z, fmatrix3x3 *S)
{
// Solves for unknown X in equation AX=B
unsigned int conjgrad_loopcount=0, conjgrad_looplimit=100;
float conjgrad_epsilon=0.0001f, conjgrad_lasterror=0;
lfVector *q, *d, *tmp, *r;
float s, starget, a, s_prev;
unsigned int numverts = lA[0].vcount;
q = create_lfvector(numverts);
d = create_lfvector(numverts);
tmp = create_lfvector(numverts);
r = create_lfvector(numverts);
// zero_lfvector(ldV, CLOTHPARTICLES);
filter(ldV, S);
add_lfvector_lfvector(ldV, ldV, z, numverts);
// r = B - Mul(tmp,A,X); // just use B if X known to be zero
cp_lfvector(r, lB, numverts);
mul_bfmatrix_lfvector(tmp, lA, ldV);
sub_lfvector_lfvector(r, r, tmp, numverts);
filter(r,S);
cp_lfvector(d, r, numverts);
s = dot_lfvector(r, r, numverts);
starget = s * sqrt(conjgrad_epsilon);
while((s>starget && conjgrad_loopcount < conjgrad_looplimit))
{
// Mul(q,A,d); // q = A*d;
mul_bfmatrix_lfvector(q, lA, d);
filter(q,S);
a = s/dot_lfvector(d, q, numverts);
// X = X + d*a;
add_lfvector_lfvectorS(ldV, ldV, d, a, numverts);
// r = r - q*a;
sub_lfvector_lfvectorS(r, r, q, a, numverts);
s_prev = s;
s = dot_lfvector(r, r, numverts);
//d = r+d*(s/s_prev);
add_lfvector_lfvectorS(d, r, d, (s/s_prev), numverts);
filter(d,S);
conjgrad_loopcount++;
}
conjgrad_lasterror = s;
del_lfvector(q);
del_lfvector(d);
del_lfvector(tmp);
del_lfvector(r);
// printf("W/O conjgrad_loopcount: %d\n", conjgrad_loopcount);
return conjgrad_loopcount<conjgrad_looplimit; // true means we reached desired accuracy in given time - ie stable
}
// block diagonalizer
DO_INLINE void BuildPPinv(fmatrix3x3 *lA, fmatrix3x3 *P, fmatrix3x3 *Pinv)
{
unsigned int i = 0;
// Take only the diagonal blocks of A
// #pragma omp parallel for private(i) if(lA[0].vcount > CLOTH_OPENMP_LIMIT)
for(i = 0; i<lA[0].vcount; i++)
{
// block diagonalizer
cp_fmatrix(P[i].m, lA[i].m);
inverse_fmatrix(Pinv[i].m, P[i].m);
}
}
#if 0
/*
// version 1.3
static int cg_filtered_pre(lfVector *dv, fmatrix3x3 *lA, lfVector *lB, lfVector *z, fmatrix3x3 *S, fmatrix3x3 *P, fmatrix3x3 *Pinv)
{
unsigned int numverts = lA[0].vcount, iterations = 0, conjgrad_looplimit=100;
float delta0 = 0, deltaNew = 0, deltaOld = 0, alpha = 0;
float conjgrad_epsilon=0.0001; // 0.2 is dt for steps=5
lfVector *r = create_lfvector(numverts);
lfVector *p = create_lfvector(numverts);
lfVector *s = create_lfvector(numverts);
lfVector *h = create_lfvector(numverts);
BuildPPinv(lA, P, Pinv);
filter(dv, S);
add_lfvector_lfvector(dv, dv, z, numverts);
mul_bfmatrix_lfvector(r, lA, dv);
sub_lfvector_lfvector(r, lB, r, numverts);
filter(r, S);
mul_prevfmatrix_lfvector(p, Pinv, r);
filter(p, S);
deltaNew = dot_lfvector(r, p, numverts);
delta0 = deltaNew * sqrt(conjgrad_epsilon);
// itstart();
while ((deltaNew > delta0) && (iterations < conjgrad_looplimit))
{
iterations++;
mul_bfmatrix_lfvector(s, lA, p);
filter(s, S);
alpha = deltaNew / dot_lfvector(p, s, numverts);
add_lfvector_lfvectorS(dv, dv, p, alpha, numverts);
add_lfvector_lfvectorS(r, r, s, -alpha, numverts);
mul_prevfmatrix_lfvector(h, Pinv, r);
filter(h, S);
deltaOld = deltaNew;
deltaNew = dot_lfvector(r, h, numverts);
add_lfvector_lfvectorS(p, h, p, deltaNew / deltaOld, numverts);
filter(p, S);
}
// itend();
// printf("cg_filtered_pre time: %f\n", (float)itval());
del_lfvector(h);
del_lfvector(s);
del_lfvector(p);
del_lfvector(r);
printf("iterations: %d\n", iterations);
return iterations<conjgrad_looplimit;
}
*/
// version 1.4
static int cg_filtered_pre(lfVector *dv, fmatrix3x3 *lA, lfVector *lB, lfVector *z, fmatrix3x3 *S, fmatrix3x3 *P, fmatrix3x3 *Pinv, fmatrix3x3 *bigI)
{
unsigned int numverts = lA[0].vcount, iterations = 0, conjgrad_looplimit=100;
float delta0 = 0, deltaNew = 0, deltaOld = 0, alpha = 0, tol = 0;
lfVector *r = create_lfvector(numverts);
lfVector *p = create_lfvector(numverts);
lfVector *s = create_lfvector(numverts);
lfVector *h = create_lfvector(numverts);
lfVector *bhat = create_lfvector(numverts);
lfVector *btemp = create_lfvector(numverts);
BuildPPinv(lA, P, Pinv);
initdiag_bfmatrix(bigI, I);
sub_bfmatrix_Smatrix(bigI, bigI, S);
// x = Sx_0+(I-S)z
filter(dv, S);
add_lfvector_lfvector(dv, dv, z, numverts);
// b_hat = S(b-A(I-S)z)
mul_bfmatrix_lfvector(r, lA, z);
mul_bfmatrix_lfvector(bhat, bigI, r);
sub_lfvector_lfvector(bhat, lB, bhat, numverts);
// r = S(b-Ax)
mul_bfmatrix_lfvector(r, lA, dv);
sub_lfvector_lfvector(r, lB, r, numverts);
filter(r, S);
// p = SP^-1r
mul_prevfmatrix_lfvector(p, Pinv, r);
filter(p, S);
// delta0 = bhat^TP^-1bhat
mul_prevfmatrix_lfvector(btemp, Pinv, bhat);
delta0 = dot_lfvector(bhat, btemp, numverts);
// deltaNew = r^TP
deltaNew = dot_lfvector(r, p, numverts);
/*
filter(dv, S);
add_lfvector_lfvector(dv, dv, z, numverts);
mul_bfmatrix_lfvector(r, lA, dv);
sub_lfvector_lfvector(r, lB, r, numverts);
filter(r, S);
mul_prevfmatrix_lfvector(p, Pinv, r);
filter(p, S);
deltaNew = dot_lfvector(r, p, numverts);
delta0 = deltaNew * sqrt(conjgrad_epsilon);
*/
// itstart();
tol = (0.01*0.2);
while ((deltaNew > delta0*tol*tol) && (iterations < conjgrad_looplimit))
{
iterations++;
mul_bfmatrix_lfvector(s, lA, p);
filter(s, S);
alpha = deltaNew / dot_lfvector(p, s, numverts);
add_lfvector_lfvectorS(dv, dv, p, alpha, numverts);
add_lfvector_lfvectorS(r, r, s, -alpha, numverts);
mul_prevfmatrix_lfvector(h, Pinv, r);
filter(h, S);
deltaOld = deltaNew;
deltaNew = dot_lfvector(r, h, numverts);
add_lfvector_lfvectorS(p, h, p, deltaNew / deltaOld, numverts);
filter(p, S);
}
// itend();
// printf("cg_filtered_pre time: %f\n", (float)itval());
del_lfvector(btemp);
del_lfvector(bhat);
del_lfvector(h);
del_lfvector(s);
del_lfvector(p);
del_lfvector(r);
// printf("iterations: %d\n", iterations);
return iterations<conjgrad_looplimit;
}
#endif
// outer product is NOT cross product!!!
DO_INLINE void dfdx_spring_type1(float to[3][3], float extent[3], float length, float L, float dot, float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
// return (outerprod(dir,dir)*k + (I - outerprod(dir,dir))*(k - ((k*L)/length)));
float temp[3][3];
float temp1 = k*(1.0 - (L/length));
mul_fvectorT_fvectorS(temp, extent, extent, 1.0 / dot);
sub_fmatrix_fmatrix(to, I, temp);
mul_fmatrix_S(to, temp1);
mul_fvectorT_fvectorS(temp, extent, extent, k/ dot);
add_fmatrix_fmatrix(to, to, temp);
/*
mul_fvectorT_fvector(temp, dir, dir);
sub_fmatrix_fmatrix(to, I, temp);
mul_fmatrix_S(to, k* (1.0f-(L/length)));
mul_fmatrix_S(temp, k);
add_fmatrix_fmatrix(to, temp, to);
*/
}
DO_INLINE void dfdx_spring_type2(float to[3][3], float dir[3], float length, float L, float k, float cb)
{
// return outerprod(dir,dir)*fbstar_jacobi(length, L, k, cb);
mul_fvectorT_fvectorS(to, dir, dir, fbstar_jacobi(length, L, k, cb));
}
DO_INLINE void dfdv_damp(float to[3][3], float dir[3], float damping)
{
// derivative of force wrt velocity.
mul_fvectorT_fvectorS(to, dir, dir, damping);
}
DO_INLINE void dfdx_spring(float to[3][3], float dir[3],float length,float L,float k)
{
// dir is unit length direction, rest is spring's restlength, k is spring constant.
//return ( (I-outerprod(dir,dir))*Min(1.0f,rest/length) - I) * -k;
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
mul_fmatrix_S(to, (L/length));
sub_fmatrix_fmatrix(to, to, I);
mul_fmatrix_S(to, -k);
}
// unused atm
DO_INLINE void dfdx_damp(float to[3][3], float dir[3],float length,const float vel[3],float rest,float damping)
{
// inner spring damping vel is the relative velocity of the endpoints.
// return (I-outerprod(dir,dir)) * (-damping * -(dot(dir,vel)/Max(length,rest)));
mul_fvectorT_fvector(to, dir, dir);
sub_fmatrix_fmatrix(to, I, to);
mul_fmatrix_S(to, (-damping * -(INPR(dir,vel)/MAX2(length,rest))));
}
DO_INLINE void cloth_calc_spring_force(ClothModifierData *clmd, ClothSpring *s, lfVector *UNUSED(lF), lfVector *X, lfVector *V, fmatrix3x3 *UNUSED(dFdV), fmatrix3x3 *UNUSED(dFdX), float time)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
float extent[3];
float length = 0, dot = 0;
float dir[3] = {0,0,0};
float vel[3];
float k = 0.0f;
float L = s->restlen;
float cb = clmd->sim_parms->structural;
float nullf[3] = {0,0,0};
float stretch_force[3] = {0,0,0};
float bending_force[3] = {0,0,0};
float damping_force[3] = {0,0,0};
float nulldfdx[3][3]={ {0,0,0}, {0,0,0}, {0,0,0}};
float scaling = 0.0;
int no_compress = clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_NO_SPRING_COMPRESS;
VECCOPY(s->f, nullf);
cp_fmatrix(s->dfdx, nulldfdx);
cp_fmatrix(s->dfdv, nulldfdx);
// calculate elonglation
VECSUB(extent, X[s->kl], X[s->ij]);
VECSUB(vel, V[s->kl], V[s->ij]);
dot = INPR(extent, extent);
length = sqrt(dot);
s->flags &= ~CLOTH_SPRING_FLAG_NEEDED;
if(length > ALMOST_ZERO)
{
/*
if(length>L)
{
if((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED)
&& ((((length-L)*100.0f/L) > clmd->sim_parms->maxspringlen))) // cut spring!
{
s->flags |= CSPRING_FLAG_DEACTIVATE;
return;
}
}
*/
mul_fvector_S(dir, extent, 1.0f/length);
}
else
{
mul_fvector_S(dir, extent, 0.0f);
}
// calculate force of structural + shear springs
if((s->type & CLOTH_SPRING_TYPE_STRUCTURAL) || (s->type & CLOTH_SPRING_TYPE_SHEAR))
{
if(length > L || no_compress)
{
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms->structural;
scaling = k + s->stiffness * ABS(clmd->sim_parms->max_struct-k);
k = scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
// TODO: verify, half verified (couldn't see error)
mul_fvector_S(stretch_force, dir, k*(length-L));
VECADD(s->f, s->f, stretch_force);
// Ascher & Boxman, p.21: Damping only during elonglation
// something wrong with it...
mul_fvector_S(damping_force, dir, clmd->sim_parms->Cdis * INPR(vel,dir));
VECADD(s->f, s->f, damping_force);
/* VERIFIED */
dfdx_spring(s->dfdx, dir, length, L, k);
/* VERIFIED */
dfdv_damp(s->dfdv, dir, clmd->sim_parms->Cdis);
}
}
else if(s->type & CLOTH_SPRING_TYPE_GOAL)
{
float tvect[3];
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
// current_position = xold + t * (newposition - xold)
VECSUB(tvect, verts[s->ij].xconst, verts[s->ij].xold);
mul_fvector_S(tvect, tvect, time);
VECADD(tvect, tvect, verts[s->ij].xold);
VECSUB(extent, X[s->ij], tvect);
dot = INPR(extent, extent);
length = sqrt(dot);
k = clmd->sim_parms->goalspring;
scaling = k + s->stiffness * ABS(clmd->sim_parms->max_struct-k);
k = verts [s->ij].goal * scaling / (clmd->sim_parms->avg_spring_len + FLT_EPSILON);
VECADDS(s->f, s->f, extent, -k);
mul_fvector_S(damping_force, dir, clmd->sim_parms->goalfrict * 0.01 * INPR(vel,dir));
VECADD(s->f, s->f, damping_force);
// HERE IS THE PROBLEM!!!!
// dfdx_spring(s->dfdx, dir, length, 0.0, k);
// dfdv_damp(s->dfdv, dir, MIN2(1.0, (clmd->sim_parms->goalfrict/100.0)));
}
else // calculate force of bending springs
{
if(length < L)
{
s->flags |= CLOTH_SPRING_FLAG_NEEDED;
k = clmd->sim_parms->bending;
scaling = k + s->stiffness * ABS(clmd->sim_parms->max_bend-k);
cb = k = scaling / (20.0*(clmd->sim_parms->avg_spring_len + FLT_EPSILON));
mul_fvector_S(bending_force, dir, fbstar(length, L, k, cb));
VECADD(s->f, s->f, bending_force);
dfdx_spring_type2(s->dfdx, dir, length,L, k, cb);
}
}
}
DO_INLINE void cloth_apply_spring_force(ClothModifierData *UNUSED(clmd), ClothSpring *s, lfVector *lF, lfVector *UNUSED(X), lfVector *UNUSED(V), fmatrix3x3 *dFdV, fmatrix3x3 *dFdX)
{
if(s->flags & CLOTH_SPRING_FLAG_NEEDED)
{
if(!(s->type & CLOTH_SPRING_TYPE_BENDING))
{
sub_fmatrix_fmatrix(dFdV[s->ij].m, dFdV[s->ij].m, s->dfdv);
sub_fmatrix_fmatrix(dFdV[s->kl].m, dFdV[s->kl].m, s->dfdv);
add_fmatrix_fmatrix(dFdV[s->matrix_index].m, dFdV[s->matrix_index].m, s->dfdv);
}
VECADD(lF[s->ij], lF[s->ij], s->f);
if(!(s->type & CLOTH_SPRING_TYPE_GOAL))
VECSUB(lF[s->kl], lF[s->kl], s->f);
sub_fmatrix_fmatrix(dFdX[s->kl].m, dFdX[s->kl].m, s->dfdx);
sub_fmatrix_fmatrix(dFdX[s->ij].m, dFdX[s->ij].m, s->dfdx);
add_fmatrix_fmatrix(dFdX[s->matrix_index].m, dFdX[s->matrix_index].m, s->dfdx);
}
}
static void CalcFloat( float *v1, float *v2, float *v3, float *n)
{
float n1[3],n2[3];
n1[0]= v1[0]-v2[0];
n2[0]= v2[0]-v3[0];
n1[1]= v1[1]-v2[1];
n2[1]= v2[1]-v3[1];
n1[2]= v1[2]-v2[2];
n2[2]= v2[2]-v3[2];
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
}
static void CalcFloat4( float *v1, float *v2, float *v3, float *v4, float *n)
{
/* real cross! */
float n1[3],n2[3];
n1[0]= v1[0]-v3[0];
n1[1]= v1[1]-v3[1];
n1[2]= v1[2]-v3[2];
n2[0]= v2[0]-v4[0];
n2[1]= v2[1]-v4[1];
n2[2]= v2[2]-v4[2];
n[0]= n1[1]*n2[2]-n1[2]*n2[1];
n[1]= n1[2]*n2[0]-n1[0]*n2[2];
n[2]= n1[0]*n2[1]-n1[1]*n2[0];
}
static float calculateVertexWindForce(float wind[3], float vertexnormal[3])
{
return (INPR(wind, vertexnormal));
}
typedef struct HairGridVert {
float velocity[3];
float density;
} HairGridVert;
#define HAIR_GRID_INDEX(vec, min, max, axis) (int)( (vec[axis] - min[axis]) / (max[axis] - min[axis]) * 9.99f );
/* Smoothing of hair velocities:
* adapted from
Volumetric Methods for Simulation and Rendering of Hair
by Lena Petrovic, Mark Henne and John Anderson
* Pixar Technical Memo #06-08, Pixar Animation Studios
*/
static void hair_velocity_smoothing(ClothModifierData *clmd, lfVector *lF, lfVector *lX, lfVector *lV, unsigned int numverts)
{
/* TODO: This is an initial implementation and should be made much better in due time.
* What should at least be implemented is a grid size parameter and a smoothing kernel
* for bigger grids.
*/
/* 10x10x10 grid gives nice initial results */
HairGridVert grid[10][10][10];
HairGridVert colg[10][10][10];
ListBase *colliders = get_collider_cache(clmd->scene, NULL, NULL);
ColliderCache *col = NULL;
float gmin[3], gmax[3], density;
/* 2.0f is an experimental value that seems to give good results */
float smoothfac = 2.0f * clmd->sim_parms->velocity_smooth;
float collfac = 2.0f * clmd->sim_parms->collider_friction;
unsigned int v = 0;
unsigned int i = 0;
int j = 0;
int k = 0;
INIT_MINMAX(gmin, gmax);
for(i = 0; i < numverts; i++)
DO_MINMAX(lX[i], gmin, gmax);
/* initialize grid */
for(i = 0; i < 10; i++) {
for(j = 0; j < 10; j++) {
for(k = 0; k < 10; k++) {
grid[i][j][k].velocity[0] = 0.0f;
grid[i][j][k].velocity[1] = 0.0f;
grid[i][j][k].velocity[2] = 0.0f;
grid[i][j][k].density = 0.0f;
colg[i][j][k].velocity[0] = 0.0f;
colg[i][j][k].velocity[1] = 0.0f;
colg[i][j][k].velocity[2] = 0.0f;
colg[i][j][k].density = 0.0f;
}
}
}
/* gather velocities & density */
if(smoothfac > 0.0f) for(v = 0; v < numverts; v++) {
i = HAIR_GRID_INDEX(lX[v], gmin, gmax, 0);
j = HAIR_GRID_INDEX(lX[v], gmin, gmax, 1);
k = HAIR_GRID_INDEX(lX[v], gmin, gmax, 2);
if (i < 0 || j < 0 || k < 0 || i > 10 || j >= 10 || k >= 10)
continue;
grid[i][j][k].velocity[0] += lV[v][0];
grid[i][j][k].velocity[1] += lV[v][1];
grid[i][j][k].velocity[2] += lV[v][2];
grid[i][j][k].density += 1.0f;
}
/* gather colliders */
if(colliders && collfac > 0.0f) for(col = colliders->first; col; col = col->next)
{
MVert *loc0 = col->collmd->x;
MVert *loc1 = col->collmd->xnew;
float vel[3];
for(v=0; v<col->collmd->numverts; v++, loc0++, loc1++) {
i = HAIR_GRID_INDEX(loc1->co, gmin, gmax, 0);
if(i>=0 && i<10) {
j = HAIR_GRID_INDEX(loc1->co, gmin, gmax, 1);
if(j>=0 && j<10) {
k = HAIR_GRID_INDEX(loc1->co, gmin, gmax, 2);
if(k>=0 && k<10) {
VECSUB(vel, loc1->co, loc0->co);
colg[i][j][k].velocity[0] += vel[0];
colg[i][j][k].velocity[1] += vel[1];
colg[i][j][k].velocity[2] += vel[2];
colg[i][j][k].density += 1.0;
}
}
}
}
}
/* divide velocity with density */
for(i = 0; i < 10; i++) {
for(j = 0; j < 10; j++) {
for(k = 0; k < 10; k++) {
density = grid[i][j][k].density;
if(density > 0.0f) {
grid[i][j][k].velocity[0] /= density;
grid[i][j][k].velocity[1] /= density;
grid[i][j][k].velocity[2] /= density;
}
density = colg[i][j][k].density;
if(density > 0.0f) {
colg[i][j][k].velocity[0] /= density;
colg[i][j][k].velocity[1] /= density;
colg[i][j][k].velocity[2] /= density;
}
}
}
}
/* calculate forces */
for(v = 0; v < numverts; v++) {
i = HAIR_GRID_INDEX(lX[v], gmin, gmax, 0);
j = HAIR_GRID_INDEX(lX[v], gmin, gmax, 1);
k = HAIR_GRID_INDEX(lX[v], gmin, gmax, 2);
if (i < 0 || j < 0 || k < 0 || i > 10 || j >= 10 || k >= 10)
continue;
lF[v][0] += smoothfac * (grid[i][j][k].velocity[0] - lV[v][0]);
lF[v][1] += smoothfac * (grid[i][j][k].velocity[1] - lV[v][1]);
lF[v][2] += smoothfac * (grid[i][j][k].velocity[2] - lV[v][2]);
if(colg[i][j][k].density > 0.0f) {
lF[v][0] += collfac * (colg[i][j][k].velocity[0] - lV[v][0]);
lF[v][1] += collfac * (colg[i][j][k].velocity[1] - lV[v][1]);
lF[v][2] += collfac * (colg[i][j][k].velocity[2] - lV[v][2]);
}
}
free_collider_cache(&colliders);
}
static void cloth_calc_force(ClothModifierData *clmd, float UNUSED(frame), lfVector *lF, lfVector *lX, lfVector *lV, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, ListBase *effectors, float time, fmatrix3x3 *M)
{
/* Collect forces and derivatives: F,dFdX,dFdV */
Cloth *cloth = clmd->clothObject;
unsigned int i = 0;
float spring_air = clmd->sim_parms->Cvi * 0.01f; /* viscosity of air scaled in percent */
float gravity[3] = {0.0f, 0.0f, 0.0f};
float tm2[3][3] = {{0}};
MFace *mfaces = cloth->mfaces;
unsigned int numverts = cloth->numverts;
LinkNode *search = cloth->springs;
lfVector *winvec;
EffectedPoint epoint;
tm2[0][0]= tm2[1][1]= tm2[2][2]= -spring_air;
/* global acceleration (gravitation) */
if(clmd->scene->physics_settings.flag & PHYS_GLOBAL_GRAVITY) {
VECCOPY(gravity, clmd->scene->physics_settings.gravity);
mul_fvector_S(gravity, gravity, 0.001f * clmd->sim_parms->effector_weights->global_gravity); /* scale gravity force */
}
/* set dFdX jacobi matrix to zero */
init_bfmatrix(dFdX, ZERO);
/* set dFdX jacobi matrix diagonal entries to -spring_air */
initdiag_bfmatrix(dFdV, tm2);
init_lfvector(lF, gravity, numverts);
if(clmd->sim_parms->velocity_smooth > 0.0f || clmd->sim_parms->collider_friction > 0.0f)
hair_velocity_smoothing(clmd, lF, lX, lV, numverts);
/* multiply lF with mass matrix
// force = mass * acceleration (in this case: gravity)
*/
for(i = 0; i < numverts; i++)
{
float temp[3];
VECCOPY(temp, lF[i]);
mul_fmatrix_fvector(lF[i], M[i].m, temp);
}
submul_lfvectorS(lF, lV, spring_air, numverts);
/* handle external forces like wind */
if(effectors)
{
// 0 = force, 1 = normalized force
winvec = create_lfvector(cloth->numverts);
if(!winvec)
printf("winvec: out of memory in implicit.c\n");
// precalculate wind forces
for(i = 0; i < cloth->numverts; i++)
{
pd_point_from_loc(clmd->scene, (float*)lX[i], (float*)lV[i], i, &epoint);
pdDoEffectors(effectors, NULL, clmd->sim_parms->effector_weights, &epoint, winvec[i], NULL);
}
for(i = 0; i < cloth->numfaces; i++)
{
float trinormal[3]={0,0,0}; // normalized triangle normal
float triunnormal[3]={0,0,0}; // not-normalized-triangle normal
float tmp[3]={0,0,0};
float factor = (mfaces[i].v4) ? 0.25 : 1.0 / 3.0;
factor *= 0.02;
// calculate face normal
if(mfaces[i].v4)
CalcFloat4(lX[mfaces[i].v1],lX[mfaces[i].v2],lX[mfaces[i].v3],lX[mfaces[i].v4],triunnormal);
else
CalcFloat(lX[mfaces[i].v1],lX[mfaces[i].v2],lX[mfaces[i].v3],triunnormal);
normalize_v3_v3(trinormal, triunnormal);
// add wind from v1
VECCOPY(tmp, trinormal);
mul_v3_fl(tmp, calculateVertexWindForce(winvec[mfaces[i].v1], triunnormal));
VECADDS(lF[mfaces[i].v1], lF[mfaces[i].v1], tmp, factor);
// add wind from v2
VECCOPY(tmp, trinormal);
mul_v3_fl(tmp, calculateVertexWindForce(winvec[mfaces[i].v2], triunnormal));
VECADDS(lF[mfaces[i].v2], lF[mfaces[i].v2], tmp, factor);
// add wind from v3
VECCOPY(tmp, trinormal);
mul_v3_fl(tmp, calculateVertexWindForce(winvec[mfaces[i].v3], triunnormal));
VECADDS(lF[mfaces[i].v3], lF[mfaces[i].v3], tmp, factor);
// add wind from v4
if(mfaces[i].v4)
{
VECCOPY(tmp, trinormal);
mul_v3_fl(tmp, calculateVertexWindForce(winvec[mfaces[i].v4], triunnormal));
VECADDS(lF[mfaces[i].v4], lF[mfaces[i].v4], tmp, factor);
}
}
/* Hair has only edges */
if(cloth->numfaces == 0) {
ClothSpring *spring;
float edgevec[3]={0,0,0}; //edge vector
float edgeunnormal[3]={0,0,0}; // not-normalized-edge normal
float tmp[3]={0,0,0};
float factor = 0.01;
search = cloth->springs;
while(search) {
spring = search->link;
if(spring->type == CLOTH_SPRING_TYPE_STRUCTURAL) {
VECSUB(edgevec, (float*)lX[spring->ij], (float*)lX[spring->kl]);
project_v3_v3v3(tmp, winvec[spring->ij], edgevec);
VECSUB(edgeunnormal, winvec[spring->ij], tmp);
/* hair doesn't stretch too much so we can use restlen pretty safely */
VECADDS(lF[spring->ij], lF[spring->ij], edgeunnormal, spring->restlen * factor);
project_v3_v3v3(tmp, winvec[spring->kl], edgevec);
VECSUB(edgeunnormal, winvec[spring->kl], tmp);
VECADDS(lF[spring->kl], lF[spring->kl], edgeunnormal, spring->restlen * factor);
}
search = search->next;
}
}
del_lfvector(winvec);
}
// calculate spring forces
search = cloth->springs;
while(search)
{
// only handle active springs
// if(((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) && !(springs[i].flags & CSPRING_FLAG_DEACTIVATE))|| !(clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED)){}
cloth_calc_spring_force(clmd, search->link, lF, lX, lV, dFdV, dFdX, time);
search = search->next;
}
// apply spring forces
search = cloth->springs;
while(search)
{
// only handle active springs
// if(((clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED) && !(springs[i].flags & CSPRING_FLAG_DEACTIVATE))|| !(clmd->sim_parms->flags & CSIMSETT_FLAG_TEARING_ENABLED))
cloth_apply_spring_force(clmd, search->link, lF, lX, lV, dFdV, dFdX);
search = search->next;
}
// printf("\n");
}
static void simulate_implicit_euler(lfVector *Vnew, lfVector *UNUSED(lX), lfVector *lV, lfVector *lF, fmatrix3x3 *dFdV, fmatrix3x3 *dFdX, float dt, fmatrix3x3 *A, lfVector *B, lfVector *dV, fmatrix3x3 *S, lfVector *z, lfVector *olddV, fmatrix3x3 *UNUSED(P), fmatrix3x3 *UNUSED(Pinv), fmatrix3x3 *M, fmatrix3x3 *UNUSED(bigI))
{
unsigned int numverts = dFdV[0].vcount;
lfVector *dFdXmV = create_lfvector(numverts);
zero_lfvector(dV, numverts);
cp_bfmatrix(A, M);
subadd_bfmatrixS_bfmatrixS(A, dFdV, dt, dFdX, (dt*dt));
mul_bfmatrix_lfvector(dFdXmV, dFdX, lV);
add_lfvectorS_lfvectorS(B, lF, dt, dFdXmV, (dt*dt), numverts);
itstart();
cg_filtered(dV, A, B, z, S); /* conjugate gradient algorithm to solve Ax=b */
// cg_filtered_pre(dV, A, B, z, S, P, Pinv, bigI);
itend();
// printf("cg_filtered calc time: %f\n", (float)itval());
cp_lfvector(olddV, dV, numverts);
// advance velocities
add_lfvector_lfvector(Vnew, lV, dV, numverts);
del_lfvector(dFdXmV);
}
int implicit_solver (Object *ob, float frame, ClothModifierData *clmd, ListBase *effectors)
{
unsigned int i=0;
float step=0.0f, tf=clmd->sim_parms->timescale;
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts;
float dt = clmd->sim_parms->timescale / clmd->sim_parms->stepsPerFrame;
float spf = (float)clmd->sim_parms->stepsPerFrame / clmd->sim_parms->timescale;
Implicit_Data *id = cloth->implicit;
int do_extra_solve;
if(clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) /* do goal stuff */
{
for(i = 0; i < numverts; i++)
{
// update velocities with constrained velocities from pinned verts
if(verts [i].flags & CLOTH_VERT_FLAG_PINNED)
{
VECSUB(id->V[i], verts[i].xconst, verts[i].xold);
// mul_v3_fl(id->V[i], clmd->sim_parms->stepsPerFrame);
}
}
}
while(step < tf)
{
// calculate forces
cloth_calc_force(clmd, frame, id->F, id->X, id->V, id->dFdV, id->dFdX, effectors, step, id->M);
// calculate new velocity
simulate_implicit_euler(id->Vnew, id->X, id->V, id->F, id->dFdV, id->dFdX, dt, id->A, id->B, id->dV, id->S, id->z, id->olddV, id->P, id->Pinv, id->M, id->bigI);
// advance positions
add_lfvector_lfvectorS(id->Xnew, id->X, id->Vnew, dt, numverts);
/* move pinned verts to correct position */
for(i = 0; i < numverts; i++)
{
if(clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL)
{
if(verts [i].flags & CLOTH_VERT_FLAG_PINNED)
{
float tvect[3] = {.0,.0,.0};
VECSUB(tvect, verts[i].xconst, verts[i].xold);
mul_fvector_S(tvect, tvect, step+dt);
VECADD(tvect, tvect, verts[i].xold);
VECCOPY(id->Xnew[i], tvect);
}
}
VECCOPY(verts[i].txold, id->X[i]);
}
if(clmd->coll_parms->flags & CLOTH_COLLSETTINGS_FLAG_ENABLED && clmd->clothObject->bvhtree)
{
// collisions
// itstart();
// update verts to current positions
for(i = 0; i < numverts; i++)
{
VECCOPY(verts[i].tx, id->Xnew[i]);
VECSUB(verts[i].tv, verts[i].tx, verts[i].txold);
VECCOPY(verts[i].v, verts[i].tv);
}
// call collision function
// TODO: check if "step" or "step+dt" is correct - dg
do_extra_solve = cloth_bvh_objcollision(ob, clmd, step/clmd->sim_parms->timescale, dt/clmd->sim_parms->timescale);
// copy corrected positions back to simulation
for(i = 0; i < numverts; i++)
{
// correct velocity again, just to be sure we had to change it due to adaptive collisions
VECSUB(verts[i].tv, verts[i].tx, id->X[i]);
if(do_extra_solve)
{
if((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) && (verts [i].flags & CLOTH_VERT_FLAG_PINNED))
continue;
VECCOPY(id->Xnew[i], verts[i].tx);
VECCOPY(id->Vnew[i], verts[i].tv);
mul_v3_fl(id->Vnew[i], spf);
}
}
// X = Xnew;
cp_lfvector(id->X, id->Xnew, numverts);
// if there were collisions, advance the velocity from v_n+1/2 to v_n+1
if(do_extra_solve)
{
// V = Vnew;
cp_lfvector(id->V, id->Vnew, numverts);
// calculate
cloth_calc_force(clmd, frame, id->F, id->X, id->V, id->dFdV, id->dFdX, effectors, step+dt, id->M);
simulate_implicit_euler(id->Vnew, id->X, id->V, id->F, id->dFdV, id->dFdX, dt / 2.0f, id->A, id->B, id->dV, id->S, id->z, id->olddV, id->P, id->Pinv, id->M, id->bigI);
}
}
else
{
// X = Xnew;
cp_lfvector(id->X, id->Xnew, numverts);
}
// itend();
// printf("collision time: %f\n", (float)itval());
// V = Vnew;
cp_lfvector(id->V, id->Vnew, numverts);
step += dt;
}
for(i = 0; i < numverts; i++)
{
if((clmd->sim_parms->flags & CLOTH_SIMSETTINGS_FLAG_GOAL) && (verts [i].flags & CLOTH_VERT_FLAG_PINNED))
{
VECCOPY(verts[i].txold, verts[i].xconst); // TODO: test --> should be .x
VECCOPY(verts[i].x, verts[i].xconst);
VECCOPY(verts[i].v, id->V[i]);
}
else
{
VECCOPY(verts[i].txold, id->X[i]);
VECCOPY(verts[i].x, id->X[i]);
VECCOPY(verts[i].v, id->V[i]);
}
}
return 1;
}
void implicit_set_positions (ClothModifierData *clmd)
{
Cloth *cloth = clmd->clothObject;
ClothVertex *verts = cloth->verts;
unsigned int numverts = cloth->numverts, i;
Implicit_Data *id = cloth->implicit;
for(i = 0; i < numverts; i++)
{
VECCOPY(id->X[i], verts[i].x);
VECCOPY(id->V[i], verts[i].v);
}
if(G.rt > 0)
printf("implicit_set_positions\n");
}