268 lines
7.3 KiB
C++
268 lines
7.3 KiB
C++
/*
|
|
Bullet Continuous Collision Detection and Physics Library
|
|
Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "ConvexConvexAlgorithm.h"
|
|
|
|
#include <stdio.h>
|
|
#include "NarrowPhaseCollision/DiscreteCollisionDetectorInterface.h"
|
|
#include "BroadphaseCollision/BroadphaseInterface.h"
|
|
#include "CollisionDispatch/CollisionObject.h"
|
|
#include "CollisionShapes/ConvexShape.h"
|
|
#include "NarrowPhaseCollision/GjkPairDetector.h"
|
|
#include "BroadphaseCollision/BroadphaseProxy.h"
|
|
#include "CollisionDispatch/CollisionDispatcher.h"
|
|
#include "CollisionShapes/BoxShape.h"
|
|
#include "CollisionDispatch/ManifoldResult.h"
|
|
|
|
#include "NarrowPhaseCollision/ConvexPenetrationDepthSolver.h"
|
|
#include "NarrowPhaseCollision/ContinuousConvexCollision.h"
|
|
#include "NarrowPhaseCollision/SubSimplexConvexCast.h"
|
|
#include "NarrowPhaseCollision/GjkConvexCast.h"
|
|
|
|
|
|
|
|
#include "CollisionShapes/MinkowskiSumShape.h"
|
|
#include "NarrowPhaseCollision/VoronoiSimplexSolver.h"
|
|
#include "CollisionShapes/SphereShape.h"
|
|
|
|
#include "NarrowPhaseCollision/MinkowskiPenetrationDepthSolver.h"
|
|
#ifdef USE_EPA
|
|
#include "NarrowPhaseCollision/EpaPenetrationDepthSolver.h"
|
|
#endif
|
|
|
|
bool gUseEpa = false;
|
|
|
|
|
|
#ifdef WIN32
|
|
void DrawRasterizerLine(const float* from,const float* to,int color);
|
|
#endif
|
|
|
|
|
|
|
|
|
|
//#define PROCESS_SINGLE_CONTACT
|
|
#ifdef WIN32
|
|
bool gForceBoxBox = false;//false;//true;
|
|
|
|
#else
|
|
bool gForceBoxBox = false;//false;//true;
|
|
#endif
|
|
bool gBoxBoxUseGjk = true;//true;//false;
|
|
bool gDisableConvexCollision = false;
|
|
|
|
|
|
|
|
ConvexConvexAlgorithm::ConvexConvexAlgorithm(PersistentManifold* mf,const CollisionAlgorithmConstructionInfo& ci,BroadphaseProxy* proxy0,BroadphaseProxy* proxy1)
|
|
: CollisionAlgorithm(ci),
|
|
m_gjkPairDetector(0,0,&m_simplexSolver,0),
|
|
m_useEpa(!gUseEpa),
|
|
m_box0(*proxy0),
|
|
m_box1(*proxy1),
|
|
m_ownManifold (false),
|
|
m_manifoldPtr(mf),
|
|
m_lowLevelOfDetail(false)
|
|
{
|
|
CheckPenetrationDepthSolver();
|
|
|
|
{
|
|
if (!m_manifoldPtr && m_dispatcher->NeedsCollision(m_box0,m_box1))
|
|
{
|
|
m_manifoldPtr = m_dispatcher->GetNewManifold(proxy0->m_clientObject,proxy1->m_clientObject);
|
|
m_ownManifold = true;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
ConvexConvexAlgorithm::~ConvexConvexAlgorithm()
|
|
{
|
|
if (m_ownManifold)
|
|
{
|
|
if (m_manifoldPtr)
|
|
m_dispatcher->ReleaseManifold(m_manifoldPtr);
|
|
}
|
|
}
|
|
|
|
void ConvexConvexAlgorithm ::SetLowLevelOfDetail(bool useLowLevel)
|
|
{
|
|
m_lowLevelOfDetail = useLowLevel;
|
|
}
|
|
|
|
float ConvexConvexAlgorithm::GetCollisionImpulse() const
|
|
{
|
|
if (m_manifoldPtr)
|
|
return m_manifoldPtr->GetCollisionImpulse();
|
|
|
|
return 0.f;
|
|
}
|
|
|
|
|
|
class FlippedContactResult : public DiscreteCollisionDetectorInterface::Result
|
|
{
|
|
DiscreteCollisionDetectorInterface::Result* m_org;
|
|
|
|
public:
|
|
|
|
FlippedContactResult(DiscreteCollisionDetectorInterface::Result* org)
|
|
: m_org(org)
|
|
{
|
|
|
|
}
|
|
|
|
virtual void AddContactPoint(const SimdVector3& normalOnBInWorld,const SimdVector3& pointInWorld,float depth)
|
|
{
|
|
SimdVector3 flippedNormal = -normalOnBInWorld;
|
|
|
|
m_org->AddContactPoint(flippedNormal,pointInWorld,depth);
|
|
}
|
|
|
|
};
|
|
|
|
static MinkowskiPenetrationDepthSolver gPenetrationDepthSolver;
|
|
|
|
|
|
#ifdef USE_EPA
|
|
Solid3EpaPenetrationDepth gSolidEpaPenetrationSolver;
|
|
static EpaPenetrationDepthSolver gEpaPenetrationDepthSolver;
|
|
|
|
#endif //USE_EPA
|
|
|
|
void ConvexConvexAlgorithm::CheckPenetrationDepthSolver()
|
|
{
|
|
if (m_useEpa != gUseEpa)
|
|
{
|
|
m_useEpa = gUseEpa;
|
|
if (m_useEpa)
|
|
{
|
|
#ifdef USE_EPA
|
|
m_gjkPairDetector.SetPenetrationDepthSolver(&gEpaPenetrationDepthSolver);
|
|
|
|
#endif
|
|
} else
|
|
{
|
|
m_gjkPairDetector.SetPenetrationDepthSolver(&gPenetrationDepthSolver);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
//
|
|
// box-box collision algorithm, for simplicity also applies resolution-impulse
|
|
//
|
|
void ConvexConvexAlgorithm ::ProcessCollision (BroadphaseProxy* ,BroadphaseProxy* ,const DispatcherInfo& dispatchInfo)
|
|
{
|
|
|
|
if (!m_manifoldPtr)
|
|
return;
|
|
|
|
CheckPenetrationDepthSolver();
|
|
|
|
// printf("ConvexConvexAlgorithm::ProcessCollision\n");
|
|
|
|
bool needsCollision = m_dispatcher->NeedsCollision(m_box0,m_box1);
|
|
if (!needsCollision)
|
|
return;
|
|
|
|
CollisionObject* col0 = static_cast<CollisionObject*>(m_box0.m_clientObject);
|
|
CollisionObject* col1 = static_cast<CollisionObject*>(m_box1.m_clientObject);
|
|
|
|
ManifoldResult* resultOut = m_dispatcher->GetNewManifoldResult(col0,col1,m_manifoldPtr);
|
|
|
|
ConvexShape* min0 = static_cast<ConvexShape*>(col0->m_collisionShape);
|
|
ConvexShape* min1 = static_cast<ConvexShape*>(col1->m_collisionShape);
|
|
|
|
GjkPairDetector::ClosestPointInput input;
|
|
|
|
SphereShape sphere(0.2f);
|
|
MinkowskiSumShape expanded0(min0,&sphere);
|
|
MinkowskiSumShape expanded1(min1,&sphere);
|
|
|
|
if (dispatchInfo.m_useContinuous)
|
|
{
|
|
m_gjkPairDetector.SetMinkowskiA(&expanded0);
|
|
m_gjkPairDetector.SetMinkowskiB(&expanded1);
|
|
input.m_maximumDistanceSquared = expanded0.GetMargin()+expanded1.GetMargin();
|
|
input.m_maximumDistanceSquared *= input.m_maximumDistanceSquared;
|
|
}
|
|
else
|
|
{
|
|
m_gjkPairDetector.SetMinkowskiA(min0);
|
|
m_gjkPairDetector.SetMinkowskiB(min1);
|
|
input.m_maximumDistanceSquared = min0->GetMargin() + min1->GetMargin() + m_manifoldPtr->GetManifoldMargin();
|
|
input.m_maximumDistanceSquared*= input.m_maximumDistanceSquared;
|
|
}
|
|
|
|
input.m_maximumDistanceSquared = 1e30;//
|
|
|
|
input.m_transformA = col0->m_worldTransform;
|
|
input.m_transformB = col1->m_worldTransform;
|
|
|
|
m_gjkPairDetector.GetClosestPoints(input,*resultOut,dispatchInfo.m_debugDraw);
|
|
|
|
m_dispatcher->ReleaseManifoldResult(resultOut);
|
|
}
|
|
bool disableCcd = false;
|
|
float ConvexConvexAlgorithm::CalculateTimeOfImpact(BroadphaseProxy* proxy0,BroadphaseProxy* proxy1,const DispatcherInfo& dispatchInfo)
|
|
{
|
|
|
|
CheckPenetrationDepthSolver();
|
|
|
|
|
|
bool needsCollision = m_dispatcher->NeedsCollision(m_box0,m_box1);
|
|
|
|
if (!needsCollision)
|
|
return 1.f;
|
|
|
|
|
|
CollisionObject* col0 = static_cast<CollisionObject*>(m_box0.m_clientObject);
|
|
CollisionObject* col1 = static_cast<CollisionObject*>(m_box1.m_clientObject);
|
|
|
|
ConvexShape* min0 = static_cast<ConvexShape*>(col0->m_collisionShape);
|
|
ConvexShape* min1 = static_cast<ConvexShape*>(col1->m_collisionShape);
|
|
|
|
ConvexCast::CastResult result;
|
|
|
|
VoronoiSimplexSolver voronoiSimplex;
|
|
//SubsimplexConvexCast ccd(&voronoiSimplex);
|
|
//GjkConvexCast ccd(&voronoiSimplex);
|
|
|
|
ContinuousConvexCollision ccd(min0,min1,&voronoiSimplex,m_penetrationDepthSolver);
|
|
|
|
if (disableCcd)
|
|
return 1.f;
|
|
|
|
if (ccd.calcTimeOfImpact(col0->m_worldTransform,col0->m_nextPredictedWorldTransform,
|
|
col1->m_worldTransform,col1->m_nextPredictedWorldTransform,result))
|
|
{
|
|
|
|
//store result.m_fraction in both bodies
|
|
|
|
if (col0->m_hitFraction > result.m_fraction)
|
|
col0->m_hitFraction = result.m_fraction;
|
|
|
|
if (col1->m_hitFraction > result.m_fraction)
|
|
col1->m_hitFraction = result.m_fraction;
|
|
|
|
return result.m_fraction;
|
|
}
|
|
|
|
|
|
return 1.f;
|
|
|
|
|
|
}
|