Files
blender/source/blender/blenlib/intern/array_utils.c
2016-05-07 23:48:53 +10:00

297 lines
7.7 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/array_utils.c
* \ingroup bli
* \brief Generic array manipulation API.
*
* \warning Some array operations here are inherently inefficient,
* and only included for the cases where the performance is acceptable.
* Use with care.
*/
#include <string.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_array_utils.h"
#include "BLI_sys_types.h"
#include "BLI_utildefines.h"
#include "BLI_alloca.h"
#include "BLI_strict_flags.h"
/**
*In-place array reverse.
*
* Access via #BLI_array_reverse
*/
void _bli_array_reverse(void *arr_v, unsigned int arr_len, size_t arr_stride)
{
const unsigned int arr_stride_uint = (unsigned int)arr_stride;
const unsigned int arr_half_stride = (arr_len / 2) * arr_stride_uint;
unsigned int i, i_end;
char *arr = arr_v;
char *buf = BLI_array_alloca(buf, arr_stride);
for (i = 0, i_end = (arr_len - 1) * arr_stride_uint;
i < arr_half_stride;
i += arr_stride_uint, i_end -= arr_stride_uint)
{
memcpy(buf, &arr[i], arr_stride);
memcpy(&arr[i], &arr[i_end], arr_stride);
memcpy(&arr[i_end], buf, arr_stride);
}
}
/**
* In-place array wrap.
* (rotate the array one step forward or backwards).
*
* Access via #BLI_array_wrap
*/
void _bli_array_wrap(void *arr_v, unsigned int arr_len, size_t arr_stride, int dir)
{
char *arr = arr_v;
char *buf = BLI_array_alloca(buf, arr_stride);
if (dir == -1) {
memcpy(buf, arr, arr_stride);
memmove(arr, arr + arr_stride, arr_stride * (arr_len - 1));
memcpy(arr + (arr_stride * (arr_len - 1)), buf, arr_stride);
}
else if (dir == 1) {
memcpy(buf, arr + (arr_stride * (arr_len - 1)), arr_stride);
memmove(arr + arr_stride, arr, arr_stride * (arr_len - 1));
memcpy(arr, buf, arr_stride);
}
else {
BLI_assert(0);
}
}
/**
*In-place array permute.
* (re-arrange elements based on an array of indices).
*
* Access via #BLI_array_wrap
*/
void _bli_array_permute(
void *arr_v, const unsigned int arr_len, const size_t arr_stride,
const unsigned int *order, void *arr_temp)
{
const size_t len = arr_len * arr_stride;
const unsigned int arr_stride_uint = (unsigned int)arr_stride;
void *arr_orig;
unsigned int i;
if (arr_temp == NULL) {
arr_orig = MEM_mallocN(len, __func__);
}
else {
arr_orig = arr_temp;
}
memcpy(arr_orig, arr_v, len);
for (i = 0; i < arr_len; i++) {
BLI_assert(order[i] < arr_len);
memcpy(POINTER_OFFSET(arr_v, arr_stride_uint * i),
POINTER_OFFSET(arr_orig, arr_stride_uint * order[i]),
arr_stride);
}
if (arr_temp == NULL) {
MEM_freeN(arr_orig);
}
}
/**
* Find the first index of an item in an array.
*
* Access via #BLI_array_findindex
*
* \note Not efficient, use for error checks/asserts.
*/
int _bli_array_findindex(const void *arr, unsigned int arr_len, size_t arr_stride, const void *p)
{
const char *arr_step = (const char *)arr;
unsigned int i;
for (i = 0; i < arr_len; i++, arr_step += arr_stride) {
if (memcmp(arr_step, p, arr_stride) == 0) {
return (int)i;
}
}
return -1;
}
void _bli_array_binary_and(
void *arr, const void *arr_a, const void *arr_b,
unsigned int arr_len, size_t arr_stride)
{
char *dst = arr;
const char *src_a = arr_a;
const char *src_b = arr_b;
size_t i = arr_stride * arr_len;
while (i--) {
*(dst++) = *(src_a++) & *(src_b++);
}
}
void _bli_array_binary_or(
void *arr, const void *arr_a, const void *arr_b,
unsigned int arr_len, size_t arr_stride)
{
char *dst = arr;
const char *src_a = arr_a;
const char *src_b = arr_b;
size_t i = arr_stride * arr_len;
while (i--) {
*(dst++) = *(src_a++) | *(src_b++);
}
}
/**
* Utility function to iterate over contiguous items in an array.
*
* \param use_wrap: Detect contiguous ranges across the first/last points.
* In this case the second index of \a span_step may be lower than the first,
* which indicates the values are wrapped.
* \param use_delimit_bounds: When false, ranges that defined by the start/end indices are excluded.
* This option has no effect when \a use_wrap is enabled.
* \param test_fn: Function to test if the item should be included in the range.
* \param user_data: User data for \a test_fn.
* \param span_step: Indices to iterate over,
* initialize both values to the array length to initialize iteration.
* \param: r_span_len: The length of the span, useful when \a use_wrap is enabled,
* where calculating the length isnt a simple subtraction.
*/
bool _bli_array_iter_span(
const void *arr,
unsigned int arr_len, size_t arr_stride,
bool use_wrap, bool use_delimit_bounds,
bool (*test_fn)(const void *arr_item, void *user_data), void *user_data,
unsigned int span_step[2], unsigned int *r_span_len)
{
if (arr_len == 0) {
return false;
}
else if (use_wrap && (span_step[0] != arr_len) && (span_step[0] > span_step[1])) {
return false;
}
const unsigned int arr_stride_uint = (unsigned int)arr_stride;
const void *item_prev;
bool test_prev;
unsigned int i_curr;
if ((span_step[0] == arr_len) && (span_step[1] == arr_len)) {
if (use_wrap) {
item_prev = POINTER_OFFSET(arr, (arr_len - 1) * arr_stride_uint);
i_curr = 0;
test_prev = test_fn(item_prev, user_data);
}
else if (use_delimit_bounds == false) {
item_prev = arr;
i_curr = 1;
test_prev = test_fn(item_prev, user_data);
}
else {
item_prev = NULL;
i_curr = 0;
test_prev = false;
}
}
else if ((i_curr = span_step[1] + 2) < arr_len) {
item_prev = POINTER_OFFSET(arr, (span_step[1] + 1) * arr_stride_uint);
test_prev = test_fn(item_prev, user_data);
}
else {
return false;
}
BLI_assert(i_curr < arr_len);
const void *item_curr = POINTER_OFFSET(arr, i_curr * arr_stride_uint);
while (i_curr < arr_len) {
bool test_curr = test_fn(item_curr, user_data);
if ((test_prev == false) &&
(test_curr == true))
{
unsigned int span_len;
unsigned int i_step_prev = i_curr;
if (use_wrap) {
unsigned int i_step = i_curr + 1;
if (UNLIKELY(i_step == arr_len)) {
i_step = 0;
}
while (test_fn(POINTER_OFFSET(arr, i_step * arr_stride_uint), user_data)) {
i_step_prev = i_step;
i_step++;
if (UNLIKELY(i_step == arr_len)) {
i_step = 0;
}
}
if (i_step_prev < i_curr) {
span_len = (i_step_prev + (arr_len - i_curr)) + 1;
}
else {
span_len = (i_step_prev - i_curr) + 1;
}
}
else {
unsigned int i_step = i_curr + 1;
while ((i_step != arr_len) &&
test_fn(POINTER_OFFSET(arr, i_step * arr_stride_uint), user_data))
{
i_step_prev = i_step;
i_step++;
}
span_len = (i_step_prev - i_curr) + 1;
if ((use_delimit_bounds == false) && (i_step_prev == arr_len - 1)) {
return false;
}
}
span_step[0] = i_curr;
span_step[1] = i_step_prev;
*r_span_len = span_len;
return true;
}
test_prev = test_curr;
item_prev = item_curr;
item_curr = POINTER_OFFSET(item_curr, arr_stride_uint);
i_curr++;
}
return false;
}